Język rachunku predykatów Formuły rachunku predykatów Formuły spełnialne i prawdziwe Dowody założeniowe. 1 Zmienne x, y, z...
|
|
- Antoni Karpiński
- 6 lat temu
- Przeglądów:
Transkrypt
1 Język rachunku predykatów 1 Zmienne x, y, z... 2 Predykaty n-argumentowe P(x, y,...), Q(x, y...),... 3 Funktory zdaniowe,,,, 4 Kwantyfikatory: istnieje, dla każdego
2 Język rachunku predykatów Ustalenie dziedziny (uniwersum) U dla zmiennych x, y, z... oraz określenie predykatów P, Q, R,... w U nazywamy interpretacja.
3 Przykłady Język rachunku predykatów 1 U = {0, 1, 2,... } jest zbiorem liczb naturalnych. P(x) - x jest liczba parzysta. Q(x, y) - x jest większe od y. R(x, y, z) - z jest suma x i y. 2 U - zbiór wszystkich ludzi. P(x) - x jest kobieta. Q(x, y) - x jest rodzicem y. R(x, y, z) - x, y, z sa rodzeństwem. 3 U - zbiór wszystkich trójkatów. P(x) - x jest prostokatny. Q(x, y) - x jest podobny do y.
4 Język rachunku predykatów Jeżeli w predykacie P(x, y,...) przypiszemy zmiennym x, y,... określone wartości z uniwersum U to otrzymamy zdanie logiczne. Przykład: U = {0, 1, 2,... }, P(x, y) - x jest większe od y. P(3, 4) jest zdaniem fałszywym P(5, 2) jest zdaniem prawdziwym. Predykaty 0-argumentowe P, Q,... możemy traktować jako zwykłe zdania logiczne. Język rachunku predykatów obejmuje więc język klasycznego rachunku zdań.
5 Predykat jest formuła rachunku predykatów. Jeżeli φ i ψ sa formułami rachunku predykatów, to (φ), (φ) (ψ), (φ) (ψ), (φ) (ψ), (φ) (ψ) sa formułami rachunku predykatów. Jeżeli φ jest formuła rachunku predykatów a v jest zmienna w φ, to v (φ) i v (φ) sa formułami rachunku predykatów. Przykłady: P, P(x), Q(x), P(x, y), Q(x, y, z),... P Q(x), P(x) Q(x), Q(x) P(x, y), P(x) Q(x),... x (P(x)), y (P(x, y)), x (P(x) Q(x)),... y ( x (P(x) Q(y)))
6 Zasięg kwantyfikatora Zasięgiem kwantyfikatora nazywamy wyrażenie zawarte w nawiasie otwartym bezpośrednio po tym kwantyfikatorze. Przykład: x (P(x, y) Q(x)) R(x) Zmienna jest zwiazana jeżeli jest w zasięgu pewnego kwantyfikatora, w którym występuje ta zmienna. Przykład: x (P(x, y) Q(x)) R(x)
7 Opuszczanie nawiasów Nawiasy można opuścić po kwantyfikatorze jeżeli nie prowadzi to do niejednoznaczności w określeniu jego zasięgu. Poprawne: x (P(x)) x P(x) x ( y (P(x, y) Q(x))) x y (P(x, y) Q(x)) Niepoprawne(!): x (P(x) Q(x)) x P(x) Q(x)
8 Formuły zamknięte Formuła jest zamknięta jeżeli wszystkie zmienne sa w niej zwiazane. Przykłady formuł zamkniętych: x P(x) y x P(x, y) ( x P(x)) ( x Q(x)) x (Q(x) y P(x, y))
9 Formuły zamknięte Formuła zamknięta dla określonej interpretacji staje się zdaniem logicznym. Zatem posiada określona wartość logiczna prawda lub fałsz. Za pomoca formuł zamkniętych można wyrażać złożone własności badanego uniwersum.
10 Formuły zamknięte Ustalamy uniwersum U = {0, 1, 2,... } i predykaty: P(x) - liczba x jest parzysta. Q(x) - liczba x jest pierwsza. R(x, y) (x y) liczba x jest niewiększa od liczby y. Zdania w tym uniwersum: Istnieje liczba parzysta: x P(x) Istnieje najmniejsza liczba naturalna: x y (x y) Żadna liczba parzysta większa od 2 nie jest pierwsza: lub równoważnie: ( x (Q(x) (3 x) P(x)) x ((P(x) (3 x)) Q(x))
11 Formuły zamknięte Ustalamy uniwersum U - wszyscy filozofowie. P(x) - filozof x jest madry. Q(x, y) - filozof x jest uczniem filozofa y. Zdania w tym uniwersum: Filozof jest madry jeżeli jest uczniem madrego filozofa. x ( y (Q(x, y) P(y)) P(x)) Jeżeli filozof jest madry, to każdy jego uczeń jest madry. y (P(y) x (Q(x, y) P(x)))
12 Formuła jest spełnialna jeżeli jest zdaniem prawdziwym w pewnej interpretacji. Formuła jest prawdziwa (jest tautologia rachunku predykatów) jeżeli jest zdaniem prawdziwym w każdej interpretacji.
13 Formuła x y P(x, y) jest spełnialna ale nie jest tautologia rachunku predykatów ponieważ: Jest zdaniem prawdziwym dla interpretacji U = {0, 1, 2,...} P(x, y) - x y Jest zdaniem fałszywym dla interpretacji U = {..., 2, 1, 0, 1, 2,...} P(x, y) - x y. Formuła x (P(x) P(x)) jest tautologia rachunku predykatów ponieważ jest prawdziwa w każdej interpretacji.
14 Wybrane prawa rachunku predykatów T1. x (P(x) P(x)) T2. x P(x) x ( P(x)) T3. x P(x) x ( P(x)) T4. x (P(x) Q(x)) ( x P(x) x Q(x)) T5. x (P(x) Q(x)) ( x P(x) x Q(x)) T6. ( x P(x) x Q(x)) ( x (P(x) Q(x)) T7. x (P(x) Q(x)) ( x P(x) x Q(x)) T8. x (P(x) Q(x)) ( x P(x) x Q(x)) T9. x (P(x) Q(x)) ( x P(x) x Q(x)) T10. x y P(x, y) y x P(x, y) Pokazać, że implikacje odwrotne w T6, T7, T8, T10 nie sa tatutologiami (ćwiczenia)
15 Tautologie rachunku predykatów Pokazano, że nie istnieje ogólna metoda (algorytm) rozstrzygajacy czy zadana formuła rachunku predykatów jest tautologia. W ogólnym przypadku problem ten jest więc bardzo trudny. Tautologię można czasami udowodnić korzystajac z praw logiki oraz ze znanych tautologii. W przypadku, gdy wszystkie predykaty maja nie więcej niż jedna zmienna można skorzystać z tabelki.
16 Tautologie rachunku predykatów Udowodnić tautologię T9: x (P(x) Q(x)) ( x P(x) x Q(x)) x (P(x) Q(x)) Prawo logiki x ( P(x) Q(x)) T5. x ( P(x)) x Q(x) T2. x P(x) x Q(x) Prawo logiki x P(x) x Q(x)
17 Tabelka dla predykatów jednoargumentowych P(x) = 1 zawsze 1 0 zawsze 0 T czasem 1 czasem 0 P(x) P(x) xp(x) xp(x) T T 1 0 P(x) Q(x) P(x) Q(x) P(x) Q(x) P(x) Q(x) P(x) Q(x) T 1 T T T T T 0 1 T T 1 1 T 1 T T 0 T 0 T T T T 1,T 0,T 1,T 0,1,T
18 Udowodnić tautologię T6. ( x P(x) x Q(x)) ( x (P(x) Q(x)) α β γ P(x) Q(x) xp(x) xq(x) xp(x) xq(x) P(x) Q(x) xβ α γ T T T 0 1 T T T 0 1 T T ,T 1,0 1
19 Tautologie rachunku predykatów Tautologie pozwalaja na przekształcanie formuł. x ( y (P(x) Q(x, y))) x ( y (P(x) Q(x, y)) x y (P(x) Q(x, y)) x y ( P(x) Q(x, y)) x y (P(x) Q(x, y)) T2 T3 prawo logiki prawo logiki
20 Reguły wnioskowania W dowodach, w których korzystamy z kwantyfikatorów można stosować wszystkie reguły z rachunku zdań. Dodatkowo stosujemy następujace reguły wnioskowania: O : D : x P(x) P(a) P(b) x P(x) O : P(x) P(b), P(x ) a jest nowa stała niewystępujac a w dowodzie, b jest dowolna istniejac a już stała, x jest nowa zmienna wolna. Reguły te pozwalaja udowodnić tylko niektóre wnioskowania. Można wprowadzić regułę D ale jest ona dosyć skomplikowana.
21 Dowód założeniowy wprost x (P(x) Q(x)) ( x P(x) x Q(x)) 1: x (P(x) Q(x)) Założenie 2: x P(x) Założenie 3: P(a) O 2 4: P(a) Q(a) O 1 5: Q(a) RO 3,4 6: x Q(x) D 4
22 Dowód założeniowy nie wprost x P(x) x P(x) 1: x P(x) Założenie 2: x P(x) z.d.n. 3: P(a) O 2 4: P(a) O 1 Sprzeczność 3,4
23 - błędne wnioskowanie x y P(x, y) x R(x, x) 1: x y P(x, y) Zał. 2: y R(x, y) O 1 3: R(x, a) O 2 4: R(a, a) Bład! 5: x R(x, x) D 4 1: x y P(x, y) Zał. 2: x R(x, a) Bład! 3: R(a, a) O 2 5: x R(x, x) D 4 Formuła nie jest tautologia. Nie jest prawdziwa na przykład w interpetacji U = R i P(x, y) - x jest większe od y.
24 Dowody założenowe Każdy uczony jest racjonalista. Niektórzy filozofowie nie sa racjonalistami. Zatem niektórzy filozofowie nie sa uczonymi U - wszyscy ludzie. P(x) - x jest uczonym. Q(x) - x jest filozofem. R(x) - x jest racjonalista. ( x (P(x) R(x)) x (Q(x) R(x))) x (Q(x) P(x))
25 Dodowy założeniowe 1: x (P(x) R(x)) Zał. 2: x (Q(x) R(x)) Zał. 3: Q(a) R(a) O 2 4: P(a) R(a) O 1 5: Q(a) OK 3 6: R(a) OK 3 7: R(a) P(a) KP 4 8: P(a) RO 6,7 9: Q(a) P(a) DK 5,8 10: x (Q(x) P(x)) D 9
26 Każdy krytyk literacki ceni pewnego pisarza, a niektórzy pisarze nie cenia żadnego krytyka literackiego. Piotr jest krytykiem literackim. Zatem Piotr ceni kogoś i ktoś nie ceni Piotra. U - wszyscy ludzie. P(x) - x jest krytykiem literackim. Q(x) - x jest pisarzem. R(x, y) - x ceni y. ( x (P(x) y (Q(y) R(x, y))) x (Q(x) y (P(y) R(x, y)) P(Piotr)) ( x P(Piotr, x) x P(x, Piotr))
27 1: x(p(x) y(q(y) R(x, y))) Zał. 2: x(q(x) y(p(y) R(x, y)) Zał. 3: P(Piotr) Zał. 4: P(Piotr) y(q(y) R(Piotr, y)) O 1 5: y(q(y) R(Piotr, y)) RO 3,4 6: Q(a) y(p(y) R(a, y)) O 2 7: Q(b) R(Piotr, b) O 5 8: y(p(y) R(a, y)) OK 6 9: P(Piotr) R(a, Piotr) O 8 10: R(Piotr, b) OK 7 11: R(a, Piotr) RO 3,9 12: xp(piotr, x) D x R(x, Piotr) D 11 14: xp(piotr, x) x P(x, Piotr) DK 12, 13
28 Dowody założenowe Jest ktoś kogo wszyscy kochaja. Zatem każdy kogoś kocha. U - wszyscy ludzie. P(x, y) - x kocha y. y x P(x, y) x y P(x, y)
29 1: y x P(x, y) Zał. 2: x y P(x, y) Z.d.n. 3: x y P(x, y) DM 2 4: x P(x, a) O 1 5: y P(b, y) O 3 6: P(b, a) O 4 7: P(b, a) O 5 Sprzeczność 6,7
30 Wszyscy logicy sa zabawni. Ktoś jest logikiem. Zatem każdy jest zabawny. U - wszyscy ludzie. P(x) - x jest logikiem. Q(x) - y - jest zabawny. ( x (P(x) Q(x)) x P(x)) x Q(x)
31 1: x(p(x) Q(x)) Zał. 2: xp(x) Zał. 3: xq(x) Z.d.n. 4: P(a) O 2 5: x Q(x) DM 3 6: Q(b) O 5 7: P(a) Q(a) O 1 8: P(b) Q(b) O 1 9: Q(a) RO 4,7 10: Q(b) P(b) KP 8 11: P(b) RO 6,10 Rozumowanie nie jest poprawne. Kontrprzykład: uniwersum U = {a, b}, a jest zabawny i jest filozofem, b nie jest zabawny i nie jest filozofem. Założenia sa spełnione a teza nie jest prawdziwa.
Logika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie:
Logika pragmatyczna Logika pragmatyczna Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + literatura + informacje na stronie www. Zaliczenie: Kolokwium pisemne na
Bardziej szczegółowoKonsekwencja logiczna
Konsekwencja logiczna Niech Φ 1, Φ 2,..., Φ n będa formułami logicznymi. Formuła Ψ wynika logicznie z Φ 1, Φ 2,..., Φ n jeżeli (Φ 1 Φ 2 Φ n ) Ψ jest tautologia. Formuły Φ 1, Φ 2,..., Φ n nazywamy założeniami
Bardziej szczegółowoMichał Lipnicki (UAM) Logika 11 stycznia / 20
Logika Michał Lipnicki Zakład Logiki Stosowanej UAM 11 stycznia 2013 Michał Lipnicki (UAM) Logika 11 stycznia 2013 1 / 20 KRP wstęp Wstęp Rozważmy wnioskowanie: Każdy człowiek jest śmiertelny. Sokrates
Bardziej szczegółowoLogika pragmatyczna dla inżynierów
Logika pragmatyczna Logika pragmatyczna dla inżynierów Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.edu.pl materiały + literatura + informacje na stronie www. Zaliczenie: Test pisemny
Bardziej szczegółowoIII rok kognitywistyki UAM,
METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ WYKŁAD 14: POWTÓRKA III rok kognitywistyki UAM, 2016 2017 Dzisiejszy wykład w całości poświęcony będzie omówieniu przykładowych zadań, podobnych do
Bardziej szczegółowoMatematyka ETId Elementy logiki
Matematyka ETId Izolda Gorgol pokój 131A e-mail: I.Gorgol@pollub.pl tel. 081 5384 563 http://antenor.pol.lublin.pl/users/gorgol Zdania w sensie logicznym DEFINICJA Zdanie w sensie logicznym - zdanie oznajmujace,
Bardziej szczegółowoLogika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie.
Logika formalna wprowadzenie Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie. 1. Zdanie logicznie prawdziwe (Prawda logiczna) Zdanie, którego analityczność
Bardziej szczegółowoKultura logiczna Klasyczny rachunek zdań 2/2
Kultura logiczna Klasyczny rachunek zdań 2/2 Bartosz Gostkowski bgostkowski@gmail.com Kraków 29 III 2 Plan wykładu: Wartościowanie w KRZ Tautologie KRZ Wartościowanie v, to funkcja, która posyła zbiór
Bardziej szczegółowoWybierz cztery z poniższych pięciu zadań. Poprawne rozwiazanie dwóch zadań oznacza zdany egzamin.
Logika, II rok Etnolingwistyki UAM, 20 VI 2008. Imię i Nazwisko:.............................. GRUPA: I Wybierz cztery z poniższych pięciu zadań. Poprawne rozwiazanie dwóch zadań oznacza zdany egzamin.
Bardziej szczegółowoJEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 29 czerwca Imię i Nazwisko:...
JEZYKOZNAWSTWO I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 29 czerwca 2015 Imię i Nazwisko:............................................................... DZIARSKIE SKRZATY Wybierz
Bardziej szczegółowoSemantyka rachunku predykatów
Relacje Interpretacja Wartość Spełnialność Logika obliczeniowa Instytut Informatyki Relacje Interpretacja Wartość Plan Plan Relacje O co chodzi? Znaczenie w logice Relacje 3 Interpretacja i wartościowanie
Bardziej szczegółowoRachunek predykatów. Formuły rachunku predykatów. Plan wykładu. Relacje i predykaty - przykłady. Relacje i predykaty
Rachunek predykatów Wykład 4 Plan wykładu Relacje i predykaty Formuły rachunku predykatów Interpretacje Logiczna równoważność Metoda tabel Modele skończone i nieskończone Rozstrzygalność Relacje i predykaty
Bardziej szczegółowoKlasyczny rachunek predykatów
Kultura logiczna Klasyczny rachunek predykatów Bartosz Gostkowski bgostkowski@gmail.com Alfabet klasycznego rachunku zdań reguły konsytutywne języka Alfabet klasycznego rachunku predykatów (KRP Do alfabetu
Bardziej szczegółowoJEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 11 czerwca Imię i Nazwisko:... FIGLARNE POZNANIANKI
JEZYKOZNAWSTWO I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 11 czerwca 2012 Imię i Nazwisko:........................................................... FIGLARNE POZNANIANKI Wybierz
Bardziej szczegółowoMetoda Tablic Semantycznych
Procedura Plan Reguły Algorytm Logika obliczeniowa Instytut Informatyki Plan Procedura Reguły 1 Procedura decyzyjna Logiczna równoważność formuł Logiczna konsekwencja Procedura decyzyjna 2 Reguły α, β,
Bardziej szczegółowoSemantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa.
Logika obliczeniowa Instytut Informatyki 1 Interpretacja i wartościowanie Dziedzina interpretacji Interpretacja Wartościowanie 2 Wartość formuły Wartość termu Wartość logiczna formuły Własności 3 Logiczna
Bardziej szczegółowoImię i nazwisko:... OBROŃCY PRAWDY
Egzamin: Logika Matematyczna, I rok JiNoI, 30 czerwca 2014 Imię i nazwisko:........................................... OBROŃCY PRAWDY Wybierz dokładnie cztery z poniższych pięciu zadań i spróbuj je rozwiazać.
Bardziej szczegółowo0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.
Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej Wykład ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek
Bardziej szczegółowoLogika. Michał Lipnicki. 15 stycznia Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 15 stycznia / 37
Logika Michał Lipnicki Zakład Logiki Stosowanej UAM 15 stycznia 2011 Michał Lipnicki () Logika 15 stycznia 2011 1 / 37 Wstęp Materiały na dzisiejsze zajęcia zostały opracowane na podstawie pomocy naukowych
Bardziej szczegółowoZbiory. Specjalnym zbiorem jest zbiór pusty nie zawierajacy żadnych elementów. Oznaczamy go symbolem.
Zbiory Pojęcie zbioru jest w matematyce pojęciem pierwotnym, którego nie definiujemy. Gdy a jest elementem należacym do zbioru A to piszemy a A. Stosujemy również oznaczenie a / A jeżeli (a A). Będziemy
Bardziej szczegółowoElementy logiki Klasyczny rachunek predykatów
Elementy logiki. Klasyczny rachunek predykatów. 1 Elementy logiki Klasyczny rachunek predykatów Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza
Bardziej szczegółowoLogika Matematyczna. Zadania Egzaminacyjne, 2007
Logika Matematyczna Zadania Egzaminacyjne, 2007 I Rok Językoznawstwa i Informacji Naukowej UAM Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl Podajemy rozwiązania zadań egzaminacyjnych.
Bardziej szczegółowoRachunek zdań i predykatów
Rachunek zdań i predykatów Agnieszka Nowak 14 czerwca 2008 1 Rachunek zdań Do nauczenia :! 1. ((p q) p) q - reguła odrywania RO 2. reguła modus tollens MT: ((p q) q) p ((p q) q) p (( p q) q) p (( p q)
Bardziej szczegółowoDowody założeniowe w KRZ
Dowody założeniowe w KRZ Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl w styczniu 2007 Jerzy Pogonowski (MEG) Dowody założeniowe w KRZ w styczniu 2007 1 / 10 Dowody
Bardziej szczegółowo1 Podstawowe oznaczenia
Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.
Bardziej szczegółowoAdam Meissner.
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Podstawy logiki pierwszego rzędu
Bardziej szczegółowo1. Składnia. Logika obliczeniowa - zadania 1 SKŁADNIA Teoria
Logika obliczeniowa - zadania 1 SKŁADNIA 1. Składnia 1.1. Teoria 1. Składnia oznacza reguły tworzenia... z.... 2. Rachunek predykatów pierwszego rzędu (w skrócie: rachunek predykatów) wyróżnia cztery zbiory
Bardziej szczegółowoZagadnienia podstawowe dotyczące metod formalnych w informatyce
Zagadnienia podstawowe dotyczące metod formalnych w informatyce! Logika Analiza języka i czynności badawczych (np. rozumowanie, definiowanie, klasyfikowanie) w celu poznania takich reguł posługiwania się
Bardziej szczegółowoJEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 18 czerwca Imię i Nazwisko:... I
JEZYKOZNAWSTWO I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 18 czerwca 2013 Imię i Nazwisko:.................................................................................. I Wybierz
Bardziej szczegółowoPodstawy matematyki dla informatyków. Logika formalna. Skªadnia rachunku zda« Skróty i priorytety. Wykªad 10 (Klasyczny rachunek zda«) 15 grudnia 2011
Podstawy matematyki dla informatyków Logika formalna Wykªad 10 (Klasyczny rachunek zda«) 15 grudnia 2011 Skªadnia rachunku zda«symbole (zmienne) zdaniowe (p, q, r,...), oraz znaki i s formuªami zdaniowymi.
Bardziej szczegółowoLogika. Michał Lipnicki. 18 listopada Zakład Logiki Stosowanej UAM. Michał Lipnicki Logika 18 listopada / 1
Logika Michał Lipnicki Zakład Logiki Stosowanej UAM 18 listopada 2012 Michał Lipnicki Logika 18 listopada 2012 1 / 1 Wstęp Materiały na dzisiejsze zajęcia zostały opracowane na podstawie pomocy naukowych
Bardziej szczegółowo1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.
Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze
Bardziej szczegółowoLogika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język
Bardziej szczegółowoElementy logiki i teorii mnogości
Elementy logiki i teorii mnogości Zdanie logiczne Zdanie logiczne jest to zdanie oznajmujące, któremu można przypisać określoną wartość logiczną. W logice klasycznej zdania dzielimy na: prawdziwe (przypisujemy
Bardziej szczegółowoWprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów
Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Plan na pytanie o odniesienie przedmiotowe zdań odpowiedź
Bardziej szczegółowoLOGIKA Klasyczny Rachunek Zdań
LOGIKA Klasyczny Rachunek Zdań Robert Trypuz trypuz@kul.pl 5 listopada 2013 Robert Trypuz (trypuz@kul.pl) Klasyczny Rachunek Zdań 5 listopada 2013 1 / 24 PLAN WYKŁADU 1 Alfabet i formuła KRZ 2 Zrozumieć
Bardziej szczegółowovf(c) =, vf(ft 1... t n )=vf(t 1 )... vf(t n ).
6. Wykład 6: Rachunek predykatów. Język pierwszego rzędu składa się z: symboli relacyjnych P i, i I, gdzie (P i ) oznaczać będzie ilość argumentów symbolu P i, symboli funkcyjnych f j, j J, gdzie (f j
Bardziej szczegółowoElementy logiki Klasyczny rachunek predykatów
Elementy logiki. Klasyczny rachunek predykatów. 1 Elementy logiki Klasyczny rachunek predykatów Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza
Bardziej szczegółowoUwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu
Witold Marciszewski: Wykład Logiki, 17 luty 2005, Collegium Civitas, Warszawa Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu 1. Poniższe wyjaśnienie (akapit
Bardziej szczegółowoWykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu.
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu. 1 Logika Klasyczna obejmuje dwie teorie:
Bardziej szczegółowoLogika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 2 - Logika modalna Część 2 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 27 Plan wykładu
Bardziej szczegółowoRachunek logiczny. 1. Język rachunku logicznego.
Rachunek logiczny. Podstawową własnością rozumowania poprawnego jest zachowanie prawdy: rozumowanie poprawne musi się kończyć prawdziwą konkluzją, o ile wszystkie przesłanki leżące u jego podstaw były
Bardziej szczegółowoZastosowanie logiki matematycznej w procesie weryfikacji wymagań oprogramowania
Zastosowanie logiki matematycznej w procesie weryfikacji wymagań oprogramowania Testerzy oprogramowania lub osoby odpowiedzialne za zapewnienie jakości oprogramowania oprócz wykonywania testów mogą zostać
Bardziej szczegółowoElementy logiki matematycznej
Elementy logiki matematycznej Przedmiotem logiki matematycznej jest badanie tzw. wyrażeń logicznych oraz metod rozumowania i sposobów dowodzenia używanych w matematyce, a także w innych dziedzinach, w
Bardziej szczegółowoLOGIKA Dedukcja Naturalna
LOGIKA Dedukcja Naturalna Robert Trypuz Katedra Logiki KUL 7 stycznia 2014 Robert Trypuz (Katedra Logiki) Założeniowy system klasycznego rachunku zdań 7 stycznia 2014 1 / 42 PLAN WYKŁADU 1 Przykład dowodów
Bardziej szczegółowoDrobinka semantyki KRP
Drobinka semantyki KRP Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Drobinka semantyki KRP Uniwersytet Opolski 1 / 48 Wstęp
Bardziej szczegółowo1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów
1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów Logika matematyczna, dział matematyki zajmujący się badaniem własności wnioskowania (dowodzenia)
Bardziej szczegółowoSchematy Piramid Logicznych
Schematy Piramid Logicznych geometryczna interpretacja niektórych formuł Paweł Jasionowski Politechnika Śląska w Gliwicach Wydział Matematyczno-Fizyczny Streszczenie Referat zajmuje się następującym zagadnieniem:
Bardziej szczegółowoNp. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0
ĆWICZENIE 1 Klasyczny Rachunek Zdań (KRZ): zdania w sensie logicznym, wartości logiczne, spójniki logiczne, zmienne zdaniowe, tabele prawdziwościowe dla spójników logicznych, formuły, wartościowanie zbioru
Bardziej szczegółowoĆWICZENIE 2. DEF. Mówimy, że formuła A wynika logicznie z formuł wartościowanie w, takie że w A. A,, A w KRZ, jeżeli nie istnieje
ĆWICZENIE 2 Klasyczny Rachunek Zdań (KRZ): wynikanie logiczne, wnioskowanie, niezawodny schemat wnioskowania, wnioskowanie dedukcyjne, równoważność logiczna, iniowalność spójników za mocą formuły. DEF.
Bardziej szczegółowoPredykat. Matematyka Dyskretna, Podstawy Logiki i Teorii Mnogości Barbara Głut
Predykat Weźmy pod uwagę następujące wypowiedzi: (1) Afryka jest kontynentem. (2) 7 jest liczbą naturalną. (3) Europa jest mniejsza niż Afryka. (4) 153 jest podzielne przez 3. Są to zdania jednostkowe,
Bardziej szczegółowoPodstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Wnioskowanie logiczne i systemy eksperckie Systemy posługujące się logiką predykatów: część 3/3 Dzisiaj Uogólnienie Poprawność i pełność wnioskowania
Bardziej szczegółowoZiemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:
1 Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa. Tak więc zdanie może mieć jedną z dwóch wartości logicznych. Prawdziwość
Bardziej szczegółowoIII rok kognitywistyki UAM,
METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ WYKŁAD 6A: REZOLUCJA III rok kognitywistyki UAM, 2016 2017 1 Rezolucja w KRZ Dowody rezolucyjne w KRZ są równie proste, jak dowody tablicowe Metoda
Bardziej szczegółowoReguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do
Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do testu z filozofii jest zaliczenie testu z logiki i zaliczenie
Bardziej szczegółowoElementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń
Elementy logiki Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń 1 Klasyczny Rachunek Zdań 1.1 Spójniki logiczne Zdaniem w sensie logicznym nazywamy wyrażenie, które jest
Bardziej szczegółowoPrzykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),
Elementy logiki 1 Przykłady zdań w matematyce Zdania prawdziwe: 1 3 + 1 6 = 1 2, 3 6, 2 Q, Jeśli x = 1, to x 2 = 1 (x oznacza daną liczbę rzeczywistą), Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości
Bardziej szczegółowoWstęp do logiki. Klasyczny Rachunek Predykatów I
Wstęp do logiki Klasyczny Rachunek Predykatów I KRZ jest teorią stanowiącą wstępną część logiki formalnej, część zakładaną przez inne teorie. Przypomnijmy, jest on teorią związków logicznych między zdaniami
Bardziej szczegółowoLOGIKA I TEORIA ZBIORÓW
LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja
Bardziej szczegółowoMATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI
MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI Program wykładów: dr inż. Barbara GŁUT Wstęp do logiki klasycznej: rachunek zdań, rachunek predykatów. Elementy semantyki. Podstawy teorii mnogości
Bardziej szczegółowoLekcja 3: Elementy logiki - Rachunek zdań
Lekcja 3: Elementy logiki - Rachunek zdań S. Hoa Nguyen 1 Materiał a) Zdanie proste, złożone b) Spójniki logiczne (funktory zdaniotwórcze):,,,,, (alternatywa wykluczająca - XOR). c) Tautologia, zdanie
Bardziej szczegółowoRekurencyjna przeliczalność
Rekurencyjna przeliczalność Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Rekurencyjna przeliczalność Funkcje rekurencyjne
Bardziej szczegółowoDefinicja: zmiennych zdaniowych spójnikach zdaniowych:
Definicja: Alfabet języka logiki zdań składa się z nieskończonego (najczęściej zakładamy: przeliczalnego) zbioru P, o którym myślimy jak o zbiorze zmiennych zdaniowych i skończonego zbioru symboli, o których
Bardziej szczegółowoDefinicja: zmiennych zdaniowych spójnikach zdaniowych:
Definicja: Alfabet języka logiki zdań składa się z nieskończonego (najczęściej zakładamy: przeliczalnego) zbioru P, o którym myślimy jak o zbiorze zmiennych zdaniowych i skończonego zbioru symboli, o których
Bardziej szczegółowoSkładnia rachunku predykatów pierwszego rzędu
Początek Gramatyka Kwantyfikatory Poprawność Logika obliczeniowa Instytut Informatyki Początek Gramatyka Kwantyfikatory Poprawność Plan wykładu 1 Na (dobry) początek Zrozumieć słowa Oswoić znaki 2 Gramatyka
Bardziej szczegółowoLogika intuicjonistyczna
Logika intuicjonistyczna Logika klasyczna oparta jest na pojęciu wartości logicznej zdania. Poprawnie zbudowane i jednoznaczne stwierdzenie jest w tej logice klasyfikowane jako prawdziwe lub fałszywe.
Bardziej szczegółowoLogika Matematyczna 16 17
Logika Matematyczna 16 17 Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Semantyka KRP (3) Jerzy Pogonowski (MEG) Logika Matematyczna 16 17 Semantyka KRP (3) 1 / 24
Bardziej szczegółowoLogika Matematyczna Spójniki logiczne Tautologie Dowodzenie Kwantyfikatory Zagadki. Logika Matematyczna. Marcelina Borcz.
5 marca 2009 Spis treści 1 2 3 4 5 6 Logika (z gr. logos - rozum) zajmuje się badaniem ogólnych praw, według których przebiegają wszelkie poprawne rozumowania, w szczególności wnioskowania. Logika matematyczna,
Bardziej szczegółowoLogika Matematyczna (2,3)
Logika Matematyczna (2,3) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 11, 18 X 2007 Jerzy Pogonowski (MEG) Logika Matematyczna (2,3) 11, 18 X 2007 1 / 34 Język KRZ
Bardziej szczegółowoModele Herbranda. Logika obliczeniowa. Joanna Józefowska. Szukamy modelu. Przykład Problemy. Model Herbranda
Plan wykładu Szukamy modelu Model Herbranda Twierdzenia Logika obliczeniowa Instytut Informatyki Plan wykładu Szukamy modelu 1 Szukamy modelu Problemy 2 Model Herbranda Uniwersum Herbranda Interpretacja
Bardziej szczegółowoPodstawowe Pojęcia. Semantyczne KRZ
Logika Matematyczna: Podstawowe Pojęcia Semantyczne KRZ I rok Językoznawstwa i Informacji Naukowej UAM 2006-2007 Jerzy Pogonowski Zakład Logiki Stosowanej UAM http://www.logic.amu.edu.pl Dodatek: ściąga
Bardziej szczegółowoParadygmaty dowodzenia
Paradygmaty dowodzenia Sprawdzenie, czy dana formuła rachunku zdań jest tautologią polega zwykle na obliczeniu jej wartości dla 2 n różnych wartościowań, gdzie n jest liczbą zmiennych zdaniowych tej formuły.
Bardziej szczegółowoWYKŁAD 7: DEDUKCJA NATURALNA
METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ WYKŁAD 7: DEDUKCJA NATURALNA III rok kognitywistyki UAM, 2016 2017 Systemy dedukcji naturalnej pochodzą od Gerharda Gentzena (1909 1945) oraz Stanisława
Bardziej szczegółowoTautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne)
Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Definicja 1: Tautologia jest to takie wyrażenie, którego wartość logiczna jest prawdą przy wszystkich możliwych wartościowaniach zmiennych
Bardziej szczegółowoCzyli tautologie, kontrtautologie i wynikanie w KRP.
Czyli tautologie, kontrtautologie i wynikanie w KRP Z powodu naszej długiej nieobecności PRL bardzo się rozzuchwalił. Dziś w nocy dokonano brutalnego porwania jednego z policjantów. Obecnie przebywa on
Bardziej szczegółowoROZDZIAŁ 1. Rachunek funkcyjny
ROZDZIAŁ 1 Rachunek funkcyjny Niech X 1,..., X n będą dowolnymi zbiorami. Wyrażenie (formułę) ϕ(x 1,..., x n ), w którym występuje n zmiennych x 1,..., x n i które zamienia się w zdanie logiczne, gdy zamiast
Bardziej szczegółowoKultura logicznego myślenia
Kultura logicznego myślenia rok akademicki 2015/2016 semestr zimowy Temat 6: Rachunek predykatów jako logika pierwszego rzędu logika elementarna = logika pierwszego rzędu KRZ logika zerowego rzędu Język
Bardziej szczegółowoWstęp do logiki. Klasyczny Rachunek Zdań II
Wstęp do logiki Klasyczny Rachunek Zdań II DEF. 1 (Słownik). Następujące znaki tworzą słownik języka KRZ: p 1, p 2, p 3, (zmienne zdaniowe) ~,,,, (spójniki) ), ( (nawiasy). DEF. 2 (Wyrażenie). Wyrażeniem
Bardziej szczegółowoMetody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I
Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl OSTRZEŻENIE Niniejszy plik nie zawiera wykładu z Metod dowodzenia...
Bardziej szczegółowoAndrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki
Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 5. Wprowadzenie do semantyki teoriomodelowej cz.5. Wynikanie logiczne 1 Na poprzednim wykładzie udowodniliśmy m.in.:
Bardziej szczegółowoWykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne Istnieje wiele systemów aksjomatycznych
Bardziej szczegółowoWykład 2. Informatyka Stosowana. 8 października 2018, M. A-B. Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41
Wykład 2 Informatyka Stosowana 8 października 2018, M. A-B Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41 Elementy logiki matematycznej Informatyka Stosowana Wykład 2 8 października
Bardziej szczegółowoCzyli ABC logiki predykatów
Czyli ABC logiki predykatów PROBLEM POLICJI PRL ma nowego gangstera, Udało się go złapać, Złożył następujące zeznanie: Popełniłem wszystkie przestępstwa z użyciem dwustronnego kilofa. W ostatnim napadzie
Bardziej szczegółowoIMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I
IMIĘ NAZWISKO............................ grupa C... sala 10... Egzamin ELiTM I 02.02.15 1. 2. 3. 4.. 1. (8 pkt.) Niech X a,b = {(x, y) R 2 : (x b) 2 + (y 1 b )2 a 2 } dla a, b R, a > 0, b 0. Wyznaczyć:
Bardziej szczegółowo4 Klasyczny rachunek zdań
4 Klasyczny rachunek zdań Elementy Logiki i Teorii Mnogości 2015/2016 Spis najważniejszych tautologii: (a) p p prawo wyłączonego środka (b) ( p) p prawo podwójnej negacji (c) p q q p (d) p q q p prawo
Bardziej szczegółowoLista 1 - Rachunek zdań i reguły wnioskowania
Lista 1 - Rachunek zdań i reguły wnioskowania 1. Każda karta z jednej strony jest czerwona albo niebieska, z drugiej zaś ma narysowane kółko albo trójkąt. Na stole widzimy cztery takie karty, widoczna
Bardziej szczegółowoWYKŁAD 3: METODA AKSJOMATYCZNA
METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ WYKŁAD 3: METODA AKSJOMATYCZNA III rok kognitywistyki UAM, 2016 2017 Plan na dziś: 1. Przypomnimy, na czym polega aksjomatyczna metoda dowodzenia twierdzeń.
Bardziej szczegółowoLogika Radosna 5. Jerzy Pogonowski. KRP: tablice analityczne. Zakład Logiki Stosowanej UAM
Logika Radosna 5 Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl KRP: tablice analityczne Jerzy Pogonowski (MEG) Logika Radosna 5 KRP: tablice analityczne 1 / 111 Wprowadzenie
Bardziej szczegółowo1 Rachunek zdań. w(p) = 0 lub p 0 lub [p] = 0. a jeśli jest fałszywe to:
1 Rachunek zdań Formuły zdaniowe (lub krócej: zdania) w klasycznym rachunku zdań składają się ze zmiennych zdaniowych nazywanych też zdaniami składowymi (oznaczane są zazwyczaj p, q, r,...) oraz operatorów
Bardziej szczegółowo1 Logika Zbiory Pewnik wyboru Funkcje Moce zbiorów Relacje... 14
Wstęp do matematyki Matematyka, I rok. Tomasz Połacik Spis treści 1 Logika................................. 1 2 Zbiory................................. 7 3 Pewnik wyboru............................ 10
Bardziej szczegółowoNOWE ODKRYCIA W KLASYCZNEJ LOGICE?
S ł u p s k i e S t u d i a F i l o z o f i c z n e n r 5 * 2 0 0 5 Jan Przybyłowski, Logika z ogólną metodologią nauk. Podręcznik dla humanistów, Wydawnictwo Uniwersytetu Gdańskiego, Gdańsk 2003 NOWE
Bardziej szczegółowoWstęp do logiki. Klasyczny Rachunek Zdań III
Wstęp do logiki Klasyczny Rachunek Zdań III Przypomnijmy: Logika: = Teoria form (schematów, reguł) poprawnych wnioskowań. Wnioskowaniem nazywamy jakąkolwiek skończoną co najmniej dwuwyrazową sekwencję
Bardziej szczegółowo16. PODSTAWOWE POJĘCIA LOGIKI KWANTYFIKATORÓW
16. PODSTAWOWE POJĘCIA LOGIKI KWANTYFIKATORÓW 16.1. Cele zrozumienie, w jakim sensie logika kwantyfikatorów jest poszerzeniem logiki zdań umiejętność symbolizacji prostych zdań indywiduowych i skwantyfikowanych
Bardziej szczegółowoWykład 1. Informatyka Stosowana. 2 października Informatyka Stosowana Wykład 1 2 października / 33
Wykład 1 Informatyka Stosowana 2 października 2017 Informatyka Stosowana Wykład 1 2 października 2017 1 / 33 Wykłady : 45h (w semestrze zimowym) (Egzamin) 30h (w semetrze letnim) (Egzamin) 3h lekcyjne
Bardziej szczegółowo1 Rachunek zdań, podstawowe funk tory logiczne
1 Rachunek zdań, podstawowe funk tory logiczne 1.1 Zapisz symbolicznie następujące stwierdzenia i Jeśli z tego, że Paweł gra w palanta wynika to, że Robert jeździ na rowerze, to z tego, że Robert nie gra
Bardziej szczegółowoMaciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Elementy logiki
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Elementy logiki 1. Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa.
Bardziej szczegółowoMyślenie w celu zdobycia wiedzy = poznawanie. Myślenie z udziałem rozumu = myślenie racjonalne. Myślenie racjonalne logiczne statystyczne
Literatura: podstawowa: C. Radhakrishna Rao, Statystyka i prawda, 1994. G. Wieczorkowska-Wierzbińska, J. Wierzbiński, Statystyka. Od teorii do praktyki, 2013. A. Aczel, Statystyka w zarządzaniu, 2002.
Bardziej szczegółowoLOGIKA FORMALNA POPRAWNOŚĆ WNIOSKOWAŃ
LOGIKA FORMALNA POPRAWNOŚĆ WNIOSKOWAŃ Robert Trypuz Katedra Logiki KUL 18 grudnia 2013 Robert Trypuz (Katedra Logiki) Wnioskowanie 18 grudnia 2013 1 / 12 Zarys 1 Wnioskowanie Definicja Schemat wnioskowania
Bardziej szczegółowoLista 1 (elementy logiki)
Podstawy nauczania matematyki 1. Zdanie Lista 1 (elementy logiki) EE I rok W logice zdaniem logicznym nazywamy wyrażenie oznajmujące o którym można powiedzieć że jest prawdziwe lub fałszywe. Zdania z reguły
Bardziej szczegółowoAlgebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie
3. Wykłady 5 i 6: Semantyka klasycznego rachunku zdań. Dotychczas rozwinęliśmy klasyczny rachunek na gruncie czysto syntaktycznym, a więc badaliśmy metodę sprawdzania, czy dana formuła B jest dowodliwa
Bardziej szczegółowo