PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION
|
|
- Elżbieta Nowak
- 9 lat temu
- Przeglądów:
Transkrypt
1 Mirosław GUZIK Grzegorz KOSZŁKA PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION W artykule przedstawiono niektóre metody numerycznego rozwiązywania równań różniczkowych zwyczajnych na wybranym przykładzie Dokonano próby porównania użytych schematów numerycznych pod względem dokładności i kosztu obliczeń Słowa kluczowe: schemat różnicowy, metody numeryczne, równanie różniczkowe The article presents selected methods of numerical solving of ordinary differential equations An attempt has been made to compare applied differential schemes in respect of their precision and their cost of computations Keywords: differential scheme, numerical method, differential equation 1 Wstęp Budowa modeli matematycznych opisujących zjawiska w różnych dziedzinach wiedzy wiąże się najczęściej z koniecznością wykorzystania równań różniczkowych Równania różniczkowe bardzo rzadko dają się rozwiązać metodami analitycznymi Zdarza się to prawie wyłącznie w przykładach specjalnie dobranych do celów dydaktycznych Istnieją jednak metody rozwiązywania równań różniczkowych za pomocą schematów różnicowych, które najczęściej są stosowane w modelach numerycznych Schematy różnicowe różnią się pomiędzy sobą dokładnością i kosztem obliczeń, przekładającym się na czas obliczeń 2 Obliczenia wybranymi schematami różnicowymi Równanie różniczkowe pierwszego rzędu można zapisać w postaci, gdzie t jest zmienną niezależną (najczęściej czas), natomiast x = x(t) Za pomocą schematów różnicowych można znaleźć przybliżone rozwiązanie równania różniczkowego w poszczególnych chwilach t, oddalonych od siebie o założony krok całkowania h Rozwiązanie ma postać ciągu par liczb (t k ), gdzie k oznacza kolejne liczby całkowite Pierwsza para dana jest w postaci warunku początkowego x(t 0 ) = x 0 Formalny rząd schematu określa się na podstawie wzoru Taylora, będącego rozwinięciem wyrażenia x(t + h) Jest równy rzędowi najwyższych uwzględnionych w schemacie wyrazów Im wyższy rząd schematu, tym większa dokładność obliczeń Wybór kroku całkowania w istotny sposób wpływa na dokładność rozwiązania, gdyż jest ono zbieżne do rozwiązania dokładnego przy h 0 W związku z tym, obliczenia każdym z rozpatrywanych schematów przeprowadzono z jednakowym krokiem h = 0,2 Jako warunek początkowy przyjęto x(1) = 1 Całkowanie przeprowadzono w granicach 1 do 5 Obliczenia przeprowadzono za pomocą programu komputerowego napisanego w języku C++ W tekście znajdują się fragmenty kodu będące numeryczną realizacją rozpatrywanych schematów 8 EKSPLOATACJA I NIEZAWODNOŚĆ NR 2/2005
2 21 Otwarty schemat Eulera Otwarty schemat Eulera wyraża się wzorem: (1) gdzie: f k oznacza wartość funkcji podcałkowej w punkcie (x k, t k ) Do obliczenia przykładowego równania schematem Eulera posłużyły w programie poniższe funkcje: fl oat euler(fl oat t, fl oat x, fl oat h){ return(x + h * f(t, x)); 22 Otwarty schemat Taylora Otwarty schemat Taylora dany jest wyrażeniem: (2) Nazwa wynika z faktu, iż w kolejnym kroku obliczeń do wartości x k dodawane jest pole wycinka powierzchni znajdującej się pod wykresem funkcji podcałkowej, w kształcie trapezu o wysokości równej h W programie, schemat realizowany jest za pomocą poniższych funkcji: fl oat trapez(fl oat t, fl oat x, fl oat h){ return((x + h / 20 * (f(t, x) + t + h)) / (10 - h)); Czteropoziomowy, otwarty schemat Rungego- Kutty W celu porównania, wybrano jeden z najpopularniejszych otwartych, 4-poziomowych schematów Rungego-Kutty, dany wzorami: (4) gdzie f t,k, f x,k oznaczają odpowiednio wartości pochodnych f t oraz f x funkcji podcałkowej w punkcie (x k, t k ) Rząd schematu Taylora wynosi 2, ponieważ w rozwinięciu Taylora uwzględnia wyrazy rzędu h 2 Schemat został ujęty w następującym fragmencie programu: fl oat ft(fl oat t, fl oat x){ return(10); fl oat fx(fl oat t, fl oat x){ return(20); fl oat taylor(fl oat t, fl oat x, fl oat h){ return(x + h * f(t, x) + h * h / 20 * (ft(t, x) + fx(t, x) * f(t, x))); 23 Zamknięty schemat, zwany schematem trapezów Schemat jest dany następującym wzorem: Schemat jest 4-tego rzędu, więc w rozwinięciu Taylora uwzględnia wyrazy do h 4 Został zrealizowany w następującym fragmencie programu: fl oat runkut(fl oat t, fl oat x, fl oat h){ fl oat k1, k2, k3, k4; k1 = f(t, x); k2 = f((t + h / 20), (x + h / 20 * k1)); k3 = f((t + h / 20), (x + h / 20 * k2)); k4 = f((t + h), (x + h * k3)); return(x + h / 60 * (k * k * k3 + k4)); (3) EKSPLOATACJA I NIEZAWODNOŚĆ NR 2/2005 9
3 3 Obliczenia metodą ze zmiennym krokiem Obliczenia metodą ze zmiennym krokiem przeprowadzono za pomocą następującego algorytmu całkowania: 1Dane są trzy wartości {t k, h 0, gdzie (t k ) jest punktem na przybliżonej krzywej całkowej, a h 0 krokiem całkowania 2Przy użyciu wybranego schematu różnicowego, wyznaczane są wartości x k+1, całkując dwukrotnie z krokiem h 0 z punktu (t k ) oraz wartość ω k+2, całkując z krokiem 2h 0 3Wykorzystują wartości ω k+2 +2 i h 0 obliczane jest wyrażenie: (5) gdzie:e g założona dokładność obliczeń, p rząd schematu, T górna granica całkowania Wyznaczana jest nowa wartość kroku: h 1 = cγh 0, gdzie c jest to współczynnik mający na celu ograniczenie zbyt częstych zmian długości kroku Zwykle przyjmuje się c=0,8 z dodatkowym ograniczeniem 0,2h 0 h1 5h 0 4Jeśli h 1 < h 0, to sprawdzany jest warunek: (6) Jeśli jest spełniony, to wartości x k+1 +2 są akceptowane jako rozwiązanie i obliczenia są kontynuowane od punktu 1) z wartościami {t k+2 +2, h 0 Jeśli warunek nie jest spełniony, to wartości x k+1 są odrzucane i obliczenia są powtarzane od punktu 1) z wartościami {t k, h 1 5Jeśli h 1 > h 0, to wartości x k+1 są akceptowane jako rozwiązanie, a obliczenia są kontynuowane od punktu 1) z wartościami {t k+2 +2, h 1 Ze względu na dużą objętość nie zamieszczono w artykule kodu realizującego w programie powyższą metodę Wyjściowy krok obliczeń przyjęto h 0 = 0,2 Obliczenia przeprowadzono stosując w punkcie 2) wszystkie z poprzednio rozpatrywanych schematów numerycznych W metodzie ze zmiennym krokiem, błąd obliczeń E g jest zakładany przed wykonaniem obliczeń Do obliczenia konkretnych wartości zmiennej x w każdym obiegu pętli programu, wykorzystywany jest przyjęty schemat różnicowy Algorytm dostosowuje długość kroku obliczeń tak, aby przy zastosowaniu konkretnego schematu uzyskać wartość obliczanej zmiennej z błędem mniejszym lub równym od założonego Zatem za pomocą tej metody można porównywać ze sobą poszczególne schematy różnicowe, a za miarę ich oceny przyjąć: a) liczbę wykonanych kroków w metodzie, b) wielkość założonego błędu wyników Większa liczba kroków wykonana przez program świadczy o mniejszej dokładności zastosowanego schematu różnicowego 4 Analiza wyników 41 Wyniki obliczeń uzyskane za pomocą schematów Eulera, Tayloara, trapezów i Rungego-Kutty Wyniki porównano z dokładnym rozwiązaniem, danym równaniem: (7) Wyniki otrzymane w obliczeniach za pomocą pierwszych czterech schematów zamieszczono w tab 1 Otrzymane wyniki ilustruje wykres zamieszczony na rys 1 42 Porównanie rozpatrywanych schematów w obliczeniach metodą ze zmiennym krokiem Posługując się w metodzie ze zmiennym krokiem schematem Taylora 2-go rzędu, do osiągnięcia wyników z założonym błędem 10-3, potrzebne było wykonanie 810 kroków Wykorzystując w metodzie zamknięty schemat trapezów, do uzyskania tej samej dokładności wyników, wystarczyło 597 kroków obliczeń Przy zastosowaniu w metodzie 4-poziomowego schematu różnicowego Rungego-Kutty, do uzyskania wyników z błędem tego samego rzędu, program wykonał zaledwie 28 kroków Stosując w metodzie schemat Eulera, dopuszczono 10-krotnie większy błąd obliczeń Wykonano kroków, co wystarczyło na uzyskanie wyników jedynie do wartości zmiennej niezależnej t = 2,86757 Wraz ze wzrostem wartości zmiennej niezależnej t, bardzo silnie malała długość kroku h i po wykonaniu ok 3000 kroków była ona rzędu 3x Wnioski Najmniejszym kosztem obliczeń spośród rozpatrywanych metod charakteryzuje się otwarty schemat Eulera Jednak otrzymane wyniki, przy założonym kroku obliczeń, bardzo odbiegają od dokładnego rozwiązania Większą dokładność wyników można 10 EKSPLOATACJA I NIEZAWODNOŚĆ NR 2/2005
4 Tab 1 Wyniki obliczeń rozwiązania równania za pomocą poszczególnych schematów różnicowych Tab 1 Results of solving computations of the equation by means of individual differential schemes t x x -wyznaczone metodą: rozwiązanie dokładne Eulera Taylora trapezów Rungego-Kutty 1,0 1, ,2 1, ,4 2, ,6 4, ,8 7, ,0 11, ,2 17, ,4 27, ,6 41, ,8 62, ,0 93, ,2 140, ,4 210, ,6 315, ,8 471, ,0 703, ,2 1050, ,4 1568, ,6 2341, ,8 3494, ,0 5213, Rys 1 Wykres przedstawiający rozwiązanie równania za pomocą poszczególnych schematów różnicowych Fig 1 Graph showing a solution of the equation by means of individual differential schemes EKSPLOATACJA I NIEZAWODNOŚĆ NR 2/
5 uzyskać stosując mniejszy krok obliczeń, jednak przyjęcie nawet skrajnie małego kroku w kilku tysiącach cykli obliczeń, nie zbliżyło zadawalająco rozwiązania tym schematem do rozwiązania dokładnego W otwartym schemacie Taylora uwzględniane są wyrazy rzędu h 2 w rozwinięciu Taylora Przyczynia się to do znacznie większej dokładności obliczeń Konieczne staje się jednak obliczenie dwóch pochodnych cząstkowych równania w każdym kroku obliczeń, co zwiększa koszt obliczeń numerycznych Jeszcze bliższy dokładnemu rozwiązaniu jest zamknięty schemat zwany schematem trapezów Jednak jego zastosowanie wymaga rozwiązania równania, w którym obliczana wartość w danym kroku obliczeń, znajduje się po obu stronach znaku równości Jest to szczególnie kłopotliwe przy rozwiązywaniu równań nieliniowych, gdyż obliczenia w każdym kroku trzeba wykonywać metodą kolejnych przybliżeń W przypadku rozpatrywanego, przykładowego równania różniczkowego, możliwe było wyrugowanie obliczanej zmiennej x k+1, dzięki czemu koszt obliczeniowy tego schematu nie był większy od kosztu otwartego schematu Eulera Najdokładniejsze wyniki uzyskano stosując czteropoziomowy, otwarty schemat Rungego-Kutty Uzyskane wyniki na przedstawionym wykresie (rys 1) pokrywają się z rozwiązaniem dokładnym Metoda ta charakteryzuje się niskim kosztem obliczeń przy dużej dokładności Wywołanie funkcji, obliczającej tym schematem rozwiązanie równania w każdym kroku, wygląda identycznie jak wywołanie funkcji obliczającej schematem Eulera Zatem nie wpływa na pogorszenie czytelności lub skomplikowanie kodu programu Zastosowanie rozpatrywanych schematów różnicowych w metodzie ze zmiennym krokiem potwierdziło dokładność schematu Rungego-Kutty Wykazało ponadto, że zmniejszanie kroku całkowania w schematach niższego rzędu, jakim jest np schemat Eulera, nie zawsze pozwala uzyskać zadawalającą dokładność obliczeń Było to możliwe tylko w początkowym, wąskim przedziale całkowania 6 Literatura [1] Palczewski A: Równania różniczkowe zwyczajne, teoria i metody numeryczne z wykorzystaniem komputerowego systemu obliczeń symbolicznych WNT, Warszawa, 2004 [2] Fortuna Z, Macukow B, Wąsowski J: Metody numeryczne WNT, Warszawa, 2005 [3] Grębosz J: Symfonia C++ Oficyna Kallimach, Kraków, 2004 Mgr inż Mirosław GUZIK Dr inż Grzegorz KOSZAŁKA Katedra Silników Spalinowych i Transportu Politechnika Lubelska ul Nadbystrzycka Lublin tel mirguzik@oppl, gkoszalka@pollubpl 12 EKSPLOATACJA I NIEZAWODNOŚĆ NR 2/2005
Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych
Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych Rozwiązywanie równań różniczkowych zwyczajnych za pomocą szeregów metody dyskretne Metoda współczynników nieoznaczonych Metoda kolejnego
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Środowiska obowiązuje studentów rozpoczynających studia w roku akademickim 206/207 Kierunek studiów: Budownictwo Profil:
S Y L A B U S P R Z E D M I O T U
"Z A T W I E R D Z A M Prof. dr hab. inż. Radosław TRĘBIŃSKI dm Dziekan Wydziału Mechatroniki i Lotnictwa Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: NUMERYCZNE METODY OBLICZENIOWE
Metody numeryczne rozwiązywania równań różniczkowych
Metody numeryczne rozwiązywania równań różniczkowych Marcin Orchel Spis treści Wstęp. Metody przybliżone dla równań pierwszego rzędu................ Metoda kolejnych przybliżeń Picarda...................2
Całkowanie numeryczne
Całkowanie numeryczne Poniżej omówione zostanie kilka metod przybliżania operacji całkowania i różniczkowania w szczególności uzależnieniu pochodnej od jej różnic skończonych gdy równanie różniczkowe mamy
Laboratorium 5 Przybliżone metody rozwiązywania równań nieliniowych
Uniwersytet Zielonogórski Wydział Informatyki, Elektrotechniki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Elektrotechnika niestacjonarne-zaoczne pierwszego stopnia z tyt. inżyniera
Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne
Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur
Metody numeryczne Numerical methods. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13
RÓWNANIA RÓŻNICZKOWE WYKŁAD 1
RÓWNANIA RÓŻNICZKOWE WYKŁAD 1 Przedmiot realizowany w układzie wykład 2 godz. tygodniowo ćwiczenia 2 godz. tygodniowo Regulamin zaliczeń www.mini.pw.edu.pl/~figurny 2 Program zajęć Równania różniczkowe
Metody numeryczne Numerical methods. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Definicje i przykłady
Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest
Specjalnościowy Obowiązkowy Polski Semestr szósty
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-ZIP-541z Techniki obliczeniowe w zagadnieniach inżynierskich Numerical
Metody numeryczne równań różniczkowych zwyczajnych
Metody numeryczne równań różniczkowych zwyczajnych Marcin Jenczmyk m.jenczmyk@knm.katowice.pl 9 maja 2015 M. Jenczmyk XXX Sesja KNM Metody numeryczne R.R.Z. 1 / 18 Omawiany problem dotyczyć będzie numerycznego
ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI
Budownictwo 18 Mariusz Poński ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI 1. Metody transformacji całkowych Najczęściej spotykaną metodą rozwiązywania
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: METODY NUMERYCZNE W RÓWNANIACH RÓŻNICZKOWYCH Nazwa w języku angielskim: NUMERICAL METHODS IN DIFFERENTIAL EQUATIONS Kierunek
Metody numeryczne w przykładach
Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach
dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska
Program wykładów z metod numerycznych na semestrze V stacjonarnych studiów stopnia I Podstawowe pojęcia metod numerycznych: zadanie numeryczne, algorytm. Analiza błędów: błąd bezwzględny i względny, przenoszenie
Metody numeryczne Numerical methods. Energetyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim uje od roku akademickiego 2012/13 2013/14
OBLICZANIE POCHODNYCH FUNKCJI.
OBLICZANIE POCHODNYCH FUNKCJI. ROZWIĄZYWANIE RÓWNAŃ RÓŻNICZKOWYCH. ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ LINIOWYCH. Obliczanie pochodnych funkcji. Niech będzie dana funkcja y(x określona i różniczkowalna na przedziale
Całkowanie numeryczne przy użyciu kwadratur
Całkowanie numeryczne przy użyciu kwadratur Plan wykładu: 1. Kwadratury Newtona-Cotesa a) wzory: trapezów, parabol etc. b) kwadratury złożone 2. Ekstrapolacja a) ekstrapolacja Richardsona b) metoda Romberga
x y
Przykłady pytań na egzamin końcowy: (Uwaga! Skreślone pytania nie obowiązują w tym roku.). Oblicz wartość interpolacji funkcjami sklejanymi (przypadek (case) a), dla danych i =[- 4 5], y i =[0 4 -]. Jaka
Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.
Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie
Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.
Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy
Analiza matematyczna Mathematical analysis. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Analiza matematyczna Mathematical analysis A. USYTUOWANIE MODUŁU W SYSTEMIE
Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I
Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I dr inż. Tomasz Goetzendorf-Grabowski (tgrab@meil.pw.edu.pl) Dęblin, 11 maja 2009 1 Organizacja wykładu 5 dni x 6 h = 30 h propozycja zmiany: 6
Analiza matematyczna dla informatyków 3 Zajęcia 14
Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:
Wstęp do równań różniczkowych
Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych
METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH
METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH Jednym z zastosowań metod numerycznych jest wyznaczenie pierwiastka lub pierwiastków równania nieliniowego. W tym celu stosuje się szereg metod obliczeniowych np:
Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)
Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1 TABLICE ROZKŁADÓW... 3 ROZKŁAD
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Tomasz Chwiej 6 czerwca 2016 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów różnicowych: iloraz
Metody numeryczne I Równania nieliniowe
Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem
27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE
27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Wstęp do równań różniczkowych
Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych
Laboratorium II: Modelowanie procesów fizycznych Skrypt do ćwiczeń
PJWSTK/KMKT-07082006 Laboratorium II: Modelowanie procesów fizycznych Katedra Metod Komputerowych Techniki Polsko Japońska Wyższa Szkoła Technik Komputerowych I. KINETYKA Kinetyka zajmuje się ruchem ciał
automatyka i robotyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Rachunek całkowy - całka oznaczona
SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 6 Model matematyczny elementu naprawialnego Prowadzący: mgr inż. Marcel Luzar Cele ćwiczenia:
1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.
10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Nazwa w języku angielskim ORDINARY DIFFERENTIAL EQUATIONS Kierunek studiów
2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26
Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje
Metody rozwiązywania równań nieliniowych
Metody rozwiązywania równań nieliniowych Rozwiązywanie równań nieliniowych Ogólnie równanie o jednej niewiadomej x można przedstawić w postaci f ( x)=0, x R, (1) gdzie f jest wystarczająco regularną funkcją.
Rozwiązywanie równań nieliniowych
Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej
Rys Wykres kosztów skrócenia pojedynczej czynności. k 2. Δk 2. k 1 pp. Δk 1 T M T B T A
Ostatnim elementem przykładu jest określenie związku pomiędzy czasem trwania robót na planowanym obiekcie a kosztem jego wykonania. Związek ten określa wzrost kosztów wykonania realizacji całego przedsięwzięcia
II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski
II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski 1 1 Różniczkowanie numeryczne Rozważmy funkcję f(x) określoną na sieci równoodległyc węzłów. Funkcja f(x) może być dana za pomocą wzoru analitycznego
FUNKCJA LINIOWA. A) B) C) D) Wskaż, dla którego funkcja liniowa określona wzorem jest stała. A) B) C) D)
FUNKCJA LINIOWA 1. Funkcja jest rosnąca, gdy 2. Wskaż, dla którego funkcja liniowa jest rosnąca Wskaż, dla którego funkcja liniowa określona wzorem jest stała. 3. Funkcja liniowa A) jest malejąca i jej
Czym jest całka? Całkowanie numeryczne
Całkowanie numeryczne jest to zagadnienie z metod elementów skończonych (MES). Korzystając z całkowania numerycznego możemy obliczyć wartość dowolnej całki jednowymiarowej oznaczonej. Wynik jest zawsze
Wykład z Technologii Informacyjnych. Piotr Mika
Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły
Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1
Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą
Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski
Metody numeryczne Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Elektrotechnika stacjonarne-dzienne pierwszego stopnia
Układ RLC z diodą. Zadanie: Nazwisko i imię: Nr. albumu: Grzegorz Graczyk. Nazwisko i imię: Nr. albumu:
Politechnika Łódzka TIMS Kierunek: Informatyka rok akademicki: 2009/2010 sem. 3. grupa II Zadanie: Układ z diodą Termin: 5 I 2010 Nr. albumu: 150875 Nazwisko i imię: Grzegorz Graczyk Nr. albumu: 151021
Otrzymaliśmy w ten sposób ograniczenie na wartości parametru m.
Dla jakich wartości parametru m dziedziną funkcji f ( x) = x + mx + m 1 jest zbiór liczb rzeczywistych? We wzorze funkcji f(x) pojawia się funkcja kwadratowa, jednak znajduje się ona pod pierwiastkiem.
Kubatury Gaussa (całka podwójna po trójkącie)
Kubatury Gaussa (całka podwójna po trójkącie) Całka podwójna po trójkącie Dana jest funkcja dwóch zmiennych f (x, y) ciągła i ograniczona w obszarze trójkątnym D. Wierzchołki trójkąta wyznaczają punkty
FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH
FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest
Równania różniczkowe cząstkowe drugiego rzędu
Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................
ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH
Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym
Numeryczne rozwiązywanie równań różniczkowych ( )
Numeryczne rozwiązywanie równań różniczkowych Równanie różniczkowe jest to równanie, w którym występuje pochodna (czyli różniczka). Przykładem najprostszego równania różniczkowego może być: y ' = 2x które
Analiza matematyczna Mathematical analysis. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Analiza matematyczna Mathematical analysis A. USYTUOWANIE MODUŁU W SYSTEMIE
WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH
WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH Pod redakcją Anny Piweckiej Staryszak Autorzy poszczególnych rozdziałów Anna Piwecka Staryszak: 2-13; 14.1-14.6; 15.1-15.4; 16.1-16.3; 17.1-17.6;
Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski
Metody numeryczne Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Elektrotechnika stacjonarne-dzienne pierwszego stopnia
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na
FUNKCJA LINIOWA - WYKRES
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (Postać kierunkowa) Funkcja liniowa jest podstawowym typem funkcji. Jest to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości
Lista zadań nr 2 z Matematyki II
Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2
Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II
Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie podstawowym dla uczniów technikum część II Figury na płaszczyźnie kartezjańskiej L.p. Temat lekcji Uczeń demonstruje opanowanie
Obliczenia naukowe Wykład nr 6
Obliczenia naukowe Wykład nr 6 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [1] D. Kincaid, W. Cheney, Analiza
Wprowadzenie do Mathcada 1
Wprowadzenie do Mathcada Ćwiczenie. - Badanie zmienności funkcji kwadratowej Ćwiczenie. pokazuje krok po kroku tworzenie prostego dokumentu w Mathcadzie. Dokument ten składa się z następujących elementów:.
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim WSTĘP DO TEORII RÓWNAŃ RÓŻNICZKOWYCH Nazwa w języku angielskim INTRODUCTION TO DIFFERENTIAL EQUATIONS THEORY
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 3 BADANIE CHARAKTERYSTYK CZASOWYCH LINIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia są pomiary i analiza
Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl
System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy
WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Nazwa w języku angielskim ORDINARY DIFFERENTIAL EQUATIONS Kierunek studiów (jeśli dotyczy): Automatyka
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego
Ćwiczenie M6 Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego M6.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie przyspieszenia ziemskiego poprzez analizę ruchu wahadła prostego. M6..
PRÓBNA NOWA MATURA z WSiP. Matematyka dla klasy 2 Poziom podstawowy. Zasady oceniania zadań
PRÓBNA NOWA MATURA z WSiP Matematyka dla klasy Poziom podstawowy Zasady oceniania zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 0 Matematyka dla klasy Poziom podstawowy Kartoteka
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
Wymagania edukacyjne na poszczególne oceny branżowa szkoła I stopnia klasa 1 po gimnazjum
Wymagania edukacyjne na poszczególne oceny branżowa szkoła I stopnia klasa 1 po gimnazjum I. Liczby rzeczywiste 1. Liczby naturalne 2. Liczby całkowite. 3. Liczby wymierne 4. Rozwinięcie dziesiętne liczby
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018 Tomasz Chwiej 22 stycznia 2019 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów
INSTRUKCJA DO ĆWICZENIA NR 5
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 5 PRZEDMIOT TEMAT OPRACOWAŁ MODELOWANIE UKŁADÓW MECHANICZNYCH Badania analityczne układu mechanicznego
Rys.1. Model cieplny odcinka toru prądowego reprezentowany elementami biblioteki Power System Blockset
Ćwiczenie 4 Modelowanie procesu nagrzewania toru prądowego narzędziami Simulinka w Matlabie Wprowadzenie Celem ćwiczenia jest modelowanie procesu nagrzewania toru prądowego z wykorzystaniem różnorodnych
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów.
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Plan wykładu: 1. Wyznaczanie pojedynczych pierwiastków rzeczywistych równań nieliniowych metodami a) połowienia (bisekcji)
METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer.
METODY NUMERYCZNE Wykład 3. dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. wykład 3 1 Plan Aproksymacja Interpolacja wielomianowa Przykłady Met.Numer. wykład 3 2 1 Aproksymacja Metody numeryczne
PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH
PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH ( Na przykładzie POWERSIM) M. Berndt-Schreiber 1 Plan Zasady modelowania Obiekty symbole graficzne Dyskretyzacja modelowania Predefiniowane
Z-ETI-1040 Metody numeryczne Numerical Methods
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Z-ETI-1040 Metody numeryczne Numerical Methods Kod modułu Nazwa modułu Nazwa modułu w języku angielskim
Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn
Metody numeryczne Wykład 1 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Informacje wstępne Wykład 2h Laboratorium
1 Równania nieliniowe
1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),
Kształcenie w zakresie podstawowym. Klasa 2
Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
KARTA KURSU (realizowanego w module specjalności) Metody numeryczne
KARTA KURSU (realizowanego w module ) Administracja systemami informatycznymi (nazwa ) Nazwa Nazwa w j. ang. Metody numeryczne Numerical methods Kod Punktacja ECTS* 3 Koordynator dr Kazimierz Rajchel Zespół
UKŁADY RÓWNAŃ LINIOWYCH
Projekt dofinansowała Fundacja mbanku UKŁADY RÓWNAŃ LINIOWYCH CZĘŚĆ I Układ równań to przynajmniej dwa równania spięte z lewej strony klamrą, np.: x + 0 Każde z równań musi zawierać przynajmniej jedną
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
SYMULACJA ZAKŁÓCEŃ W UKŁADACH AUTOMATYKI UTWORZONYCH ZA POMOCĄ OBWODÓW ELEKTRYCZNYCH W PROGRAMACH MATHCAD I PSPICE
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 76 Electrical Engineering 2013 Piotr FRĄCZAK* SYMULACJA ZAKŁÓCEŃ W UKŁADACH AUTOMATYKI UTWORZONYCH ZA POMOCĄ OBWODÓW ELEKTRYCZNYCH W PROGRAMACH MATHCAD
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Modelowanie rynków finansowych z wykorzystaniem pakietu R
Modelowanie rynków finansowych z wykorzystaniem pakietu R Metody numeryczne i symulacje stochastyczne Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Całkowanie
Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński
Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa
Pendolinem z równaniami, nierównościami i układami
Pendolinem z równaniami, nierównościami i układami 1. Równaniem nazywamy równość dwóch wyrażeń algebraicznych. Równaniami z jedną niewiadomą są, np. równania: 2 x+3=5 x 2 =4 2x=4 9=17 x 3 2t +3=5t 7 Równaniami
Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)
Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości
M10. Własności funkcji liniowej
M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego. Zdający
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. SUMY ALGEBRAICZNE DLA KLASY DRUGIEJ 1. Rozpoznawanie jednomianów i sum algebraicznych Obliczanie wartości liczbowych wyrażeń algebraicznych