Wykład 12: prowadzenie światła
|
|
- Monika Zakrzewska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Fotonika Wykład 12: prowadzenie światła Plan: Mechanizmy prowadzenia światła Mechanizmy oparte na odbiciu całkowite wewnętrzne odbicie, odbicie od ośrodków przewodzących, fotoniczna przerwa wzbroniona Inne, np. propagacja fal powierzchniowych Falowody i światłowody, pojęcie modu, efektywny współczynnik załamania Podstawy działania falowodów planarnych Podstawy działania światłowodów fotonicznych z prowadzeniem światła związanym z występowaniem fotonicznej przerwy wzbronionej
2 Mechanizmy prowadzenia światła Całkowite wewnętrzne odbicie od granicy z ośrodkiem o niższym współczynniku załamania Wariant 1: odbicie następuje na dobrze zdefiniowanej granicy obu ośrodków (falowody i światłowody skokowe) Wariant 2: odbicie następuje stopniowo w obszarze, w którym współczynnik załamania maleje stopniowo (falowody i światłowody gradientowe) Wariant 3: odbicie następuje od mikrostruktury, która ma niższy efektywny współczynnik załamania (większość światłowodów fotonicznych) Odbicie od mikrostruktury periodycznej z częściową przerwą wzbronioną (światłowody braggowskie i fotoniczne) Odbicie od doskonałego przewodnika (falowody dla częstości mikrofalowych) Odbicie od ścianek mikrostruktury najbliżej rdzenia na zasadzie rezonansu Fabry-Perot (niektóre światłowody fotoniczne)
3 Prowadzenie światła płaszcz n=1 θ< θ max n2 Całkowite wewnętrzne odbicie π /2 ϕ ϕ> ϕcrit rdzeń płaszcz n1 n2
4 Prowadzenie światła n2 Warunek na uzyskanie całkowitego wewnętrznego odbicia n=1 θ< θ max n 1 sin (ϕ)> n 2 π /2 ϕ ϕ> ϕcrit n1 n2 Warunek na wprowadzenie światła z powietrza do rdzenia sin(θ)=n1 sin(π/2 ϕ)
5 Prowadzenie światła Wprowadzenie światła z powietrza do rdzenia Całkowite wewnętrzne odbicie sin(ϕ)> n2 /n 1 sin(θ)=n1 sin(π/2 ϕ) sin(θ)=n1 sin(π/2 ϕ)=n 1 cos(ϕ) sin(θ)=n1 1 sin 2 (ϕ) 2 2 sin(θ)< n1 1 n 2 /n 1 NA sin (θ max )= n n n 1 2 Δ θ max Apertura numeryczna Znormalizowany współczynnik załamania NA sin (θ max ) Δ= n21 n22 2 n12 Znormalizowana częstotliwość: (dla światłowodów szklanych Δ ) V =k 0 r NA (r -promień rdzenia)
6 Wprowadzanie światła do światłowodów Bezpośrednio: Przy użyciu soczewki: Przy użyciu pryzmatu:
7 Światłowody i falowody płaszcz Falowód planarny n2 Falowód (światłowód) paskowy rdzeń n1 Światłowód (włókno światłowodowe) Mechanizm działania: Całkowite wewnętrzne odbicie na granicy rdzenia i płaszcza utrzymuje światło w rdzeniu. Trzeba zapewnić warunek: 1 2 n>n
8 Falowody paskowe Embedded strip (pol. grzebieniowy) Strip Rib/ ridge Strip loaded
9 Światłowody skokowe i gradientowe (GRIN) Światłowód skokowy Światłowód gradientowy
10 Światłowody fotoniczne (materiały z katalogu firmy Newport)
11 Jak się mają mody do promieni? Reżim: optyka geometryczna / d=0.05 (n1=1.4, n2 =1+0.2 i) (dla lepszej czytelności płaszcz charakteryzuje się wysoką absorpcją, a natężenie, które w rzeczywistości spada w trakcie propagacji, zostało znormalizowane do stałej wartości)
12 Jak się mają mody do promieni? Reżim: wielomodowy / d=0.15
13 Jak się mają mody do promieni? Reżim: dwumodowy / d=0.5
14 Jak się mają mody do promieni? Reżim: jednomodowy / d=1.5
15 Bicie (dudnienia) pomiędzy modami L/2 L/2= λ n eff,2 n eff,1 Bicie między modanmi występuje w falowodach o symetrii parzystej, w których interferują ze sobą mod parzysty i nieparzysty. Powyższy przykład dotyczy falowodu dwurdzeniowego. Energia przelewa się pomiędzy rdzeniami (ale każdy z modów ma stałą amplitudę)
16 Falowód gradientowy GRIN (kwadratowy profil współczynnika załamania p=2 )
17 Właściwości modów Rozwiązanie równań Maxwella dla fali monochromatycznej w światłowodzie o dowolnym polu przekroju można wyrazić jako sumę niezależnie propagujących się modów: E (r,t )=Re m E m (x, y)exp (i(β m z ω t )) Suma po modach (dla modów radiacyjnych przechodzi na całkę po zakresie wartości stałej propagacji) Pole modu Stała propagacji βm =k 0 n eff,m Efektywny współczynnik załamania modu - wartości efektywnych współczynników załamania dla modów prowadzonych są dyskretne, a dla radiacyjnych ciągłe - pola modów o różnych efektywnych współczynnikach załamania są ortogonalne i tworzą układ zupełny - mody zdegenerowane (o równym efektywnym współczynniku załamania) można wybrać tak, żeby były ortogonalne
18
19 Struktura modowa falowodu planarnego Dyspersja dla modów w falowodzie planarnym (polaryzacja TE) Działanie jednomodowe Mod podstawowy nie ma częstości odcięcia (miałby częstość odcięcia dla falowodu metalowego dla polaryzacji TE)
20 Falowody planarne Rozkład pola w modach
21 Falowody planarne Związek dyspersyjny dla falowodu planarnego Polaryzacja TM (H y, E x, E z) Polaryzacja TE ( E y, H x, H z ) [ ( )] [ ( )] ϵ1 k 2 =± tg ϵ 2 k 1 d k 1 k 1= k 20 ϵ 1 β2 ±1 k2 d k 1 =± tg k1 2 2 ±1 i k 2= k 20 ϵ 2 β2 z x ϵ 2 =n 22 k 2 ϵ 1=n k 1 + k1 ϵ 2 =n 22 + k2 2 1 β k 0 neff β d Stała propagacji Efektywny współczynnik załamania Dla modów prowadzonych: n 1> n eff > n2 Dla modów radiacyjnych: n 2 > neff
22 Falowody planarne Szkic wyprowadzenia równania charakterystycznego: r r '= r r (1 exp( 2 i ϕ)) r = = ϵ ϵ 13 2 ϵ r exp (2 i ϕ) d 2 1=r exp (2 i k 1 d ) ϕ=k 1 d r =±exp ( i k 1 d ) Ez r r Hz,lub r r TM TE ϵ2 k 1 ϵ 1 i k 2 r = =±exp ( i k 1 d ) ϵ2 k 1 +ϵ1 i k 2 Hz TM ϵ1 k 2 ϵ 2 k 1 [ ( )] =± tg d k 1 2 Ez TE r = k 1 i k 2 k 1 +i k 2 ±1 k2 k1 =±exp( i k 1 d ) [ ( )] =± tg d k 1 2 ±1
23 Struktura modowa falowodu planarnego Jedno- i dwurdzeniowy falowód planarny składający się ze szklanego rdzenia w powietrzu (zadania z ćwiczeń) n=1 n=1.5 d n=1 n=1 n=1.5 n=1 n=1.5 n=1 n=1 d /2 d /2 d /2
24 Warstwowe falowody planarne Dygresja: ośrodki mogą być mikrostrukturami o własnościach efektywnych z x d i λ Homogenizacja: d 1 ϵ1 + d 2 ϵ 2 ϵ =ϵ = d 1+ d 2 eff y eff x ϵ = eff z ( ) d ϵ +d ϵ d 1+ d 2 Uwaga: polaryzacje TE i TM widzą różne składowe tensora przenikalności elektrycznej eff = ϵ eff n TM = ϵ x n eff TE eff y
25
26
27
28 Słabe prowadzenie mody LP
29 Klasyfikacja modów LP w światłowodzie skokowym
30 Prowadzenie światła w defekcie liniowym kryształu fotonicznego
31 Prowadzenie światła w defekcie liniowym (struktura pasmowa przed wprowadzeniem defektu wystarczy częściowa przerwa wzbroniona)
32 Defekt (rdzeń) o niskim współczynniku załamania
33 Defekt (rdzeń) o wysokim współczynniku załamania
34 Struktura pasmowa światłowodów fotonicznych Fotoniczna przerwa wzbroniona Mod powierzchniowy (poza linią powietrza) Mody prowadzone w powietrznym rdzeniu J. Joannopoulos, S. Johnson, J. Winn, R. Meade, Photonic crystals Molding the flow of light, 2 nd ed, Princeton and Oxford, 2007
III. Opis falowy. /~bezet
Światłowody III. Opis falowy BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet Równanie falowe w próżni Teoria falowa Równanie Helmholtza Równanie bezdyspersyjne fali płaskiej, rozchodzącej
Metody Obliczeniowe Mikrooptyki i Fotoniki
Metody Obliczeniowe Mikrooptyki i Fotoniki Metoda propagacji wiązki BPM cd wyznaczanie modów metodą urojonej długości i korelacyjną operowanie efektywnym współczynnikiem załamania metoda FT-BPM metoda
Metody Obliczeniowe Mikrooptyki i Fotoniki. Metoda propagacji wiązki BPM Modelowanie propagacji
Metody Obliczeniowe Mikrooptyki i Fotoniki Metoda propagacji wiązki BPM Modelowanie propagacji Równanie BPM Równanie Helmholtza: n k 0 =0 Rozwiązanie zapisujemy jako: r =A r exp i k z Fala nośna k =n k
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 6, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 6, 0.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 5 - przypomnienie ciągłość
KATEDRA TELEKOMUNIKACJI I FOTONIKI
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I FOTONIKI OPROGRAMOWANIE DO MODELOWANIA SIECI ŚWIATŁOWODOWYCH PROJEKTOWANIE FALOWODÓW PLANARNYCH (wydrukować
Fizyka Laserów wykład 5. Czesław Radzewicz
Fizyka Laserów wykład 5 Czesław Radzewicz rezonatory optyczne, optyczne wnęki rezonansowe rezonatory otwarte: Fabry-Perot E t E 0 R 0.99 T 1 0 E r R R R 0. R 0.9 E t = TE 0 e iδφ R 0.5 R 0.9 E t Gires-Tournois
Fotonika. Plan: Wykład 9: Interferencja w układach warstwowych
Fotonika Wykład 9: Interferencja w układach warstwowych Plan: metody macierzowe - macierze przejścia i rozpraszania Proste układy warstwowe powłoki antyrefleksyjne interferometr Fabry-Pérot tunelowanie
Uniwersytet Warszawski Wydział Fizyki. Światłowody
Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Światłowody Pracownia Fizyczna dla Zaawansowanych ćwiczenie L6 w zakresie Optyki Streszczenie Celem wykonanego na Pracowni Fizycznej dla Zaawansowanych
Wykłady 10: Kryształy fotoniczne, fale Blocha, fotoniczna przerwa wzbroniona, zwierciadła Bragga i odbicie omnidirectional
Fotonika Wykłady 10: Kryształy fotoniczne, fale Blocha, fotoniczna przerwa wzbroniona, zwierciadła Bragga i odbicie omnidirectional Plan: Jednowymiarowe kryształy fotoniczne Fale Blocha, fotoniczna struktura
Laboratorium techniki światłowodowej. Ćwiczenie 2. Badanie apertury numerycznej światłowodów
Laboratorium techniki światłowodowej Ćwiczenie 2. Badanie apertury numerycznej światłowodów Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie Światłowody
Światłowody telekomunikacyjne
Światłowody telekomunikacyjne Parametry i charakteryzacja światłowodów Kolejny wykład będzie poświęcony metodom pomiarowym Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie
Propagacja światła we włóknie obserwacja pól modowych.
Propagacja światła we włóknie obserwacja pól modowych. Przy pomocy optyki geometrycznej łatwo można przedstawić efekty propagacji światła tylko w ośrodku nieograniczonym. Nie ukazuje ona jednak interesujących
FMZ10 S - Badanie światłowodów
FMZ10 S - Badanie światłowodów Materiały przeznaczone dla studentów Informatyki Stosowanej w Instytucie Fizyki Uniwersytetu Jagiellońskiego 1 Cel ćwiczenia Celem ćwiczenia jest wyznaczenie apertury numerycznej,
Wprowadzenie do optyki nieliniowej
Wprowadzenie do optyki nieliniowej Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem podania
Podstawy prowadzenia światła we włóknach oraz ich budowa. Light-Guiding Fundamentals and Fiber Design
Podstawy prowadzenia światła we włóknach oraz ich budowa Light-Guiding Fundamentals and Fiber Design Rozchodzenie się liniowo-spolaryzowanego światła w światłowodzie Robocza definicja długości fali odcięcia
Motywacja Podstawy. Historia Teoria 2D PhC Podsumowanie. Szymon Lis Photonics Group szymon.lis@pwr.wroc.pl C-2 p.305. Motywacja.
Politechnika Wrocławska Plan wykładu 1. 2D Kryształy Fotoniczne opis teoretyczny 2. Podstawowe informacje 3. Rys historyczny 4. Opis teoretyczny - optyka vs. elektronika - równania Maxwella Wydział Elektroniki
2007-10-27. NA = sin Θ = (n rdzenia2 - n płaszcza2 ) 1/2. L[dB] = 10 log 10 (NA 1 /NA 2 )
dr inż. Krzysztof Hodyr Technika Światłowodowa Część 2 Tłumienie i straty w światłowodach Pojęcie dyspersji światłowodów Technika zwielokrotnienia WDM Źródła strat tłumieniowych sprzężenia światłowodu
Technika falo- i światłowodowa
Technika falo- i światłowodowa Falowody elementy planarne (płytki, paski) Światłowody elementy cylindryczne (włókna światłowodowe) płytkowy paskowy włókno optyczne Rdzeń o wyższym współczynniku załamania
Fizyczna struktura włókna optycznego Propagacja światła liniowo spolaryzowanego
Światłowody włókniste podstawy fizyczne Fizyczna struktura włókna optycznego Propagacja światła liniowo spolaryzowanego Fizyczna struktura włókna optycznego Światłowody włókniste są wytwarzane poprzez
Fotonika. Plan: Wykład 11: Kryształy fotoniczne
Fotonika Wykład 11: Kryształy fotoniczne Plan: Kryształy fotoniczne Homogenizacja długofalowa Prawo załamania dla kryształów fotonicznych, superkolimacja Tw. Blocha, kryształy, kryształy fotoniczne, kryształy
Wykład 13: Elementy plazmoniki: fale powierzchniowe na granicy metali i dielektryków, nadrozdzielczość
Fotonika Wykład 13: Elementy plazmoniki: fale powierzchniowe na granicy metali i dielektryków, nadrozdzielczość S. Maier Plasmonics fundamentals and applications (Springer, 007). Plan: związek dyspersyjny
PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 18/15. HANNA STAWSKA, Wrocław, PL ELŻBIETA BEREŚ-PAWLIK, Wrocław, PL
PL 224674 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 224674 (13) B1 (21) Numer zgłoszenia: 409674 (51) Int.Cl. G02B 6/02 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:
Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji
Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,
Metody Obliczeniowe Mikrooptyki i Fotoniki
Metody Obliczeniowe Mikrooptyki i Fotoniki https://www.igf.fuw.edu.pl/pl/courses/lectures/metody-obliczen-95-021c/ Podstawy metody różnic skończonych (Basics of finite-difference methods) Podstawy metody
Fotonika. Wykład (30h): R. Kotyński Wtorki 15:15-17:00, s. 1.40
Fotonika Fotonika to interdyscyplinarna dziedzina nauki i techniki, łącząca dokonania optyki, elektroniki i informatyki w celu opracowywania technik i urządzeń wykorzystujących promieniowanie elektromagnetyczne
Laboratorium techniki światłowodowej. Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd światłowodu
Laboratorium techniki światłowodowej Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie
Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne
http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet
IV. Światłowody BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet Literatura 2 3 Historia i uwarunkowania Podstawowe elementy: 1. Rozwój techniki laserowej (lasery półprzewodnikowe, modulacja,
Pomiary parametrów telekomunikacyjnych światłowodów jednomodowych. Na poprzednim wykładzie przedstawiono podstawowe parametry światłowodów
Pomiary parametrów telekomunikacyjnych światłowodów jednomodowych Na poprzednim wykładzie przedstawiono podstawowe parametry światłowodów Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze
Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
Fotonika. Wykład (30h): Rafał Kotyński, wtorki 15:15-17:00, s. 1.40
Fotonika Fotonika to interdyscyplinarna dziedzina nauki i techniki, łącząca dokonania optyki, elektroniki i informatyki w celu opracowywania technik i urządzeń wykorzystujących promieniowanie elektromagnetyczne
falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich
1 Płaska fala elektromagnetyczna
1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej
Optyka. Wykład VII Krzysztof Golec-Biernat. Prawa odbicia i załamania. Uniwersytet Rzeszowski, 22 listopada 2017
Optyka Wykład VII Krzysztof Golec-Biernat Prawa odbicia i załamania Uniwersytet Rzeszowski, 22 listopada 2017 Wykład VII Krzysztof Golec-Biernat Optyka 1 / 20 Plan Zachowanie pola elektromagnetycznego
Teoria falowa Równania Maxwella
Teoria falowa Równania Maxwella Oś falowodu oś z Równania Maxwella E B, t H J D t, D, B 0. Jeżeli E x,y,z,t Re E x,y,z e i t 1 2 E x,y,z e i t E x,y,z e i t, 1 W postaci zespolonej: E i B, prawo indukcji
Metody Optyczne w Technice. Wykład 8 Polarymetria
Metody Optyczne w Technice Wykład 8 Polarymetria Fala elektromagnetyczna div D div B 0 D E rot rot E H B t D t J B J H E Fala elektromagnetyczna 2 2 E H 2 t 2 E 2 t H 2 v n 1 0 0 c n 0 Fala elektromagnetyczna
Grupa R51 Wykład 30 godzin Laboratorium w ramach lab USF. Prowadzący: prof. dr hab. inż. Małgorzata Kujawińska pok.
Grupa R5 Wykład 3 godzin Laboratorium w ramach lab USF Prowadzący: prof. dr hab. inż. Małgorzata Kujawińska m.kujawinska@mchtr.pw.edu.pl pok.55 Zaliczenie wykładu - kolokwia (po 3 pkt) Konieczność zaliczenia
V n. Profile współczynnika załamania. Rozmycie impulsu spowodowane dyspersją. Impuls biegnący wzdłuż światłowodu. Wejście Wyjście
OPTOELEKTRONIKA dr hab. inż. S.M. Kaczmarek 1. DYSPERSJA 1.1. Dyspersja materiałowa i falowodowa. Dyspersja chromatyczna. 1.2. Dyspersja modowa w światłowodach a). o skokowej zmianie współczynnika załamania
Solitony i zjawiska nieliniowe we włóknach optycznych
Solitony i zjawiska nieliniowe we włóknach optycznych Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................
3. Umiejętność obsługi prostych przyrządów optycznych (UMIEJĘTNOŚĆ)
Zał. nr 4 do ZW 33/01 WYDZIAŁ PPT KARTA PRZEDMIOTU Nazwa w języku polskim: Światłowody Nazwa w języku angielskim Optical waveguides Kierunek studiów (jeśli dotyczy): Inżynieria Kwantowa Specjalność (jeśli
Zjawiska w niej występujące, jeśli jest ona linią długą: Definicje współczynników odbicia na początku i końcu linii długiej.
1. Uproszczony schemat bezstratnej (R = 0) linii przesyłowej sygnałów cyfrowych. Zjawiska w niej występujące, jeśli jest ona linią długą: odbicie fali na końcu linii; tłumienie fali; zniekształcenie fali;
IV. Transmisja. /~bezet
Światłowody IV. Transmisja BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet 1. Tłumienność 10 7 10 6 Tłumienność [db/km] 10 5 10 4 10 3 10 2 10 SiO 2 Tłumienność szkła w latach (za A.
Współczynnik załamania Całkowite wewnętrzne odbicie Co to jest światłowód i jak działa? Materiały na światłowody Zjawiska zachodzące w światłowodach
Współczynnik załamania Całkowite wewnętrzne odbicie Co to jest światłowód i jak działa? Materiały na światłowody Zjawiska zachodzące w światłowodach i ich pomiary Światłowody specjalne Podsumowanie 18/11/2010
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Ćw.3. Wykrywanie źródeł infradźwięków
Ćw.3. Wykrywanie źródeł infradźwięków Wstęp Ćwiczenie przedstawia metodę wyszukiwania źródeł infradźwięków przy użyciu światłowodowego czujnika drań. Fale akustyczne poniżej dolnego częstotliwościowego
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział
Fotonika kurs magisterski grupa R41 semestr VII Specjalność: Inżynieria fotoniczna. Egzamin ustny: trzy zagadnienia do objaśnienia
Dr inż. Tomasz Kozacki Prof. dr hab.inż. Romuald Jóźwicki Zakład Techniki Optycznej Instytut Mikromechaniki i Fotoniki pokój 513a ogłoszenia na tablicach V-tego piętra kurs magisterski grupa R41 semestr
2. Światłowody. 2. TELEKOMUNIKACJA OPTOFALOWA: Światłowody Strona 1
TELEKOMUNIKACJA OPTOFALOWA. Światłowody Spis treści:.1. Wprowadzenie... Światłowody wielo- i jednomodowe..3. Tłumienie światłowodów..4. Dyspersja światłowodów..5. Pobudzanie i łączenie światłowodów..6.
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich
POMIAR APERTURY NUMERYCZNEJ
ĆWICZENIE O9 POMIAR APERTURY NUMERYCZNEJ ŚWIATŁOWODU KATEDRA FIZYKI 1 Wstęp Prawa optyki geometrycznej W optyce geometrycznej, rozpatrując rozchodzenie się fal świetlnych przyjmuje się pewne założenia
Ciekłokrystaliczne światłowody fotoniczne
Światło od zawsze fascynuje człowieka warunkuje ono jego istnienie. Nic więc dziwnego, że człowiek sięgnął po nie wykorzystują światło jako najszybszego posłańca promienie świetlne rozprzestrzeniają się
Typy światłowodów: Technika światłowodowa
Typy światłowodów: Skokowy wielomodowy Gradientowy wielomodowy Skokowy jednomodowy Zmodyfikowany dyspersyjnie jednomodowy Jednomodowy utrzymujący stan polaryzacji Swiatłowody fotoniczne Propagacja światła
Egzamin / zaliczenie na ocenę*
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim: ŚWIATŁOWODY, ŚWIATŁOWODY Nazwa w języku angielskim: OPTICAL FIBERS Kierunek studiów (jeśli dotyczy):
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
Egzamin / zaliczenie na ocenę*
Zał. nr 4 do ZW 33/01 WYDZIAŁ PPT KARTA PRZEDMIOTU Nazwa w języku polskim: Światłowody Nazwa w języku angielskim Optical fibers Kierunek studiów (jeśli dotyczy): Fizyka Techniczna Specjalność (jeśli dotyczy):
INTERFERENCJA WIELOPROMIENIOWA
INTERFERENCJA WIELOPROMIENIOWA prof. dr hab. inż. Krzysztof Patorski W tej części wykładu rozważymy przypadek koherentnej superpozycji większej liczby wiązek niż dwie. Najważniejszym interferometrem wielowiązkowym
Metody Obliczeniowe Mikrooptyki i Fotoniki
Metody Obliczeniowe Mikrooptyki i Fotoniki Kod USOS: 1103-4Fot4 Wykład (30h): R. Kotyński Wtorki 9:15-11:00, s.1.38 lub B4.17(ul. Pasteura 5) Ćwiczenia (45h): Wtorki, w godz. 14.15-16.30, s.1.7 lub B4.17
LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej
LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody
Światłowodowe elementy polaryzacyjne
Światłowodowe elementy polaryzacyjne elementy wykorzystujące własności przenoszenia polaryzacji w światłowodach jednorodnych i dwójłomnych polaryzatory izolatory optyczne depolaryzatory kompensatory i
Widmo fal elektromagnetycznych
Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą
Falowa natura światła
Falowa natura światła Christiaan Huygens Thomas Young James Clerk Maxwell Światło jest falą elektromagnetyczną Barwa światło zależy od jej długości (częstości). Optyka geometryczna Optyka geometryczna
Różne reżimy dyfrakcji
Fotonika Wykład 7 - Sposoby wyznaczania obrazu dyfrakcyjnego - Przykłady obrazów dyfrakcyjnych w polu dalekim obliczonych przy użyciu dyskretnej transformaty Fouriera - Elementy dyfrakcyjne Różne reżimy
Ośrodki dielektryczne optycznie nieliniowe
Ośrodki dielektryczne optycznie nieliniowe Równania Maxwella roth rot D t B t = = przy czym tym razem wektor indukcji elektrycznej D ε + = ( ) Wektor polaryzacji jest nieliniową funkcją natężenia pola
Fale elektromagnetyczne
Podstawy elektromagnetyzmu Wykład 11 Fale elektromagnetyczne Równania Maxwella H=J D t E= B t D= B=0 D= E J= E B= H Ruch ładunku jest źródłem pola magnetycznego Zmiana pola magnetycznego w czasie jest
Metody Obliczeniowe Mikrooptyki i Fotoniki. Podstawy metody różnic skończonych Podstawy metody FDTD
Metody Obliczeniowe Mikrooptyki i Fotoniki Podstawy etody różnic skończonych Podstawy etody FDTD M. N. Sadiku, Nuerical Techniques in Electroagnetics 2nd Ed., CRC Press 2001 A. Taflove, S. Hagnes Coputational
Wykład 2: Wprowadzenie do techniki światłowodowej
Sieci optoelektroniczne Wykład 2: Wprowadzenie do techniki światłowodowej Światłowód - definicja Jest to medium transmisyjne stanowiące czyste szklane włókno kwarcowe, otoczone nieprzezroczystym płaszczem
Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej. Zakład Optoelektroniki. Laboratorium Elementów i Systemów Optoelektronicznych
Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej Zakład Optoelektroniki Laboratorium Elementów i Systemów Optoelektronicznych Instrukcja do ćwiczenia: BADANIE PARAMETRÓW PASYWNYCH
TŁUMIENIE ŚWIATŁA W OŚRODKACH OPTYCZNYCH
TŁUMIENIE ŚWIATŁA W OŚRODKACH OPTYCZNYCH Jednym z parametrów opisujących właściwości optyczne światłowodów jest tłumienność. W wyniku zjawiska tłumienia, energia fali elektromagnetycznej niesionej w światłowodzie
Elementy optyki relatywistycznej
Elementy optyki relatywistycznej O czym będzie wykład? Pojęcie relatywistyczny kojarzy się z bardzo dużymi prędkościami, bliskimi prędkości światła. Tylko, ze światło porusza się zawsze z prędkością światła.
Równania Maxwella. roth t
, H wektory natężenia pola elektrycznego i magnetycznego D, B wektory indukcji elektrycznej i magnetycznej J gęstość prądu elektrycznego Równania Maxwella D roth t B rot+ t J Dla ośrodka izotropowego D
Fotonika. Plan: Wykład 3: Polaryzacja światła
Fotonika Wykład 3: Polaryzacja światła Plan: Równania Maxwella w ośrodku optycznie liniowym Równania Maxwella dla fal monochromatycznych Polaryzacja światła Fala płaska spolaryzowana Polaryzacje liniowe,
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
Elektrodynamika. Część 8. Fale elektromagnetyczne. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................
Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:
Rozważania rozpoczniemy od ośrodków jednorodnych. W takich ośrodkach zależność między indukcją pola elektrycznego a natężeniem pola oraz między indukcją pola magnetycznego a natężeniem pola opisana jest
Optyka Fourierowska. Wykład 10 Optyka fourierowska w telekomunikacji optycznej
Optyka Fourierowska Wykład 10 Optyka fourierowska w telekomunikacji optycznej Zalety telekomunikacji optycznej Ogromne prędkości i pojemności danych osiągane w systemach współczesnej telekomunikacji optycznej
ĆWICZENIE NR 3. Światłowody jednomodowe.
ĆWICZENIE NR 3 Światłowody jednomodowe. Ćwiczenie to jest jednym z dwu ćwiczeń obejmujących badanie właściwości modowych włókien jednodomowych. Nauczysz się sprzęgać światło z lasera ze światłowodem jednodomowym
Sprzęg światłowodu ze źródłem światła
Sprzęg światłowodu ze źródłem światła Oczywistym problemem przy sprzęganiu światłowodu ze źródłami światła jest w pierwszym rzędzie umieszczenie wiazki w wewnatrz apertury numeryczne światłowodu. W przypadku
Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji
Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,
Wykład XI. Optyka geometryczna
Wykład XI Optyka geometryczna Jak widzimy? Aby przedmiot był widoczny, musi wysyłać światło w wielu kierunkach. Na podstawie światła zebranego przez oko mózg lokalizuje położenie obiektu. Niekiedy promienie
WSTĘP DO OPTYKI FOURIEROWSKIEJ
1100-4BW1, rok akademicki 018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Wykład 4 Przestrzeń swobodna jako filtr częstości przestrzennych Załóżmy, że znamy rozkład pola na fale monochromatyczne
= sin. = 2Rsin. R = E m. = sin
Natężenie światła w obrazie dyfrakcyjnym Autorzy: Zbigniew Kąkol, Piotr Morawski Chcemy teraz znaleźć wyrażenie na rozkład natężenia w całym ekranie w funkcji kąta θ. Szczelinę dzielimy na N odcinków i
Fale elektromagnetyczne w dielektrykach
Fale elektromagnetyczne w dielektrykach Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Krótka historia odkrycia
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 9, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 9, 12.03.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 8 - przypomnienie
Pomiar tłumienności światłowodów włóknistych
LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 4 Pomiar tłumienności światłowodów włóknistych Cel ćwiczenia: Zapoznanie studentów z parametrem tłumienności światłowodów oraz ze sposobem jego pomiaru Badane elementy:
α - stałe 1 α, s F ± Ψ taka sama Drgania nieliniowe (anharmoniczne) Harmoniczne: Inna zależność siły od Ψ : - układ nieliniowy,
Drgania nieliniowe (anharmoniczne) Harmoniczne: F s s Inna zależność siły od : - układ nieliniowy, Symetryczna siła zwrotna Niech: F s ( ) s Symetryczna wartość - drgania anharmoniczne α, s F s dla α -
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 13, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 13, 16.11.017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 1 - przypomnienie
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 7 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą
Promieniowanie dipolowe
Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A
ZASTOSOWANIE ZJAWISKA CAŁKOWITEGO WEWNĘTRZNEGO ODBICIA W ŚWIATŁOWODACH
ZASTOSOWANIE ZJAWISKA CAŁKOWITEGO WEWNĘTRZNEGO ODBICIA W ŚWIATŁOWODACH 1. ODBICIE I ZAŁAMANIE ŚWIATŁA 1.1. PRAWO ODBICIE I ZAŁAMANIA ŚWIATŁA Gdy promień światła pada na granicę pomiędzy dwiema różnymi
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 18, 07.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 17 - przypomnienie
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 7 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 12, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład, 0..07 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład - przypomnienie superpozycja
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 13, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 13, 6.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 1 - przypomnienie stosy
Optyczna spektroskopia oscylacyjna. w badaniach powierzchni
Optyczna spektroskopia oscylacyjna w badaniach powierzchni Zalety oscylacyjnej spektroskopii optycznej uŝycie fotonów jako cząsteczek wzbudzających i rejestrowanych nie wymaga uŝycia próŝni (moŝliwość
Wstęp do optyki i fizyki materii skondensowanej. O: Wojciech Wasilewski FMS: Mateusz Goryca
Wstęp do optyki i fizyki materii skondensowanej O: Wojciech Wasilewski FMS: Mateusz Goryca 1 Zasady części O Wykład przeglądowy Ćwiczenia rozszerzające lub ilustrujące Sprawdzane prace domowe psi.fuw.edu.pl/main/wdoifms