Opis układów złożonych za pomocą schematów strukturalnych. dr hab. inż. Krzysztof Patan

Wielkość: px
Rozpocząć pokaz od strony:

Download "Opis układów złożonych za pomocą schematów strukturalnych. dr hab. inż. Krzysztof Patan"

Transkrypt

1 Opis kładów złożonych za pomocą schematów strktralnych dr hab. inż. Krzysztof Patan

2 Schematy strktralne W przypadk opis złożonych kładów dynamicznych, należy zwrócić wagę na interpretację fizyczną zjawisk przebiegających w badanym kładzie Złożony kład dynamiczny opisany jest skomplikowaną transmitancją dlatego wygodniej jest operować schematem strktralnym Schemat strktralny można zyskać w sposób analityczny na podstawie równań operatorowych kład bądź w wynik badań eksperymentalnych Schemat strktralny jest równoważny równaniom opisjącym kład dynamiczny

3 Podstawowe elementy schemat strktralnego element dynamiczny (s) G(s) y(s) węzeł smacyjny 1 y = węzeł zaczepowy

4 Przykład 1 Dany jest wzmacniacz tranzystorowy. Wyznaczyć schemat ogólny oraz transmitancję wzmacniacza, zakładając R c = 2kΩ, R 1 = 100kΩ, R 2 = 1kΩ i 2 U z = const R 1 R c R 2 i 1 U 1 U 2

5 Schamat zastępczy tranzystora dla małych odchyleń U 1 i U 2 od pnkt pracy U 1 R 2 i 1 h 11 h 2 i 21 i 1 2 U 3 1 R 1 h 12 U 2 1 h 22 U 2 R c h 11 (s) = h 0 11e, h 12(s) = h 0 12e h 21 (s) = β0 1sT β h 22 (s) = h 0 22e (1 stα) T α = 1 2πf α T β = 1 β 0 T α 2πf β h 0 11e rezystancja wejściowa przy zwartym wyjści h 0 12e wsp. sprzężenia zwrotnego przy otwartym wejści β 0 wsp. wzmocnienia prądowego przy zwartym wyjści h 0 22e kondktancja wyjściowa przy otwartym wejści f α częstotliwość graniczna w kładzie OB f β częstotliwość graniczna w kładzie OE

6 Stosjemy metodę potencjałów węzłowych dla węzła 1 otrzymjemy ( 1 U 3 (s) 1 1 R 1 R 2 h 11 i 1 (s) = ( U 3 (s) h 12 U 2 (s)) 1 h 11 dla węzła 2 otrzymjemy U 2 (s) = i 2 (s)r c i 2 (s) = h 21 i 1 (s) U 2 (s)h 22 Schemat strktralny wzmacniacza ) U 1 (s) 1 R 2 U 2 (s) h 12 h 11 = 0 U 1 R R 2 U 3 h 21 h 11 i 2 R c U 2 Rh 12 h 11 h 12 h 22 gdzie 1 R = 1 R 1 1 R 2 1 h 11

7 wyznaczamy transmitancję G(s) = U2(s) U 1(s) po przekształceniach otrzymjemy ( U 2 (s) 1R c h 22 R ( ch 21 h 12 Rh )) 12 = RR ch 21 U 1 (s) (1) h 11 h 11 R 2 h 11 załóżmy następjące parametry tranzystora: h 0 11e = 2kΩ, h 0 12e = 10 3, β 0 = 100, h 0 22e = , f a = 10 6 Hz wtedy T α = s, T β = β 0 T α = s R = 625Ω R h = = , h R = 625 R = R h 12 0 h 11 h 21 β 0 = h 11 h 11 (1 T αs) = ( s) = h 22 = h 0 22e(1 st α ) = ( ) 0

8 wyznaczamy transmitancję G(s) = U2(s) U 1(s) po przekształceniach otrzymjemy ( U 2 (s) 1R c h 22 R ( ch 21 h 12 Rh )) 12 = RR ch 21 U 1 (s) (1) h 11 h 11 R 2 h 11 załóżmy następjące parametry tranzystora: h 0 11e = 2kΩ, h 0 12e = 10 3, β 0 = 100, h 0 22e = , f a = 10 6 Hz wtedy T α = s, T β = β 0 T α = s R = 625Ω R h = = , h R = 625 R = R h 12 0 h 11 h 21 β 0 = h 11 h 11 (1 T αs) = ( s) = h 22 = h 0 22e(1 st α ) = ( ) 0

9 wyznaczamy transmitancję G(s) = U2(s) U 1(s) po przekształceniach otrzymjemy ( U 2 (s) 1R c h 22 R ( ch 21 h 12 Rh )) 12 = RR ch 21 U 1 (s) (1) h 11 h 11 R 2 h 11 załóżmy następjące parametry tranzystora: h 0 11e = 2kΩ, h 0 12e = 10 3, β 0 = 100, h 0 22e = , f a = 10 6 Hz wtedy T α = s, T β = β 0 T α = s R = 625Ω R h = = , h R = 625 R = R h 12 0 h 11 h 21 β 0 = h 11 h 11 (1 T αs) = ( s) = h 22 = h 0 22e(1 st α ) = ( ) 0

10 wyznaczamy transmitancję G(s) = U2(s) U 1(s) po przekształceniach otrzymjemy ( U 2 (s) 1R c h 22 R ( ch 21 h 12 Rh )) 12 = RR ch 21 U 1 (s) (1) h 11 h 11 R 2 h 11 załóżmy następjące parametry tranzystora: h 0 11e = 2kΩ, h 0 12e = 10 3, β 0 = 100, h 0 22e = , f a = 10 6 Hz wtedy T α = s, T β = β 0 T α = s R = 625Ω R h = = , h R = 625 R = R h 12 0 h 11 h 21 β 0 = h 11 h 11 (1 T αs) = ( s) = h 22 = h 0 22e(1 st α ) = ( ) 0

11 wyznaczamy transmitancję G(s) = U2(s) U 1(s) po przekształceniach otrzymjemy ( U 2 (s) 1R c h 22 R ( ch 21 h 12 Rh )) 12 = RR ch 21 U 1 (s) (1) h 11 h 11 R 2 h 11 załóżmy następjące parametry tranzystora: h 0 11e = 2kΩ, h 0 12e = 10 3, β 0 = 100, h 0 22e = , f a = 10 6 Hz wtedy T α = s, T β = β 0 T α = s R = 625Ω R h = = , h R = 625 R = R h 12 0 h 11 h 21 β 0 = h 11 h 11 (1 T αs) = ( s) = h 22 = h 0 22e(1 st α ) = ( ) 0

12 wyznaczamy transmitancję G(s) = U2(s) U 1(s) po przekształceniach otrzymjemy ( U 2 (s) 1R c h 22 R ( ch 21 h 12 Rh )) 12 = RR ch 21 U 1 (s) (1) h 11 h 11 R 2 h 11 załóżmy następjące parametry tranzystora: h 0 11e = 2kΩ, h 0 12e = 10 3, β 0 = 100, h 0 22e = , f a = 10 6 Hz wtedy T α = s, T β = β 0 T α = s R = 625Ω R h = = , h R = 625 R = R h 12 0 h 11 h 21 β 0 = h 11 h 11 (1 T αs) = ( s) = h 22 = h 0 22e(1 st α ) = ( ) 0

13 wyznaczamy transmitancję G(s) = U2(s) U 1(s) po przekształceniach otrzymjemy ( U 2 (s) 1R c h 22 R ( ch 21 h 12 Rh )) 12 = RR ch 21 U 1 (s) (1) h 11 h 11 R 2 h 11 załóżmy następjące parametry tranzystora: h 0 11e = 2kΩ, h 0 12e = 10 3, β 0 = 100, h 0 22e = , f a = 10 6 Hz wtedy T α = s, T β = β 0 T α = s R = 625Ω R h = = , h R = 625 R = R h 12 0 h 11 h 21 β 0 = h 11 h 11 (1 T αs) = ( s) = h 22 = h 0 22e(1 st α ) = ( ) 0

14 wyznaczamy transmitancję G(s) = U2(s) U 1(s) po przekształceniach otrzymjemy ( U 2 (s) 1R c h 22 R ( ch 21 h 12 Rh )) 12 = RR ch 21 U 1 (s) (1) h 11 h 11 R 2 h 11 załóżmy następjące parametry tranzystora: h 0 11e = 2kΩ, h 0 12e = 10 3, β 0 = 100, h 0 22e = , f a = 10 6 Hz wtedy T α = s, T β = β 0 T α = s R = 625Ω R h = = , h R = 625 R = R h 12 0 h 11 h 21 β 0 = h 11 h 11 (1 T αs) = ( s) = h 22 = h 0 22e(1 st α ) = ( ) 0

15 wyznaczamy transmitancję G(s) = U2(s) U 1(s) po przekształceniach otrzymjemy ( U 2 (s) 1R c h 22 R ( ch 21 h 12 Rh )) 12 = RR ch 21 U 1 (s) (1) h 11 h 11 R 2 h 11 załóżmy następjące parametry tranzystora: h 0 11e = 2kΩ, h 0 12e = 10 3, β 0 = 100, h 0 22e = , f a = 10 6 Hz wtedy T α = s, T β = β 0 T α = s R = 625Ω R h = = , h R = 625 R = R h 12 0 h 11 h 21 β 0 = h 11 h 11 (1 T αs) = ( s) = h 22 = h 0 22e(1 st α ) = ( ) 0

16 wyznaczamy transmitancję G(s) = U2(s) U 1(s) po przekształceniach otrzymjemy ( U 2 (s) 1R c h 22 R ( ch 21 h 12 Rh )) 12 = RR ch 21 U 1 (s) (1) h 11 h 11 R 2 h 11 załóżmy następjące parametry tranzystora: h 0 11e = 2kΩ, h 0 12e = 10 3, β 0 = 100, h 0 22e = , f a = 10 6 Hz wtedy T α = s, T β = β 0 T α = s R = 625Ω R h = = , h R = 625 R = R h 12 0 h 11 h 21 β 0 = h 11 h 11 (1 T αs) = ( s) = h 22 = h 0 22e(1 st α ) = ( ) 0

17 wyznaczamy transmitancję G(s) = U2(s) U 1(s) po przekształceniach otrzymjemy ( U 2 (s) 1R c h 22 R ( ch 21 h 12 Rh )) 12 = RR ch 21 U 1 (s) (1) h 11 h 11 R 2 h 11 załóżmy następjące parametry tranzystora: h 0 11e = 2kΩ, h 0 12e = 10 3, β 0 = 100, h 0 22e = , f a = 10 6 Hz wtedy T α = s, T β = β 0 T α = s R = 625Ω R h = = , h R = 625 R = R h 12 0 h 11 h 21 β 0 = h 11 h 11 (1 T αs) = ( s) = h 22 = h 0 22e(1 st α ) = ( ) 0

18 ostatecznie równanie (1) można przepisać w postaci ( U 2 (s) 1 R ) ch 21 h 12 = RR ch 21 U 1 (s) (2) h 11 R 2 h 11 czyli G(s) = RR ch 21 R 2 h 11 1 R = ch 21 h 12 h 11 Uproszczony schemat strktralny st β st β = st β U 1 U 3 R h 21 R 2 h 11 i 2 R c U 2 h 12

19 Przykład 2 Wyznaczyć schemat blokowy kład opisanego następjącymi równaniami stan { x(k 1) = Ax(k) B(k) y(k) = Cx(k) gdzie A = [ ], B = [ 2 1 ] [, C = ] 1 1

20 Przekształcanie schematów strktralnych Sposoby przekształcania (praszczania) schematów strktralnych 1 metoda krok po krok 2 metoda przekształcania równań opisjących kład fizyczny 3 metoda mnemotechniczna 4 metoda Masona Metody mnemotechniczna i Masona można stosować do ograniczonej klasy kładów Metoda krok po krok jest metodą niwersalną można ją stosować do praszczania dowolnego schemat strktralnego Przekształcania schemat strktralnego jest równoważne przekształcani kład równań opisjących ten kład Przekształcanie schemat może prowadzić do: 1 zmiany kład połączeń elementów 2 proszczenia schemat

21 Podstawowe operacje na schematach blokowych Połączenie szeregowe U(s) G 1 (s) G 2 (s) Y (s) U(s) G(s) Y (s) Transmitancja zastępcza G(s) = G 1 (s)g 2 (s)

22 Połączenie równoległe G 2 (s) U(s) Y (s) G 1 (s) U(s) Transmitancja zastępcza G(s) Y (s) G(s) = G 1 (s) G 2 (s)

23 Połączenie ze sprzężeniem zwrotnym U(s) ± G 1 (s) Y (s) G 2 (s) Transmitancja zastępcza U(s) G(s) Y (s) G(s) = G 1 (s) 1 G 1 (s)g 2 (s)

24 Zmiana kolejności węzłów zaczepowych

25 Zmiana kolejności węzłów smacyjnych ± ± 1 4 ± ± 3 2 3

26 Łączenie/rozdzielanie węzłów zaczepowych

27 Łączenie/rozdzielanie węzłów smjących 3 3 ± ± 4 ± ±

28 Przeswanie węzła zaczepowego przed smjący 1 3 ± ± ± ± ± ± 3 2

29 Przeswanie węzła smjącego przed zaczepowy 1 2 ± ± ± ± 2 ± ± 3 1

30 Przeswanie węzłów zaczepowych G(s) y G(s) 1 G(s) y

31 Przeswanie węzłów zaczepowych cd y y y G(s) G(s) y G(s)

32 Przeswanie węzłów smacyjnych 1 2 ± ± G(s) y 1 ± y G(s) ± 2 G(s)

33 Przeswanie węzłów smacyjnych cd 1 G(s) ± ± y 2 1 ± ± 1 G(s) G(s) y 2

34 Przykłady Przykład 3 Wyznaczyć transmitancję zastępczą poniższego kład 1 3 2

35 Rozwiązanie 1 rozdzielamy węzeł zaczepowy 1 i liczymy transmitancję połączenia równoległego 2 przeswamy węzeł zaczepowy 1 za transmitancję G 2 i liczymy transmitancję połączenia szeregowego 3 łączymy węzły zaczepowe 2 i 3, a następnie je rozdzielamy 4 liczymy transmitancję połączenia ze sprzężeniem zwrotnym, a następnie połączenia szeregowego 5 rozdzielamy węzeł zaczepowy 3 i liczymy transmitancję połączenia z pełnym sprzężeniem zwrotnym 6 wyznaczamy transmitancję zastępczą kład poprzez wyznaczenie transmitancji połączenia ze sprzężenim zwrtotnym

36 Przykład 4 Wyznaczyć transmitancję zastępczą poniższego kład 3 2 1

37 Rozwiązanie 1 przeswamy węzeł zaczepowy 1 za transmitancję G 2 2 przeswamy węzeł smacyjny 2 przed transmitancję G 1 i łączymy węzły smacyjne 3 liczymy transmitancję połączenia szeregowego 4 rozdzielamy węzeł smacyjny 3 5 liczymy transmitancję połączenia ze sprzężeniem zwrotnym 6 liczymy transmitancję połączenia równoległego 7 wyznaczamy transmitancję zastępczą kład poprzez wyznaczenie transmitancji połączenia szeregowego

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 2 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 56 Plan wykładu Schematy strukturalne Podstawowe operacje na schematach

Bardziej szczegółowo

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 4 - algebra schematów blokowych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Schemat blokowy Schemat blokowy (strukturalny): przedstawia wzajemne powiązania pomiędzy poszczególnymi zespołami

Bardziej szczegółowo

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 4 - algebra schematów blokowych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Schemat blokowy Schemat blokowy (strukturalny): przedstawia wzajemne powiązania pomiędzy poszczególnymi zespołami

Bardziej szczegółowo

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 4 - algebra schematów blokowych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Schemat blokowy Schemat blokowy (strukturalny): przedstawia wzajemne powiązania pomiędzy poszczególnymi zespołami

Bardziej szczegółowo

Laboratorium z Układów Elektronicznych Analogowych

Laboratorium z Układów Elektronicznych Analogowych Laboratorium z Układów Elektronicznych Analogowych Wpływ ujemnego sprzężenia zwrotnego (USZ) na pracę wzmacniacza operacyjnego WYMAGANIA: 1. Klasyfikacja sprzężeń zwrotnych. 2. Wpływ sprzężenia zwrotnego

Bardziej szczegółowo

Przekształcanie schematów blokowych. Podczas ćwiczenia poruszane będą następujące zagadnienia:

Przekształcanie schematów blokowych. Podczas ćwiczenia poruszane będą następujące zagadnienia: Warszawa 2017 1 Cel ćwiczenia rachunkowego Podczas ćwiczenia poruszane będą następujące zagadnienia: zasady budowy schematów blokowych układów regulacji automatycznej na podstawie równań operatorowych;

Bardziej szczegółowo

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału

Bardziej szczegółowo

A-3. Wzmacniacze operacyjne w układach liniowych

A-3. Wzmacniacze operacyjne w układach liniowych A-3. Wzmacniacze operacyjne w kładach liniowych I. Zakres ćwiczenia wyznaczenia charakterystyk amplitdowych i częstotliwościowych oraz parametrów czasowych:. wtórnika napięcia. wzmacniacza nieodwracającego

Bardziej szczegółowo

Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora.

Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora. I. Cel ćwiczenia ĆWICZENIE 6 Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora. Badanie właściwości wzmacniaczy tranzystorowych pracujących w układzie wspólnego kolektora. II.

Bardziej szczegółowo

2.2. Metoda przez zmianę strumienia magnetycznego Φ Metoda przez zmianę napięcia twornika Układ Ward-Leonarda

2.2. Metoda przez zmianę strumienia magnetycznego Φ Metoda przez zmianę napięcia twornika Układ Ward-Leonarda 5 Spis treści Przedmowa... 11 Wykaz ważniejszych oznaczeń... 13 1. Badanie silnika prądu stałego... 15 1.1. Elementy maszyn prądu stałego... 15 1.2. Zasada działania i budowa maszyny prądu stałego... 17

Bardziej szczegółowo

Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera.

Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera. ĆWICZENIE 5 Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera. I. Cel ćwiczenia Badanie właściwości dynamicznych wzmacniaczy tranzystorowych pracujących w układzie

Bardziej szczegółowo

L ABORATORIUM UKŁADÓW ANALOGOWYCH

L ABORATORIUM UKŁADÓW ANALOGOWYCH WOJSKOWA AKADEMIA TECHNICZNA W YDZIAŁ ELEKTONIKI zima L ABOATOIM KŁADÓW ANALOGOWYCH Grupa:... Data wykonania ćwiczenia: Ćwiczenie prowadził: Imię:......... Data oddania sprawozdania: Podpis: Nazwisko:......

Bardziej szczegółowo

kierunek: Automatyka i Robotyka Zadania uzupełniające do wykładu i ćwiczeń laboratoryjnych z Elektroniki sem. II

kierunek: Automatyka i Robotyka Zadania uzupełniające do wykładu i ćwiczeń laboratoryjnych z Elektroniki sem. II kierunek: Automatyka i Robotyka Zadania uzupełniające do wykładu i ćwiczeń laboratoryjnych z Elektroniki sem. II iody prostownicze i diody Zenera Zadanie Podać schematy zastępcze zlinearyzowane dla diody

Bardziej szczegółowo

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza

Bardziej szczegółowo

18. Wprowadzenie do metod analizy i syntezy układów

18. Wprowadzenie do metod analizy i syntezy układów 18. Wprowadzenie do metod analizy i syntezy kładów Metody analizy kładów nieliniowych dzielimy na dwie grpy: przybliżone i ścisłe. 1. Metody przybliżone a) linearyzacja przez rozwinięcie w szereg Taylora,

Bardziej szczegółowo

Tranzystory bipolarne. Małosygnałowe parametry tranzystorów.

Tranzystory bipolarne. Małosygnałowe parametry tranzystorów. ĆWICZENIE 3 Tranzystory bipolarne. Małosygnałowe parametry tranzystorów. I. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie małosygnałowych parametrów tranzystorów bipolarnych na podstawie ich charakterystyk

Bardziej szczegółowo

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi

Bardziej szczegółowo

Wzmacniacze operacyjne

Wzmacniacze operacyjne Wzmacniacze operacyjne Wrocław 2015 Wprowadzenie jest wzmacniaczem prądu stałego o dużym wzmocnieniu napięciom (różnicom). Wzmacniacz ten posiada wejście symetryczne (różnicowe) oraz jście niesymetryczne.

Bardziej szczegółowo

Realizacja regulatorów analogowych za pomocą wzmacniaczy operacyjnych. Instytut Automatyki PŁ

Realizacja regulatorów analogowych za pomocą wzmacniaczy operacyjnych. Instytut Automatyki PŁ ealizacja regulatorów analogowych za pomocą wzmacniaczy operacyjnych W6-7/ Podstawowe układy pracy wzmacniacza operacyjnego Prezentowane schematy podstawowych układów ze wzmacniaczem operacyjnym zostały

Bardziej szczegółowo

2 Dana jest funkcja logiczna w następującej postaci: f(a,b,c,d) = Σ(0,2,5,8,10,13): a) zminimalizuj tę funkcję korzystając z tablic Karnaugh,

2 Dana jest funkcja logiczna w następującej postaci: f(a,b,c,d) = Σ(0,2,5,8,10,13): a) zminimalizuj tę funkcję korzystając z tablic Karnaugh, EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2010/2011 Zadania dla grupy elektronicznej na zawody II. stopnia (okręgowe) 1 Na rysunku przedstawiono przebieg prądu

Bardziej szczegółowo

Zbiór zadań z elektroniki - obwody prądu stałego.

Zbiór zadań z elektroniki - obwody prądu stałego. Zbiór zadań z elektroniki - obwody prądu stałego. Zadanie 1 Na rysunku 1 przedstawiono schemat sterownika dwukolorowej diody LED. Należy obliczyć wartość natężenia prądu płynącego przez diody D 2 i D 3

Bardziej szczegółowo

Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający

Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości wzmacniaczy operacyjnych i ich podstawowych

Bardziej szczegółowo

PODSTAWY ELEKTRONIKI TEMATY ZALICZENIOWE

PODSTAWY ELEKTRONIKI TEMATY ZALICZENIOWE PODSTAWY ELEKTRONIKI TEMATY ZALICZENIOWE 1. Wyznaczanie charakterystyk statycznych diody półprzewodnikowej a) Jakie napięcie pokaże woltomierz, jeśli wiadomo, że Uzas = 11V, R = 1,1kΩ a napięcie Zenera

Bardziej szczegółowo

Laboratorium z automatyki

Laboratorium z automatyki Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z automatyki Algebra schematów blokowych, wyznaczanie odpowiedzi obiektu na sygnał zadany, charakterystyki częstotliwościowe Kierunek studiów:

Bardziej szczegółowo

Filtry aktywne filtr górnoprzepustowy

Filtry aktywne filtr górnoprzepustowy . el ćwiczenia. Filtry aktywne filtr górnoprzepustowy elem ćwiczenia jest praktyczne poznanie właściwości filtrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów filtru.. Budowa

Bardziej szczegółowo

LABORATORIUM ELEKTRONICZNYCH UKŁADÓW POMIAROWYCH I WYKONAWCZYCH. Badanie detektorów szczytowych

LABORATORIUM ELEKTRONICZNYCH UKŁADÓW POMIAROWYCH I WYKONAWCZYCH. Badanie detektorów szczytowych LABORATORIM ELEKTRONICZNYCH KŁADÓW POMIAROWYCH I WYKONAWCZYCH Badanie detektorów szczytoch Cel ćwiczenia Poznanie zasady działania i właściwości detektorów szczytoch Wyznaczane parametry Wzmocnienie detektora

Bardziej szczegółowo

Wzmacniacze operacyjne

Wzmacniacze operacyjne e operacyjne Wrocław 2018 Wprowadzenie operacyjny jest wzmacniaczem prądu stałego o dużym wzmocnieniu napięciom (różnicom). ten posiada wejście symetryczne (różnicowe) oraz jście niesymetryczne. N P E

Bardziej szczegółowo

Sposoby modelowania układów dynamicznych. Pytania

Sposoby modelowania układów dynamicznych. Pytania Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,

Bardziej szczegółowo

UJEMNE SPRZĘŻENIE ZWROTNE wprowadzenie do ćwiczenia laboratoryjnego

UJEMNE SPRZĘŻENIE ZWROTNE wprowadzenie do ćwiczenia laboratoryjnego UJEMNE SPRZĘŻENIE ZWROTNE wprowadzenie do ćwiczenia laoratoryjnego Józef BOKSA 1. Uwagi ogólne...2 2. Podstawowe układy sprzężenia zwrotnego...2 3. Wpływ sprzężenia zwrotnego na właściwości wzmacniaczy...4

Bardziej szczegółowo

ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym

ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym 4. PRZEBIE ĆWICZENIA 4.1. Wyznaczanie parametrów wzmacniacza z tranzystorem unipolarnym złączowym w

Bardziej szczegółowo

PROTOKÓŁ POMIAROWY - SPRAWOZDANIE

PROTOKÓŁ POMIAROWY - SPRAWOZDANIE PROTOKÓŁ POMIAROWY - SPRAWOZDANIE LABORATORIM PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI Grupa Podgrupa Numer ćwiczenia 5 Nazwisko i imię Data wykonania. ćwiczenia. Prowadzący ćwiczenie Podpis Ocena sprawozdania

Bardziej szczegółowo

Wydział Elektryczny. Temat i plan wykładu. Politechnika Białostocka. Wzmacniacze

Wydział Elektryczny. Temat i plan wykładu. Politechnika Białostocka. Wzmacniacze Politechnika Białostocka Temat i plan wykładu Wydział Elektryczny Wzmacniacze 1. Wprowadzenie 2. Klasyfikacja i podstawowe parametry 3. Wzmacniacz w układzie OE 4. Wtórnik emiterowy 5. Wzmacniacz róŝnicowy

Bardziej szczegółowo

Do podr.: Metody analizy obwodów lin. ATR 2003 Strona 1 z 5. Przykład rozwiązania zadania kontrolnego nr 1 (wariant 57)

Do podr.: Metody analizy obwodów lin. ATR 2003 Strona 1 z 5. Przykład rozwiązania zadania kontrolnego nr 1 (wariant 57) o podr.: Metody analizy obwodów lin. T Strona z Przykład rozwiązania zadania kontrolnego nr (wariant 7) Zgodnie z tabelą Z- dla wariantu nr 7 b 6, c 7, d 9, f, g. Schemat odpowiedniego obwodu (w postaci

Bardziej szczegółowo

Element całkujący Element całkujący jest opisany równaniem różniczkowym o postaci: y = ku, (4.37) S(s) = ^. (4.38)

Element całkujący Element całkujący jest opisany równaniem różniczkowym o postaci: y = ku, (4.37) S(s) = ^. (4.38) - 87-4.1.6. Element całkujący Element całkujący jest opisany równaniem różniczkowym o postaci: z którego wynika transmitancja operatorowa y = ku, (4.37) S(s) = ^. (4.38) Równanie charakterystyki statycznej

Bardziej szczegółowo

Ćwiczenie nr 8. Podstawowe czwórniki aktywne i ich zastosowanie cz. 1

Ćwiczenie nr 8. Podstawowe czwórniki aktywne i ich zastosowanie cz. 1 Ćwiczenie nr Podstawowe czwórniki aktywne i ich zastosowanie cz.. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się ze sposobem realizacji czwórników aktywnych opartym na wzmacniaczu operacyjnym µa, ich

Bardziej szczegółowo

Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I)

Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I) Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I) Celem ćwiczenia jest wyznaczenie parametrów typowego wzmacniacza operacyjnego. Ćwiczenie ma pokazać w jakich warunkach

Bardziej szczegółowo

Pracownia Fizyczna i Elektroniczna 2014

Pracownia Fizyczna i Elektroniczna 2014 Pracownia Fizyczna i Elektroniczna 04 http://pe.fw.ed.pl/ Wojciech DOMNK ozbłysk gamma GB 08039B 9.03.008 teleskop Pi of the Sky sfilmował najpotężniejszą eksplozję obserwowaną przez człowieka pierwszy

Bardziej szczegółowo

Wzmacniacz na tranzystorze J FET

Wzmacniacz na tranzystorze J FET Wzmacniacz na tranzystorze J FET Najprostszym wzmacniaczem sygnałów w. cz. jest tranzystorowy wzmacniacz oporowy. Można go zrealizować zarówno na tranzystorze bipolarnym jak i na polowym (JFET, MOSFET).

Bardziej szczegółowo

L ABORATORIUM UKŁADÓW ANALOGOWYCH

L ABORATORIUM UKŁADÓW ANALOGOWYCH WOJSKOWA AKADEMIA TECHNICZNA W YDZIAŁ ELEKTONIKI zima L ABOATOIM KŁADÓW ANALOGOWYCH Grupa:... Data wykonania ćwiczenia: Ćwiczenie prowadził: Imię:......... Data oddania sprawozdania: Podpis: Nazwisko:......

Bardziej szczegółowo

Wzmacniacze. Klasyfikacja wzmacniaczy Wtórniki Wzmacniacz różnicowy Wzmacniacz operacyjny

Wzmacniacze. Klasyfikacja wzmacniaczy Wtórniki Wzmacniacz różnicowy Wzmacniacz operacyjny Wzmacniacze Klasyfikacja wzmacniaczy Wtórniki Wzmacniacz różnicowy Wzmacniacz operacyjny Zasilanie Z i I we I wy E s M we Wzmacniacz wy Z L Masa Wzmacniacze 2 Podział wzmacniaczy na klasy Klasa A ηmax

Bardziej szczegółowo

Analiza właściwości filtrów dolnoprzepustowych

Analiza właściwości filtrów dolnoprzepustowych Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.

Bardziej szczegółowo

Wzmacniacze różnicowe

Wzmacniacze różnicowe Wzmacniacze różnicowe 1. Cel ćwiczenia : Zapoznanie się z podstawowymi układami wzmacniaczy różnicowych zbudowanych z wykorzystaniem wzmacniaczy operacyjnych. 2. Wprowadzenie Wzmacniacze różnicowe są naj

Bardziej szczegółowo

9. Sprzężenie zwrotne własności

9. Sprzężenie zwrotne własności 9. Sprzężenie zwrotne własności 9.. Wprowadzenie Sprzężenie zwrotne w uładzie eletronicznym realizuje się przez sumowanie części sygnału wyjściowego z sygnałem wejściowym i użycie zmodyiowanego w ten sposób

Bardziej szczegółowo

Uniwersytet Pedagogiczny

Uniwersytet Pedagogiczny Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Laboratorium elektroniki Ćwiczenie nr 5 Temat: STABILIZATORY NAPIĘCIA Rok studiów Grupa Imię i nazwisko Data Podpis Ocena 1. Cel ćwiczenia

Bardziej szczegółowo

Ćwiczenie - 3. Parametry i charakterystyki tranzystorów

Ćwiczenie - 3. Parametry i charakterystyki tranzystorów Spis treści Ćwiczenie - 3 Parametry i charakterystyki tranzystorów 1 Cel ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Tranzystor bipolarny................................. 2 2.1.1 Charakterystyki statyczne

Bardziej szczegółowo

Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający

Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości wzmacniaczy operacyjnych i ich podstawowych

Bardziej szczegółowo

Projekt z Układów Elektronicznych 1

Projekt z Układów Elektronicznych 1 Projekt z Układów Elektronicznych 1 Lista zadań nr 4 (liniowe zastosowanie wzmacniaczy operacyjnych) Zadanie 1 W układzie wzmacniacza z rys.1a (wzmacniacz odwracający) zakładając idealne parametry WO a)

Bardziej szczegółowo

Sterowane źródło mocy

Sterowane źródło mocy Sterowane źródło mocy Iloczyn prądu i napięcia jest zawsze proporcjonalny (równy) do pewnej mocy p Źródła tego typu nie mogą być zwarte ani rozwarte Moc ujemna pochłanianie mocy W rozważanym podobwodzie

Bardziej szczegółowo

Obwody prądu zmiennego

Obwody prądu zmiennego Obwody prądu zmiennego Prąd stały ( ) ( ) i t u t const const ( ) u( t) i t Prąd zmienny, dowolne funkcje czasu i( t) t t u ( t) t t Natężenie prądu i umowny kierunek prądu Prąd stały Q t Kierunek poruszania

Bardziej szczegółowo

ANALOGOWE I MIESZANE STEROWNIKI PRZETWORNIC. Ćwiczenie 3. Przetwornica podwyższająca napięcie Symulacje analogowego układu sterowania

ANALOGOWE I MIESZANE STEROWNIKI PRZETWORNIC. Ćwiczenie 3. Przetwornica podwyższająca napięcie Symulacje analogowego układu sterowania Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl

Bardziej szczegółowo

Ćwiczenie - 7. Filtry

Ćwiczenie - 7. Filtry LABOATOIUM ELEKTONIKI Ćwiczenie - 7 Filtry Spis treści 1 el ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Transmitancja filtru dolnoprzepustowego drugiego rzędu............. 2 2.2 Aktywny filtr dolnoprzepustowy

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE TS1C

ELEMENTY ELEKTRONICZNE TS1C Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki nstrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENTY ELEKTRONCZNE TS1C300 018 BAŁYSTOK 013 1. CEL ZAKRES ĆWCZENA LABORATORYJNEGO

Bardziej szczegółowo

TRANZYSTOR BIPOLARNY

TRANZYSTOR BIPOLARNY Podstawy teoretyczne Materiały pomocnicze do ćwiczenia nr. 8 TANZYST PLANY 1.1. Tranzystor bipolarny. dowa, zasada działania. Tranzystor bipolarny jest przyrządem półprzewodnikowym o dwóch złączach p-n

Bardziej szczegółowo

2. Który oscylogram przedstawia przebieg o następujących parametrach amplitudowo-czasowych: Upp=4V, f=5khz.

2. Który oscylogram przedstawia przebieg o następujących parametrach amplitudowo-czasowych: Upp=4V, f=5khz. 1. Parametr Vpp zawarty w dokumentacji technicznej wzmacniacza mocy małej częstotliwości oznacza wartość: A. średnią sygnału, B. skuteczną sygnału, C. maksymalną sygnału, D. międzyszczytową sygnału. 2.

Bardziej szczegółowo

Badanie wzmacniacza niskiej częstotliwości

Badanie wzmacniacza niskiej częstotliwości Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin 9 Pracownia Elektroniki Badanie wzmacniacza niskiej częstotliwości (Oprac dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia: klasyfikacje

Bardziej szczegółowo

DANE: wartość skuteczna międzyprzewodowego napięcia zasilającego E S = 230 V; rezystancja odbiornika R d = 2,7 Ω; indukcyjność odbiornika.

DANE: wartość skuteczna międzyprzewodowego napięcia zasilającego E S = 230 V; rezystancja odbiornika R d = 2,7 Ω; indukcyjność odbiornika. Zadanie 4. Prostownik mostkowy 6-pulsowy z tyrystorami idealnymi o komutacji natychmiastowej zasilany z sieci 3 400 V, 50 Hz pracuje z kątem opóźnienia załączenia tyrystorów α = 60º. Obciążenie prostownika

Bardziej szczegółowo

Przekształcanie równań stanu do postaci kanonicznej diagonalnej

Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przygotowanie: Dariusz Pazderski Liniowe przekształcenie równania stanu Rozważmy liniowe równanie stanu i równanie wyjścia układu niesingularnego

Bardziej szczegółowo

Teoria obwodów elektrycznych / Stanisław Bolkowski. wyd dodruk (PWN). Warszawa, Spis treści

Teoria obwodów elektrycznych / Stanisław Bolkowski. wyd dodruk (PWN). Warszawa, Spis treści Teoria obwodów elektrycznych / Stanisław Bolkowski. wyd. 10-1 dodruk (PWN). Warszawa, 2017 Spis treści Przedmowa 13 1. Wiadomości wstępne 15 1.1. Wielkości i jednostki używane w elektrotechnice 15 1.2.

Bardziej szczegółowo

Ćwiczenie 14. Temat: Wzmacniacz w układzie wspólnego kolektora. Cel ćwiczenia

Ćwiczenie 14. Temat: Wzmacniacz w układzie wspólnego kolektora. Cel ćwiczenia Temat: Wzmacniacz w układzie wspólnego kolektora. Cel ćwiczenia Ćwiczenie 14 1 Poznanie zasady pracy wzmacniacza w układzie OC. 2. Wyznaczenie charakterystyk wzmacniacza w układzie OC. INSTRUKCJA DO WYKONANIA

Bardziej szczegółowo

ĆWICZENIE 2 Wzmacniacz operacyjny z ujemnym sprzężeniem zwrotnym.

ĆWICZENIE 2 Wzmacniacz operacyjny z ujemnym sprzężeniem zwrotnym. ĆWICZENIE 2 Wzmacniacz operacyjny z ujemnym sprzężeniem zwrotnym. Wykonanie ćwiczenia 1. Zapoznać się ze schematem ideowym układu ze wzmacniaczem operacyjnym. 2. Zmontować wzmacniacz odwracający fazę o

Bardziej szczegółowo

Ogólny schemat blokowy układu ze sprzężeniem zwrotnym

Ogólny schemat blokowy układu ze sprzężeniem zwrotnym 1. Definicja sprzężenia zwrotnego Sprzężenie zwrotne w układach elektronicznych polega na doprowadzeniu części sygnału wyjściowego z powrotem do wejścia. Częśd sygnału wyjściowego, zwana sygnałem zwrotnym,

Bardziej szczegółowo

Liniowe układy scalone w technice cyfrowej

Liniowe układy scalone w technice cyfrowej Liniowe układy scalone w technice cyfrowej Wykład 6 Zastosowania wzmacniaczy operacyjnych: konwertery prąd-napięcie i napięcie-prąd, źródła prądowe i napięciowe, przesuwnik fazowy Konwerter prąd-napięcie

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI TRANZYSTOR BIPOLARNY

LABORATORIUM PODSTAW ELEKTRONIKI TRANZYSTOR BIPOLARNY ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 3 TRANZYSTOR BIPOLARNY

Bardziej szczegółowo

Ćwiczenie nr 05 1 Oscylatory RF Podstawy teoretyczne Aβ(s) 1 Generator w układzie Colpittsa gmr Aβ(S) =1 gmrc1/c2=1 lub gmr=c2/c1 gmr C2/C1

Ćwiczenie nr 05 1 Oscylatory RF Podstawy teoretyczne Aβ(s) 1 Generator w układzie Colpittsa gmr Aβ(S) =1 gmrc1/c2=1 lub gmr=c2/c1 gmr C2/C1 Ćwiczenie nr 05 Oscylatory RF Cel ćwiczenia: Zrozumienie zasady działania i charakterystyka oscylatorów RF. Projektowanie i zastosowanie oscylatorów w obwodach. Czytanie schematów elektronicznych, przestrzeganie

Bardziej szczegółowo

u (0) = 0 i(0) = 0 Obwód RLC Odpowiadający mu schemat operatorowy E s 1 sc t = 0 i(t) w u R (t) E u C (t) C

u (0) = 0 i(0) = 0 Obwód RLC Odpowiadający mu schemat operatorowy E s 1 sc t = 0 i(t) w u R (t) E u C (t) C Obwód RLC t = 0 i(t) R L w u R (t) u L (t) E u C (t) C Odpowiadający mu schemat operatorowy R I Dla zerowych warunków początkowych na cewce i kondensatorze 1 sc sl u (0) = 0 C E s i(0) = 0 Prąd I w obwodzie

Bardziej szczegółowo

Ćwiczenie 1: Pomiar parametrów tranzystorowego wzmacniacza napięcia w układzie wspólnego emitera REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 1: Pomiar parametrów tranzystorowego wzmacniacza napięcia w układzie wspólnego emitera REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 1: Pomiar parametrów tranzystorowego wzmacniacza napięcia

Bardziej szczegółowo

Ćwiczenie - 4. Podstawowe układy pracy tranzystorów

Ćwiczenie - 4. Podstawowe układy pracy tranzystorów LABORATORIM ELEKTRONIKI Spis treści Ćwiczenie - 4 Podstawowe układy pracy tranzystorów 1 Cel ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Podstawowe układy pracy tranzystora........................ 2 2.2 Wzmacniacz

Bardziej szczegółowo

Elementy i obwody nieliniowe

Elementy i obwody nieliniowe POLTCHNKA ŚLĄSKA WYDZAŁ NŻYNR ŚRODOWSKA NRGTYK NSTYTT MASZYN RZĄDZŃ NRGTYCZNYCH LABORATORM LKTRYCZN lementy i obwody nieliniowe ( 3) Opracował: Dr inż. Włodzimierz OGLWCZ 3 1. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

Laboratorium Elektroniki

Laboratorium Elektroniki Wydział Mechaniczno-Energetyczny Laboratorium Elektroniki Badanie wzmacniaczy tranzystorowych i operacyjnych 1. Wstęp teoretyczny Wzmacniacze są bardzo często i szeroko stosowanym układem elektronicznym.

Bardziej szczegółowo

Tranzystor bipolarny LABORATORIUM 5 i 6

Tranzystor bipolarny LABORATORIUM 5 i 6 Tranzystor bipolarny LABORATORIUM 5 i 6 Marcin Polkowski (251328) 10 maja 2007 r. Spis treści I Laboratorium 5 2 1 Wprowadzenie 2 2 Pomiary rodziny charakterystyk 3 II Laboratorium 6 7 3 Wprowadzenie 7

Bardziej szczegółowo

Tranzystory bipolarne elementarne układy pracy i polaryzacji

Tranzystory bipolarne elementarne układy pracy i polaryzacji Tranzystory bipolarne elementarne układy pracy i polaryzacji Ryszard J. Barczyński, 2010 2014 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego

Bardziej szczegółowo

Projektowanie wzmacniaczy mocy

Projektowanie wzmacniaczy mocy Projektowanie wzmacniaczy mocy Zaprojektować akustyczny wzmacniacz mocy w oparciu o układ TDA 006. kład powinien posiadać następujące parametry: maksymalną moc wyjściową P Wy 0W przy maksymalnej wartości

Bardziej szczegółowo

Elementy elektroniczne Wykłady 5,6: Tranzystory bipolarne

Elementy elektroniczne Wykłady 5,6: Tranzystory bipolarne lementy elektroniczne Wykłady 5,6: Tranzystory bipolarne Wprowadzenie Złacze PN spolaryzowane zaporowo: P N U - + S S U SAT =0.1...0.2V U S q D p L p p n D n n L n p gdzie: D p,n współczynniki dyfuzji

Bardziej szczegółowo

1 Dana jest funkcja logiczna f(x 3, x 2, x 1, x 0 )= (1, 3, 5, 7, 12, 13, 15 (4, 6, 9))*.

1 Dana jest funkcja logiczna f(x 3, x 2, x 1, x 0 )= (1, 3, 5, 7, 12, 13, 15 (4, 6, 9))*. EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 0/0 Odpowiedzi do zadań dla grupy elektronicznej na zawody II stopnia (okręgowe) Dana jest funkcja logiczna f(x 3, x,

Bardziej szczegółowo

Układy zasilania tranzystorów

Układy zasilania tranzystorów kłady zasilania tranzystorów Wrocław 2 Punkt pracy tranzystora B BQ Q Q Q BQ B Q Punkt pracy tranzystora Tranzystor unipolarny SS Q Q Q GS p GSQ SQ S opuszczalny obszar pracy (safe operating conditions

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE. Obwody nieliniowe.

POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE. Obwody nieliniowe. POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Obwody nieliniowe. (E 3) Opracował: dr inż. Leszek Remiorz Sprawdził: dr

Bardziej szczegółowo

Podstawowe układy pracy tranzystora bipolarnego

Podstawowe układy pracy tranzystora bipolarnego L A B O A T O I U M A N A L O G O W Y C H U K Ł A D Ó W E L E K T O N I C Z N Y C H Podstawowe układy pracy tranzystora bipolarnego Ćwiczenie opracował Jacek Jakusz 4. Wstęp Ćwiczenie umożliwia pomiar

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI WZMACNIACZ MOCY

LABORATORIUM ELEKTRONIKI WZMACNIACZ MOCY ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 9 WZMACNIACZ MOCY DO UŻYTKU

Bardziej szczegółowo

Wiadomości podstawowe

Wiadomości podstawowe Wiadomości podstawowe Tranzystory są urządzeniami półprzewodnikowymi umożliwiającymi sterowanie przepływem dużego prądu, za pomocą prądu znacznie mniejszego. Wykorzystuje się je do wzmacniania małych sygnałów

Bardziej szczegółowo

Tranzystory bipolarne

Tranzystory bipolarne Tranzystory bipolarne Tranzystor jest to element półprzewodnikowy, w zasadzie trójelektrodowy, umożliwiający wzmacnianie mocy sygnałów elektrycznych. Tranzystory są to trójelektrodowe przyrządy półprzewodnikowe

Bardziej szczegółowo

1. Zarys właściwości półprzewodników 2. Zjawiska kontaktowe 3. Diody 4. Tranzystory bipolarne

1. Zarys właściwości półprzewodników 2. Zjawiska kontaktowe 3. Diody 4. Tranzystory bipolarne Spis treści Przedmowa 13 Wykaz ważniejszych oznaczeń 15 1. Zarys właściwości półprzewodników 21 1.1. Półprzewodniki stosowane w elektronice 22 1.2. Struktura energetyczna półprzewodników 22 1.3. Nośniki

Bardziej szczegółowo

Vgs. Vds Vds Vds. Vgs

Vgs. Vds Vds Vds. Vgs Ćwiczenie 18 Temat: Wzmacniacz JFET i MOSFET w układzie ze wspólnym źródłem. Cel ćwiczenia: Wzmacniacz JFET w układzie ze wspólnym źródłem. Zapoznanie się z konfiguracją polaryzowania tranzystora JFET.

Bardziej szczegółowo

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI Podstawy automatyki / Józef Lisowski. Gdynia, 2015 Spis treści PRZEDMOWA 9 WSTĘP 11 1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI 17 1.1. Automatyka, sterowanie i regulacja 17 1.2. Obiekt regulacji

Bardziej szczegółowo

Tranzystory. 1. Tranzystory bipolarne 2. Tranzystory unipolarne. unipolarne. bipolarny

Tranzystory. 1. Tranzystory bipolarne 2. Tranzystory unipolarne. unipolarne. bipolarny POLTEHNKA AŁOSTOKA Tranzystory WYDZAŁ ELEKTYZNY 1. Tranzystory bipolarne 2. Tranzystory unipolarne bipolarny unipolarne Trójkońcówkowy (czterokońcówkowy) półprzewodnikowy element elektroniczny, posiadający

Bardziej szczegółowo

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych

Bardziej szczegółowo

Automatyka i sterowania

Automatyka i sterowania Automatyka i sterowania Układy regulacji Regulacja i sterowanie Przykłady regulacji i sterowania Funkcje realizowane przez automatykę: regulacja sterowanie zabezpieczenie optymalizacja Automatyka i sterowanie

Bardziej szczegółowo

Zastosowania nieliniowe wzmacniaczy operacyjnych

Zastosowania nieliniowe wzmacniaczy operacyjnych Zastosowania nielinio wzmacniaczy operacyjnych Wrocław 009 kład logarytmjący powinien dawać proporcjonalne do logarytm. = kd log = k E ln gdzie: k D, k E stałe skalowania, k D = k E ln0 napięcie normjące,

Bardziej szczegółowo

Pomiar parametrów roboczych wzmacniaczy OE, OB i OC. Wzmacniacza OC. Wzmacniacz OE. Wzmacniacz OB

Pomiar parametrów roboczych wzmacniaczy OE, OB i OC. Wzmacniacza OC. Wzmacniacz OE. Wzmacniacz OB WOJSKOWA AKADEMIA TECHNICZNA W YDZIAŁ ELEKTONIKI zima 2010 L ABOATOIM KŁADÓW ANALOOWYCH rupa:... Data konania ćwiczenia: Ćwiczenie prowadził: Imię:... Nazwisko:......... Data oddania sprawozdania: Podpis:...

Bardziej szczegółowo

Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 7 - obiekty regulacji Instytut Automatyki i Robotyki Warszawa, 2018 Obiekty regulacji Obiekt regulacji Obiektem regulacji nazywamy proces technologiczny podlegający oddziaływaniu zakłóceń, zachodzący

Bardziej szczegółowo

Zastosowania nieliniowe wzmacniaczy operacyjnych

Zastosowania nieliniowe wzmacniaczy operacyjnych Zastosowania nielinio wzmacniaczy operacyjnych Wrocław 2009 kłady logarytmjące kład logarytmjący powinien dawać proporcjonalne do logarytm. = k D log = k E ln gdzie: k D, k E stałe skalowania, k D = k

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 5

Instrukcja do ćwiczenia laboratoryjnego nr 5 Instrukcja do ćwiczenia laboratoryjnego nr 5 Temat: Charakterystyki statyczne tranzystorów bipolarnych Cel ćwiczenia. Celem ćwiczenia jest poznanie charakterystyk prądowonapięciowych i wybranych parametrów

Bardziej szczegółowo

Scalony stabilizator napięcia typu 723

Scalony stabilizator napięcia typu 723 LBORTORIUM Scalony stabilizator napięcia typu 723 Część I Układy sprzężeń zwrotnych i źródeł napięcia odniesienia Opracował: dr inż. Jerzy Sawicki Wymagania, znajomość zagadnień: 1. Znajomość schematów,

Bardziej szczegółowo

Temat: Wzmacniacze operacyjne wprowadzenie

Temat: Wzmacniacze operacyjne wprowadzenie Temat: Wzmacniacze operacyjne wprowadzenie.wzmacniacz operacyjny schemat. Charakterystyka wzmacniacza operacyjnego 3. Podstawowe właściwości wzmacniacza operacyjnego bardzo dużym wzmocnieniem napięciowym

Bardziej szczegółowo

Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORATORIUM LKTRONIKI Ćwiczenie Parametry statyczne tranzystorów bipolarnych el ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów bipolarnych oraz metod identyfikacji

Bardziej szczegółowo

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.

Bardziej szczegółowo

Filtry aktywne filtr środkowoprzepustowy

Filtry aktywne filtr środkowoprzepustowy Filtry aktywne iltr środkowoprzepustowy. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości iltrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów iltru.. Budowa

Bardziej szczegółowo

Elektronika. Wzmacniacz tranzystorowy

Elektronika. Wzmacniacz tranzystorowy LABORATORIUM Elektronika Wzmacniacz tranzystorowy Opracował: mgr inż. Andrzej Biedka Wymagania, znajomość zagadnień: 1. Podstawowych parametrów elektrycznych i charakterystyk graficznych tranzystorów bipolarnych.

Bardziej szczegółowo

Generatory drgań sinusoidalnych LC

Generatory drgań sinusoidalnych LC Generatory drgań sinusoidalnych LC Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Generatory drgań sinusoidalnych

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 10. Dyskretyzacja

Bardziej szczegółowo

Plan wykładu. Własności statyczne i dynamiczne elementów automatyki:

Plan wykładu. Własności statyczne i dynamiczne elementów automatyki: Plan wykładu Własności statyczne i dynamiczne elementów automatyki: - charakterystyka statyczna elementu automatyki, - sygnały standardowe w automatyce: skok jednostkowy, impuls Diraca, sygnał o przebiegu

Bardziej szczegółowo