Fizyczna struktura włókna optycznego Propagacja światła liniowo spolaryzowanego
|
|
- Beata Szewczyk
- 8 lat temu
- Przeglądów:
Transkrypt
1 Światłowody włókniste podstawy fizyczne Fizyczna struktura włókna optycznego Propagacja światła liniowo spolaryzowanego
2 Fizyczna struktura włókna optycznego Światłowody włókniste są wytwarzane poprzez osadzenie czystego krzemu (domieszkowanego GeO2 dla zwiększenia lub F dla zmniejszenia współczynnika załamania) w formie pręta rdzeniowego o średnicy ok. 1 cm i długości 1 m. Obecne metody fabrykacji włączają procesy zwane: MCVD modified chemical vapor deposition OVD outside vapor deposition
3 VAD vertical axial deposition PCVD plasma chemical vapor deposition Pierwszetrzy metody zawierają dwa kroki osadzania i sukcesywnego wygrzewania odpowiednich związków telenkowych, natomiast ostatnia wytwarza warstwy tlenkowe w trakcie jednego procesu.
4 Wytworzony pręt zawiera zarówno przyszły rdzeń włókna prowadzący wiązkę światła jak i przyszłego płaszcza z czystego kwarcu, gdzie zachodzi propagacja wiązki 10% całego przekroju. Pręt rdzeniowy wraz z otaczającym go płaszczem tworzą preformę, przy czym na otaczający płaszcz stosuje się krzemionkę o niższej czystościuzyska na na drodze OVD, osadzania plazmowego lub metody sol żel. Materiał ten osadzany jest bez pośrednio na pręt rdzeniowy lub tez wytwarzany oddzielnie w postaci tuby która zaciska się na pręcie rdzeniowym. W końcowym procesie preforma jest przeciągana w pionowym stanowisku w temperaturze 2200 C w średnicę 125 um klasycznego włókna z szybkością powyżej 10 m/s z jednoczesnym nanosze niem dwu warstw akrylowychutwardzanych UV. Pokrycie wprowadza odpowiednie zabezpieczenie włókna oraz nadaje mu odporność mecha niczną. Ostatecznie rdzeń prowadzący fale świetlną ma średnicę 8 10 um w 125 um szklanej strukturze.
5 Propagacja pg światła liniowo Równania Maxwella w układzie MKS: spolaryzowanego równania materiałowe Dla ośrodka ś bezźródłowego ź zachodzi idodatkowo d Wk Wykonując standardowe przekształcenia otrzymuje się równania falowe w postaci: Jest układ trzech równań falowych dla każdej ze składowych pola elektrycznego i magnetycznego. Zkł Zakładając dj następnie harmoniczną zależność ż tych pól od czasu można ż ogólnie dla fali propagującej się w kierunku osi z zapisać: gdzie jest stałą propagacji lub przesunięciem fazowym na jednostkę długości sinusoidalnej fali mierzona wzdłuż osi z, zaś jest prędkością fali
6 Wykorzystując powyższą zależność czasową otrzymamy równania Maxwella jako: Definiując, można zapisać równanie falowe w formie wektorowego równania Helmholtza: Liczba falowa k ma jednostkę 1/m i zawiera własności materiałowe. Wektor falowy K skierowany jest w kierunku przepływu energii i ma wartość K =k. Stała propagacji β jest używana celem wskazania szybkości akumulacji fazy w trakcie propagacji p fali. W przypadku płaskiej fali elektromagnetycznej rozchodzącej się w jednorodnym, liniowym i izotropowym ośrodku, stała propagacji wynosi:, gdzie, zaś λ jest długością fali światła w próżni. W światłowodach, każdy jego i ty obszar jest scharakteryzowany przez współczynnik załamania zatem amplituda wektora falowego w każdym obszarze będzie równa stąd równania Helmholtza wymagają rozwiązań dla każdego z obszaru oddzielnie z dopasowaniem warunków brzegowych na poszczególnych powierzchniach.
7 Model słabej falowodowości struktura planarna Rozpatrujemy podejście optyki geometrycznej tzw. slab waveguide, prowadzącego mody w strukturze włókna skokowego scharakteryzowanegoprzez FIG. 1 Falowód słabo prowadzący o grubości 2a lub włókno o promieniu rdzenia r=a typu step index ze stałą ą propagacji p modu β. FIG. 2. Geometria odbić i propagacji w strukturze włókna Odbicia na powierzchniach spełniają równania Fresnela dla amplitud i przesunięć fazowych pól E i H z włączeniem prawa Snella. Stała propagacji β w kierunku osi z musi być jednakowa dla obszaru 1 i 2. Wektor falowy K1 w rdzeniu jest większy niż K2 bo n1>n2.
8 Łatwo wykazać, że stała propagacji β musi być jednakowa w każdym obszarze falowodu (podłużne składowe pól muszą być ciągłe na powierzchni rozdziału), natomiast poprzeczna stała propagacji κi będzie różna oraz może być urojona. Pole elektryczne w obszarze prowadzenia wiązki zakładane jest jako: gdzie /+ odpowiednio dla propagacji w górę lub dół osi x z FIG.2. Zgodnie z prawem Snella całkowite wewnętrzne odbicie jest gdy Natomiast dla κ2 jest w kierunku osi z ze stała propagacji Mody prowadzone występują dla wówczas W tym wypadku κ2 staje się urojone, zatem możemy zapisać, gdzie stała zanikania jest liczbą rzeczywista taką, że Dla pola elektrycznego w obszarze płaszcza (obszar 2) mamy: Mod prowadzony powstaje tj gdy następuje odtworzenie fli fali przy jj jej pełnym ł cyklicznym przejściu w strukturze, czyli przesunięcie fazy fali E1 pomiędzy położeniami (1) i (2) na FIG.2 Musi być wielokrotnością 2π, włączając w to zmianę fazy przy odbiciu od powierzchni podziału (wyznaczaną z równań Fresnela dla TE pole elektryczne w płaszczyźnie xy, lub TM pole magnetyczne w płaszczyźnie xy). Warunek rezonansu poprzecznego określa β i γ wyznaczając jeden lub więcej prowadzo nych modów wzdłuż osi z, ze stojącą falą w kierunku osi x dla obszaru rdzenia i falą zanikającą w kierunku osi x dla obszaru płaszcza.
9 Światłowody y włókniste Dla cylindrycznych włókien zastosowanie metody geometrycznej jest skomplikowane ze względu na istnienie ich helikalnej drogi bez przechodzenia przez oś włókna. Dlatego lepiej jest pokazać rozwiązanie równań polowych dla modów prowadzonych w strukturze dla włókna skokowego z FIG.1 zakładamy rozwiązania dla pól jako: Każde z równań wektorowych Helmholtza zawiera trzy równania skalarne, jednakże można rozwiązać jedno z nich np. dla Ez a następnie poprzez równania Maxwella określić pozostałe składowe. W ten sposób, równanie Helmholtza dla pola elektrycznego wynoszą: gdzie poprzeczna część laplasjanu zawiera jedynie pochodne radialne i kątowe. Definiujemy poprzeczna stała propagacji (odpowiednik κi) jako: podobnie do struktury slab βt2 jest urojona dla modu prowadzonego gdy β>n2ko Zapisujemy rozwiązanie ą w postaci umożliwiającej j separację zmiennych: wówczas q C (liczba azymutalna)
10 Dla: βt1 Re (obszar rdzenia r<a) R(r)=Jq(βtr) funkcja Bessla I go rodzaju βt2 β Im (obszar płaszcza r>a) ) R(r)=Kq( βt r) ( β ) zmodyfikowana funkcja Bessla Znormalizowane stałe propagacji poprzecznej i zaniku wynoszą, odpowiednio: Stąd pełne rozwiązanie ma postać: Zauważmy, że rozwiązania dla obu obszarów różnią się jedynie dla zmiennej radialnej. Posłać rozwiązań dla pozostałych 5 ciu składowych pola otrzymuje się z powyższej poprzez równania Maxwella. Wszystkie rozwiązania są scharakteryzowane poprzez rząd modu q, (azymutalna liczba modowa) wynoszącą q=0,1,2, Wartościami własnymi są określone zbiory liczb (u, w, β), które zapewniają spełnienie warunków brzegowych (podtrzymania prowadzenia modu w strukturze) wymagających ciągłości podłużnych składowych pola dla r= a. Wartości te są numerowane jako m = 1, 2, 3, radialna liczba modowa. Układ modów: poprzeczno elektrycznych TE0m ma składowe Ez=0 oraz Eφ, Hz, Hr 0, poprzeczno magnetycznych TM0m ma składowe Hz=0 oraz Hφ, Ez, Er 0, mody z q 0 są określone jako EHqm lub HEqm i odpowiadają fizycznie promieniom helikalnym w ujęciu optyki geometrycznej.
11 Układ liniowo spolaryzowanych y modów LP LPlm Przyjęcie aproksymacji słabo falowodowej (n1 n2) znacznie upraszcza poszukiwanie rozwiązań na wartości własne. Ogólnie włókna telekomunikacyjne mają Δ < 1%, chociaż włókna z kompensacją dyspersji moda mieć Δ rzędu nawet 2%. Aproksymacja słabej falowowodowości dotyczy głównie pierwszej grupy, ale jej wynik fizycznie może być ć rozciągnięty i także na drugą grupę. Aproksymacja ta wprowadza grupowanie modów zdegenerowanych, które maja jednakowe stałe propagacji β ale różniące się konfiguracje pola, do formy układu modów zapisywanych jako LPlm będących modami liniowo spolaryzowanymi w płaszczyźnie poprzecznej. Jest to naturalny układ opisu modów włókna, gdyż lasery telekomunikacyjne typowo emitują światło liniowo spolaryzowane, które utrzymuje swą ą polaryzację we włóknie bez zaburzeń. Nowa liczba modu l jest wprowadzana następująco: Uż j ł kł d ż ń kł d ól E i H d ł i i kó Używając pełnego układu wyrażeń an składowe pól E i H do spełnienia warunków brzegowych przy r = a oraz na bazie warunku słabej falowodowości, równanie na wartości własne ma postać:
12 Wygodnie jest wprowadzić znormalizowaną częstotliwość przestrzenną, liczbę V: Która określa możliwe wartości u i w lezące w kole o promieniu V, które odniesione są do podstawowych parametrów włókna. Wzrost V (większy Δ, kó krótsza liczba falowa, fl lub większy rdzeń) daje większą możliwa liczbę modów prowadzonych w strukturze. Mówimy, że mod jest odcięty, ę gdy zaprzestaje się ę być ograniczonym w strukturze, tzn. gdy pole w obszarze płaszcza przestaje być polem zanikającym. Odcięcie zachodzi więc dla Blisko odcięcia, w 0 i pole zanikające rozprzes trzenia się dalej w głąb płaszcza. Powyżej odcięcia, stała propagacjiβt2 staje się rzeczywista, poprzeczne pole w płaszczu zaczynana się propagować, zaś rozwiązaniem jest fala leaky (wypływająca) a nie fala prowadzona. Warunek odcięcia modów otrzymuje się poprzez przyjecie w=0, co dla równania na wartości własne prowadzi do relacji: Pokazującej, iż zera funkcji Bessela dają odpowiednie warunki odcięcia modu l. LP01 mod podstawowy HE11 bez odcięcia w strukturze, LP11 połączenie modów TE01, TM01 i HE21 z odcięciem V=2.405 pierwsze zero J0, LP21 oraz LP02 mają odcięcie dla V=3.832 zero funkcji J±1.
13 Rozkład natężenia dla modów LPlm są określone poprzez Ilm=ElmE*lm i wynoszą: Pozwala to na dokonanie fizycznej interpretacji liczb m oraz l. Liczba całkowita m 1 określaliczbę liczbę maksimów natężenia w kierunku radialnym. Większa liczba m oznacza większą wartość u dla danej liczby V, oznaczając jednocześnie więcej radialnych oscylacji w obrazie natężeniowym. Liczba l jest połową liczby azymutalnych maksimów w rozkładzienatężenia natężenia. Zatem mod podstawowy LP01 nie ma zaburzeń w kierunku azymutalnym z maksimum natężenia na osi włókna dla r=0 i malejącym radialnie natężeniem. LP01 LP11 LP21
14 Metoda elementów skończonych w obliczeniach włókien Normalnie rozkład współczynnika załamania w strukturze światłowodu jest znacznie bardziej skomplikowany lk niż przytoczony tu model dlkk skokowy np. gradientowy, wieloskokowy, itp. Zatem praktyczne rozwiązanie równania falowego, dającego w konsekwencji równanie charakterystyczne wymaga zastosowanie podejścia numerycznego, najczęściej za pomocą FEM metody elementów skończonych. Praktyczne zastosowanie włókien określają takie jego parametry jak: tłumienie, średni ca pola modu, pole efektywne, długość fali odcięcia, dyspersja, starty zgięciowe. Blisko długości fali odcięcia pole radialne dla modu LP01 włókna skokowego jest prawie gaussowskie. Średnica pola modu (MFD mode field diameter) oraz pole efektywne (Aeff effective area) są zdefiniowane jako: MFD i Aeff ze swej natury są związane z długością fali i rosną dla dłuższych fal. Oczywiste jest, iż światło o dłuższej długości fali będzie mniej ograniczone przez strukturę falowodu niż fale o krótszej długości.
Podstawy prowadzenia światła we włóknach oraz ich budowa. Light-Guiding Fundamentals and Fiber Design
Podstawy prowadzenia światła we włóknach oraz ich budowa Light-Guiding Fundamentals and Fiber Design Rozchodzenie się liniowo-spolaryzowanego światła w światłowodzie Robocza definicja długości fali odcięcia
III. Opis falowy. /~bezet
Światłowody III. Opis falowy BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet Równanie falowe w próżni Teoria falowa Równanie Helmholtza Równanie bezdyspersyjne fali płaskiej, rozchodzącej
Wykład 12: prowadzenie światła
Fotonika Wykład 12: prowadzenie światła Plan: Mechanizmy prowadzenia światła Mechanizmy oparte na odbiciu całkowite wewnętrzne odbicie, odbicie od ośrodków przewodzących, fotoniczna przerwa wzbroniona
KATEDRA TELEKOMUNIKACJI I FOTONIKI
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I FOTONIKI OPROGRAMOWANIE DO MODELOWANIA SIECI ŚWIATŁOWODOWYCH PROJEKTOWANIE FALOWODÓW PLANARNYCH (wydrukować
Propagacja światła we włóknie obserwacja pól modowych.
Propagacja światła we włóknie obserwacja pól modowych. Przy pomocy optyki geometrycznej łatwo można przedstawić efekty propagacji światła tylko w ośrodku nieograniczonym. Nie ukazuje ona jednak interesujących
Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
Równania Maxwella. Wstęp E B H J D
Równania Maxwella E B t, H J D t, D, B 0 Równania materiałowe B 0 H M, D 0 E P, J E, gdzie: 0 przenikalność elektryczną próżni ( 0 8854 10 1 As/Vm), 0 przenikalność magetyczną próżni ( 0 4 10 7 Vs/Am),
1 Płaska fala elektromagnetyczna
1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 6, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 6, 0.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 5 - przypomnienie ciągłość
Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne
IV. Transmisja. /~bezet
Światłowody IV. Transmisja BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet 1. Tłumienność 10 7 10 6 Tłumienność [db/km] 10 5 10 4 10 3 10 2 10 SiO 2 Tłumienność szkła w latach (za A.
Widmo fal elektromagnetycznych
Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą
Fale elektromagnetyczne
Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................
- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa)
37. Straty na histerezę. Sens fizyczny. Energia dostarczona do cewki ferromagnetykiem jest znacznie większa od energii otrzymanej. Energia ta jest tworzona w ferromagnetyku opisanym pętlą histerezy, stąd
LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej
LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i
Światłowody telekomunikacyjne
Światłowody telekomunikacyjne Parametry i charakteryzacja światłowodów Kolejny wykład będzie poświęcony metodom pomiarowym Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie
Laboratorium techniki światłowodowej. Ćwiczenie 2. Badanie apertury numerycznej światłowodów
Laboratorium techniki światłowodowej Ćwiczenie 2. Badanie apertury numerycznej światłowodów Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie Światłowody
Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:
Rozważania rozpoczniemy od ośrodków jednorodnych. W takich ośrodkach zależność między indukcją pola elektrycznego a natężeniem pola oraz między indukcją pola magnetycznego a natężeniem pola opisana jest
Uniwersytet Warszawski Wydział Fizyki. Światłowody
Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Światłowody Pracownia Fizyczna dla Zaawansowanych ćwiczenie L6 w zakresie Optyki Streszczenie Celem wykonanego na Pracowni Fizycznej dla Zaawansowanych
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Wielomodowe, grubordzeniowe
Wielomodowe, grubordzeniowe i z plastykowym pokryciem włókna. Przewężki i mikroelementy Multimode, Large-Core, and Plastic Clad Fibers. Tapered Fibers and Specialty Fiber Microcomponents Wprowadzenie Włókna
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................
Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu
Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi
RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?
RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1
Fale elektromagnetyczne. Gradient pola. Gradient pola... Gradient pola... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek 2013/14
dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2013/14 1 dr inż. Ireneusz Owczarek Gradient pola Gradient funkcji pola skalarnego ϕ przypisuje każdemu punktowi
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
Solitony i zjawiska nieliniowe we włóknach optycznych
Solitony i zjawiska nieliniowe we włóknach optycznych Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział
2. Światłowody. 2. TELEKOMUNIKACJA OPTOFALOWA: Światłowody Strona 1
TELEKOMUNIKACJA OPTOFALOWA. Światłowody Spis treści:.1. Wprowadzenie... Światłowody wielo- i jednomodowe..3. Tłumienie światłowodów..4. Dyspersja światłowodów..5. Pobudzanie i łączenie światłowodów..6.
Typy światłowodów: Technika światłowodowa
Typy światłowodów: Skokowy wielomodowy Gradientowy wielomodowy Skokowy jednomodowy Zmodyfikowany dyspersyjnie jednomodowy Jednomodowy utrzymujący stan polaryzacji Swiatłowody fotoniczne Propagacja światła
Efekt naskórkowy (skin effect)
Efekt naskórkowy (skin effect) Rozważmy cylindryczny przewód o promieniu a i o nieskończonej długości. Przez przewód płynie prąd I = I 0 cos ωt. Dla niezbyt dużych częstości ω możemy zaniedbać prąd przesunięcia,
Zjawiska w niej występujące, jeśli jest ona linią długą: Definicje współczynników odbicia na początku i końcu linii długiej.
1. Uproszczony schemat bezstratnej (R = 0) linii przesyłowej sygnałów cyfrowych. Zjawiska w niej występujące, jeśli jest ona linią długą: odbicie fali na końcu linii; tłumienie fali; zniekształcenie fali;
FMZ10 S - Badanie światłowodów
FMZ10 S - Badanie światłowodów Materiały przeznaczone dla studentów Informatyki Stosowanej w Instytucie Fizyki Uniwersytetu Jagiellońskiego 1 Cel ćwiczenia Celem ćwiczenia jest wyznaczenie apertury numerycznej,
Fale elektromagnetyczne
Podstawy elektromagnetyzmu Wykład 11 Fale elektromagnetyczne Równania Maxwella H=J D t E= B t D= B=0 D= E J= E B= H Ruch ładunku jest źródłem pola magnetycznego Zmiana pola magnetycznego w czasie jest
2007-10-27. NA = sin Θ = (n rdzenia2 - n płaszcza2 ) 1/2. L[dB] = 10 log 10 (NA 1 /NA 2 )
dr inż. Krzysztof Hodyr Technika Światłowodowa Część 2 Tłumienie i straty w światłowodach Pojęcie dyspersji światłowodów Technika zwielokrotnienia WDM Źródła strat tłumieniowych sprzężenia światłowodu
Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji
Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,
Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość.
Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali
Fala EM w izotropowym ośrodku absorbującym
Fala EM w izotropowym ośrodku absorbującym Fala EM powoduje generację zmienne pole elektryczne E Zmienne co do kierunku i natężenia, Pole E Nie wywołuje w ośrodku prądu elektrycznego Powoduje ruch elektronów
Fotonika kurs magisterski grupa R41 semestr VII Specjalność: Inżynieria fotoniczna. Egzamin ustny: trzy zagadnienia do objaśnienia
Dr inż. Tomasz Kozacki Prof. dr hab.inż. Romuald Jóźwicki Zakład Techniki Optycznej Instytut Mikromechaniki i Fotoniki pokój 513a ogłoszenia na tablicach V-tego piętra kurs magisterski grupa R41 semestr
Fizyka Laserów wykład 5. Czesław Radzewicz
Fizyka Laserów wykład 5 Czesław Radzewicz rezonatory optyczne, optyczne wnęki rezonansowe rezonatory otwarte: Fabry-Perot E t E 0 R 0.99 T 1 0 E r R R R 0. R 0.9 E t = TE 0 e iδφ R 0.5 R 0.9 E t Gires-Tournois
Równania Maxwella. roth t
, H wektory natężenia pola elektrycznego i magnetycznego D, B wektory indukcji elektrycznej i magnetycznej J gęstość prądu elektrycznego Równania Maxwella D roth t B rot+ t J Dla ośrodka izotropowego D
Przedmiot: Fizyka. Światło jako fala. 2016/17, sem. letni 1
Światło jako fala 1 Fala elektromagnetyczna widmo promieniowania Czułość oka ludzkiego w zakresie widzialnym 2 Wytwarzanie fali elektromagnetycznej o częstościach radiowych H. Hertz (1888) doświadczalne
Laboratorium techniki światłowodowej. Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd światłowodu
Laboratorium techniki światłowodowej Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie
Moment pędu fali elektromagnetycznej
napisał Michał Wierzbicki Moment pędu fali elektromagnetycznej Definicja momentu pędu pola elektromagnetycznego Gęstość momentu pędu pola J w elektrodynamice definuje się za pomocą wzoru: J = r P = ɛ 0
Wykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 11. Fale mechaniczne Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html FALA Falą nazywamy każde rozprzestrzeniające
Metody Obliczeniowe Mikrooptyki i Fotoniki. Metoda propagacji wiązki BPM Modelowanie propagacji
Metody Obliczeniowe Mikrooptyki i Fotoniki Metoda propagacji wiązki BPM Modelowanie propagacji Równanie BPM Równanie Helmholtza: n k 0 =0 Rozwiązanie zapisujemy jako: r =A r exp i k z Fala nośna k =n k
PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 18/15. HANNA STAWSKA, Wrocław, PL ELŻBIETA BEREŚ-PAWLIK, Wrocław, PL
PL 224674 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 224674 (13) B1 (21) Numer zgłoszenia: 409674 (51) Int.Cl. G02B 6/02 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:
Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość.
Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali
Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT
Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów
Laboratorium techniki światłowodowej. Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia
Laboratorium techniki światłowodowej Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie
Wprowadzenie do technologii HDR
Wprowadzenie do technologii HDR Konwersatorium 2 - inspiracje biologiczne mgr inż. Krzysztof Szwarc krzysztof@szwarc.net.pl Sosnowiec, 5 marca 2018 1 / 26 mgr inż. Krzysztof Szwarc Wprowadzenie do technologii
Fale elektromagnetyczne w dielektrykach
Fale elektromagnetyczne w dielektrykach Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Krótka historia odkrycia
Wprowadzenie do optyki nieliniowej
Wprowadzenie do optyki nieliniowej Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem podania
Fal podłużna. Polaryzacja fali podłużnej
Fala dźwiękowa Podział fal Fala oznacza energię wypełniającą pewien obszar w przestrzeni. Wyróżniamy trzy główne rodzaje fal: Mechaniczne najbardziej znane, typowe przykłady to fale na wodzie czy fale
Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy
Oddziaływanie promieniowania X z materią Podstawowe mechanizmy Promieniowanie od oscylującego elektronu Rozpraszanie Thomsona Dyspersja podejście klasyczne Fala padająca Wymuszony, tłumiony oscylator harmoniczny
http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet
IV. Światłowody BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet Literatura 2 3 Historia i uwarunkowania Podstawowe elementy: 1. Rozwój techniki laserowej (lasery półprzewodnikowe, modulacja,
Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski
Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne
Przedmowa do wydania drugiego Konwencje i ważniejsze oznaczenia... 13
Przedmowa do wydania drugiego... 11 Konwencje i ważniejsze oznaczenia... 13 1. Rachunek i analiza wektorowa... 17 1.1. Wielkości skalarne i wektorowe... 17 1.2. Układy współrzędnych... 20 1.2.1. Układ
Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski
Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne
Metody Optyczne w Technice. Wykład 8 Polarymetria
Metody Optyczne w Technice Wykład 8 Polarymetria Fala elektromagnetyczna div D div B 0 D E rot rot E H B t D t J B J H E Fala elektromagnetyczna 2 2 E H 2 t 2 E 2 t H 2 v n 1 0 0 c n 0 Fala elektromagnetyczna
Połączenia spawane światłowodów przystosowanych do multipleksacji falowej WDM
A-8/10.01 Marek Ratuszek, Jacek Majewski, Zbigniew Zakrzewski, Józef Zalewski, Zdzisław Drzycimski Instytut Telekomunikacji ATR Bydgoszcz Połączenia spawane światłowodów przystosowanych do multipleksacji
Natura światła. W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton
Natura światła W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton W swojej pracy naukowej najpierw zajmował się optyką. Pierwsze sukcesy odniósł właśnie w optyce, konstruując
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra
Wykład 17: Optyka falowa cz.1.
Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
obszary o większej wartości zaburzenia mają ciemny odcień, a
Co to jest fala? Falę stanowi rozchodzące się w ośrodku zaburzenie, zmiany jakiejś wielkości (powtarzające się wielokrotnie i cyklicznie zmieniające swoje wychylenie). Fala pojawia się w ośrodkach, których
5.1. Powstawanie i rozchodzenie się fal mechanicznych.
5. Fale mechaniczne 5.1. Powstawanie i rozchodzenie się fal mechanicznych. Ruch falowy jest zjawiskiem bardzo rozpowszechnionym w przyrodzie. Spotkałeś się z pewnością w życiu codziennym z takimi pojęciami
Prawa optyki geometrycznej
Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)
Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,
Promieniowanie dipolowe
Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A
Włókna z cieczowym rdzeniem oraz włókna plastykowe. Liquid-Core and Polymer Optical Fibers
Włókna z cieczowym rdzeniem oraz włókna plastykowe Liquid-Core and Polymer Optical Fibers Prowadzenie światła w falowodach cieczowych Zastosowanie falowodów cieczowych Włókna polimerowe Efekt propagacji
ĆWICZENIE NR 3. Światłowody jednomodowe.
ĆWICZENIE NR 3 Światłowody jednomodowe. Ćwiczenie to jest jednym z dwu ćwiczeń obejmujących badanie właściwości modowych włókien jednodomowych. Nauczysz się sprzęgać światło z lasera ze światłowodem jednodomowym
Ośrodki dielektryczne optycznie nieliniowe
Ośrodki dielektryczne optycznie nieliniowe Równania Maxwella roth rot D t B t = = przy czym tym razem wektor indukcji elektrycznej D ε + = ( ) Wektor polaryzacji jest nieliniową funkcją natężenia pola
CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER
CHARATERYSTYA WIĄZI GENEROWANEJ PRZEZ LASER ształt wiązki lasera i jej widmo są rezultatem interferencji promieniowania we wnęce rezonansowej. W wyniku tego procesu powstają charakterystyczne rozkłady
Fotonika. Plan: Wykład 9: Interferencja w układach warstwowych
Fotonika Wykład 9: Interferencja w układach warstwowych Plan: metody macierzowe - macierze przejścia i rozpraszania Proste układy warstwowe powłoki antyrefleksyjne interferometr Fabry-Pérot tunelowanie
POMIAR APERTURY NUMERYCZNEJ
ĆWICZENIE O9 POMIAR APERTURY NUMERYCZNEJ ŚWIATŁOWODU KATEDRA FIZYKI 1 Wstęp Prawa optyki geometrycznej W optyce geometrycznej, rozpatrując rozchodzenie się fal świetlnych przyjmuje się pewne założenia
Włókna utrzymujące polaryzację oraz domieszkowane metalami sziem rzadkich. Polarization Maintaining Fibers And Rate Earth-Doped Fibres
Włókna utrzymujące polaryzację oraz domieszkowane metalami sziem rzadkich Polarization Maintaining Fibers And Rate Earth-Doped Fibres PMF - co to za włókna i po co one są Jak działa PMF Typy PMF: dwójłomność
Spis treści. Wykaz ważniejszych oznaczeń. Przedmowa 15. Wprowadzenie Ruch falowy w ośrodku płynnym Pola akustyczne źródeł rzeczywistych
Spis treści Wykaz ważniejszych oznaczeń u Przedmowa 15 Wprowadzenie 17 1. Ruch falowy w ośrodku płynnym 23 1.1. Dźwięk jako drgania ośrodka sprężystego 1.2. Fale i liczba falowa 1.3. Przestrzeń liczb falowych
4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)
Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu
Wykorzystanie programu COMSOL do analizy zmiennych pól p l temperatury. Tomasz Bujok promotor: dr hab. Jerzy Bodzenta, prof. Politechniki Śląskiej
Wykorzystanie programu COMSOL do analizy zmiennych pól p l temperatury metodą elementów w skończonych Tomasz Bujok promotor: dr hab. Jerzy Bodzenta, prof. Politechniki Śląskiej Plan prezentacji Założenia
WSTĘP DO OPTYKI FOURIEROWSKIEJ
1100-4BW1, rok akademicki 018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Wykład 4 Przestrzeń swobodna jako filtr częstości przestrzennych Załóżmy, że znamy rozkład pola na fale monochromatyczne
LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
Technika falo- i światłowodowa
Technika falo- i światłowodowa Falowody elementy planarne (płytki, paski) Światłowody elementy cylindryczne (włókna światłowodowe) płytkowy paskowy włókno optyczne Rdzeń o wyższym współczynniku załamania
Wykład 17: Optyka falowa cz.2.
Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 18, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 18, 23.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 17 - przypomnienie
Fizyka 12. Janusz Andrzejewski
Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające
Podstawy fizyki wykład 7
Podstawy fizyki wykład 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Drgania Drgania i fale Drgania harmoniczne Siła sprężysta Energia drgań Składanie drgań Drgania tłumione i wymuszone Fale
Światło jako fala Fala elektromagnetyczna widmo promieniowania Czułość oka ludzkiego w zakresie widzialnym
Światło jako fala Fala elektromagnetyczna widmo promieniowania ν = c λ Czułość oka ludzkiego w zakresie widzialnym Wytwarzanie fali elektromagnetycznej o częstościach radiowych E(x, t) = Em sin (kx ωt)
Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11
Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści Przedmowa 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce? 13 1. Analiza wektorowa 19
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 12, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład, 0..07 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład - przypomnienie superpozycja
falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich
Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa
Optyka Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim
Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji
Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,
39 DUALIZM KORPUSKULARNO FALOWY.
Włodzimierz Wolczyński 39 DUALIZM KORPUSKULARNO FALOWY. ZJAWISKO FOTOELEKTRYCZNE. FALE DE BROGILE Fale radiowe Fale radiowe ultrakrótkie Mikrofale Podczerwień IR Światło Ultrafiolet UV Promienie X (Rentgena)
Wykład I Krzysztof Golec-Biernat Optyka 1 / 16
Optyka Wykład I Krzysztof Golec-Biernat Fale 1 Uniwersytet Rzeszowski, 4 października 2017 Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Uwagi wstępne 30 h wykładu wykład przy pomocy transparencji lub
BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA
ZDNIE 11 BDNIE INTERFERENCJI MIKROFL PRZY UŻYCIU INTERFEROMETRU MICHELSON 1. UKŁD DOŚWIDCZLNY nadajnik mikrofal odbiornik mikrofal 2 reflektory płytka półprzepuszczalna prowadnice do ustawienia reflektorów
BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH
Ćwiczenie 4 BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH 4.1. Wiadomości ogólne 4.1.1. Równanie podłużnej fali dźwiękowej i jej prędkość w prętach Rozważmy pręt o powierzchni A kołowego przekroju poprzecznego.
BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ
ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Cel ćwiczenia: Zapoznanie się ze zjawiskiem Faradaya. Wyznaczenie stałej Verdeta dla danej próbki. Wyznaczenie wartości ładunku właściwego elektronu
ψ przedstawia zależność
Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi