Rys.1. Model cieplny odcinka toru prądowego reprezentowany elementami biblioteki Power System Blockset
|
|
- Dominik Sosnowski
- 5 lat temu
- Przeglądów:
Transkrypt
1 Ćwiczenie 4 Modelowanie procesu nagrzewania toru prądowego narzędziami Simulinka w Matlabie Wprowadzenie Celem ćwiczenia jest modelowanie procesu nagrzewania toru prądowego z wykorzystaniem różnorodnych narzędzi programowania udostępnionych przez biblioteki Power System Blockset i Simulink oraz metody numeryczne środowiska Matlab. Będą wykorzystane kolejno: modelowanie obwodu cieplnego (=> elektrycznego RC) (Power System Blockset) modelowanie równania przewodnictwa cieplnego jako systemu dynamicznego (Simulink) modelowanie równania cieplnego jako równania różniczkowego i rozwiązanie problemu metodami numerycznymi (metoda Rungego_Kutty dostępna w Matlabie). Należy w każdym z tych sposobów modelowania doprowadzić do określenia wartości obciążenia prądem długotrwałym z temperaturą dopuszczalną 90 C nagrzania odcinka toru prądowego o długości m wykonanego z a) aluminium i b) miedzi. Tor ma w przekroju kształt prostokąta o wymiarze 0x cm. Modelowanie obwodu cieplnego RC Zostanie tu wykorzystana metoda sieci cieplnej (MSC), która przez analogię do obwodu elektrycznego buduje obwód cieplny (Rys.) opisujący wytworzenie, kumulację i oddawanie ciepła do otoczenia. Rys.. Model cieplny odcinka toru prądowego reprezentowany elementami biblioteki Power System Blockset Źródłem ciepła są straty mocy I 2 R w torze prądowym, za kumulację odpowiada pojemność cieplna C szyny a odprowadzenie ciepła do otoczenia o temperaturze T 0 odbywa się poprzez opory cieplne konwekcji R k i promieniowania R p. Za wprowadzenie do obwodu cieplnego (modelowanego elektrycznie) mocy cieplnej odpowiada sterowane źródło prądowe nazwane jako "moc cieplna", a będące elementem Power System Blockset Electrical Sources Controlled Current Source. Powstaje ona jako wynik działania I 2 ρ 0 w elemencie mnożącym biblioteki Simulink Math Product. S Wartości nastaw prądu I, rezystywności materiału ρ 0 i pola powierzchni przekroju poprzecznego toru prądowego S podawane są jako wartości stałych źródeł sygnałowych biblioteki Simulink Sources Constant. Temperatura otoczenia T 0 podana jest jako wartość źródła stałego napięcia DC Voltage Source z wymienionej już wcześniej biblioteki Electrical Sources. Układ wyposażony jest w mierniki prądu (mocy cieplnej) i napięcia (temperatury) wraz z wyświetlaczem przebiegów czasowych.
2 Modelowanie równania przewodnictwa cieplnego jako systemu dynamicznego (Simulink) Równanie opisujące dynamikę procesu nagrzewania toru prądowego można zapisać (po podzieleniu stronami przez C) w postaci dt dt RC ( T T ) + 0 gdzie: C = c v m - pojemność cieplna odcinka toru prądowego; R = R p R k - zastępczy opór cieplny promieniowania i konwekcji; T 0 - temperatura otoczenia; P= I 2 ρ 0 - moc cieplna wytworzona w odcinku toru prą- S dowego. Z zapisu składników równania widać, że bilansuje ono moc cieplną skumulowaną, odprowadzoną i wytworzoną w przewodniku w dowolnej chwili czasowej t. Scałkowanie w bloku integratora sygnału dt/dt daje poszukiwaną wielkość temperatury T o przebiegu czasowym T = T(t). Czynność całkowania będzie w rzeczywistości przeprowadzona na dwóch pozostałych składnikach równania przeniesionych na prawą stronę, a potrzebny do budowy jednego z nich sygnał T wraca do integratora w pętli sprzężenia zwrotnego. Ilustruje to rysunek 2. = P C () Rys.2. Schemat systemu dynamicznego opisującego proces nagrzewania odcinka toru prądowego Bloki operatorowe całkowania /s, sumowania i mnożenia/dzielenia pochodzą z bibliotek Simulink Continuous Integrator oraz Simulink Math Sum lub Product. Parametry nastaw wartości źródeł sygnałów stałych generowane są przez elementy Simulink Sources Constant. Modelowanie równania cieplnego jako równania różniczkowego i rozwiązanie problemu metodami numerycznymi (metoda Rungego_Kutty dostępna w Matlabie). Równanie bilansu cieplnego () jest równaniem różniczkowym zwyczajnym pierwszego rzędu, do którego rozwiązania numerycznego można użyć odpowiednich metod, spośród których szczególnie popularną jest metoda Rungego-Kutty czwartego rzędu. Służy ona do rozwiązania równania różniczkowego z odpowiednim warunkiem początkowym, który czyni rozwiązanie jednoznacznym. Całość tworzy wtedy tzw. zagadnienie początkowe dx = f ( t,x ) dt x( t0 ) = x 0 (2) Wspomniana metoda polega na zastosowaniu następującego schematu obliczeniowego: 2
3 k = hf ( tn,xn ) h k k2 = hf ( tn +,xn + ) 2 2 h k2 k3 = hf ( tn +,xn + ) (3) 2 2 k = hf ( t + h,x k ) 4 n n + 3 yn+ = yn + ( k + 2k2 + 2k3 + k4 )) 6 czyli znajomość rozwiązania y n w punkcie x n oraz czterech punktach pośrednich służy do wyznaczenia wartości rozwiązania y n+ w punkcie x n+. W tym celu zostanie zrealizowany zapis w postaci skryptowej, tj. zespołu poleceń wykonawczych Matlaba zgromadzonych w jednym pliku i uruchamianych jednym poleceniem. Metody ODE W Matlabie można rozwiązywać układy równań różniczkowych zwyczajnych, korzystając z kilku rodzajów funkcji ode (akronim ang. Ordinary Differential Equations). Funkcje te można podzielić na dwie grupy. Pierwsza z nich przeznaczona jest do rozwiązywania równań i układów równań tzw. dobrze uwarunkowanych. Należą do niej funkcje: a) ode45 (z użyciem jednokrokowej metody Rungego-Kutty rzędu 4 i 5) b) ode23 (z użyciem jednokrokowej metody Rungego-Kutty rzędu 2 i 3) c) ode3 (z użyciem wielokrokowej metody Adamsa-Bashfortha-Moultona, najlepszej z tej grupy) Druga przeznaczona jest do rozwiązywania równań i układów równań źle uwarunkowanych, czyli sztywnych. Należą do niej takie funkcje jak: odel5s, ode23s, ode23t,ode23tb. W rozwiązaniach układów źle uwarunkowanych występują bardzo duże oraz bardzo małe stałe czasowe, w związku z tym układy takie są znacznie mniej stabilne niż układy dobrze uwarunkowane. Poniżej zajmiemy się układami dobrze uwarunkowanymi Składnia wszystkich w/w funkcji jest jednakowa: [t,y]=funkcja_ode(plik_ode, przedział,y0) Parametry wyjściowe: t - wektor kolumnowy wartości argumentów (np. chwil czasu) dla których obliczane było rozwiązanie y - macierz rozwiązań. Każda kolumna jest wektorem reprezentującym warto;. jednej ze zmiennych stanu w punktach określonym wektorem t. Argumenty (parametry wejściowe): przedział - wektor określający przedział całkowania. W przypadku wektora dwuelementowego [t0, tk] całkowanie będzie wykonywane od chwili t0 chwili tk, zaś w przypadku wektora o większej liczbie elementów, rozwiązania będą wykonywane wyłącznie w chwilach określonych poprzez ten wektor. y0 - wektor kolumnowy warunków początkowych 3
4 plik_ode - łańcuch znaków, określający nazwę funkcji zdefiniowanej w m-pliku lub zdefiniowanej inline. Funkcja ta zawiera definicję rozwiązywanego układu równań różniczkowych. Nazwa tej funkcji jest dowolna. Funkcja zawsze dwuargumentowa. Argumentami są: t (skalar) oraz y (kolumnowy wektor stanu). Ogólna postać tej funkcji jest następująca: function F = plik_ode(t,y) %Komentarz F... % definicja układu równań różniczkowych Rozwiązywanie równań pierwszego rzędu Należy zauważyć, że rozwiązując numerycznie równanie różniczkowe, otrzymujemy na ogół tylko tablicę przybliżeń y i dokładnego rozwiązania y(t) w punktach t,. Dopiero wykorzystując tę tablicę, można albo narysować wykres szukanej funkcji, albo przybliżyć ją odpowiednią funkcją za pomocą interpolacji. Przykład Rozwiąż następujące zagadnienie początkowe: dx = 2t 2 e dt x( 0 ) = x0 y A oto zapis w postaci skryptu, który może być z kolei zapisany jako m-plik i wywołany z konsoli poleceń Matlaba. %Rozwiązanie z użyciem funkcji zdefiniowanej 'inline' %Skrypt rozwiązuje równanie różniczkowe pierwszego rzędu MojaFunkcja=inline('2*t.^2.*exp(-y)'); [t,y]=ode45(mojafunkcja, [0 2*pi],0); plot(x,y) W ćwiczeniu należy zbudować m-plik, nadać mu nazwę np. Ex4_RK.m i zapisać na dysku function [F]=Ex4_RK(t,y) %t - czas I=...; %wartość skuteczna prądu szyny Rez=...; %rezystywność materiału szyny S=...; %pole powierzchni przekroju poprzecznego szyny Rp=...; %opór cieplny promieniowania Rk=...; %opór cieplny konwekcji C=...; %pojemność cieplna odcinka toru prądowego To=...; %temperatura otoczenia P=I*I*Rez/S; %obliczenie mocy cieplnej F=P/C-(v-To)/(C*R); %obliczenie wartości funkcji prawej strony Uruchomienie w/w m-pliku można zlecić innemu m-plikowi, którego treścią byłoby wywołanie poprzednio zdefiniowanego m-pliku [t,v]=ode45('ex4_rk',[0 0^4],); plot(t,v); 4
5 Dokumentacja przebiegu ćwiczenia Należy wykonać wszystkie trzy etapy ćwiczenia realizując w każdym z nich postawiony cel wyznaczenia obciążalności długotrwałej dla dwóch rodzajów materiału toru prądowego: a) aluminium b) miedź Do sprawozdania należy dołączyć zarejestrowane przebiegi jednego z wybranych należy dołączyć do sprawozdania, które powinno zawierać również zbudowane w czasie ćwiczenia: schematy obwodu RC z widocznymi wartościami nastaw parametrów wejściowych schematy blokowe układu dynamicznego z widocznymi wartościami nastaw parametrów wejściowych i sterujących listingi m-plików wykonawczych trzeciego etapu zadania. Oczekuje się komentarza dotyczącego możliwości udoskonalenia metod wyznaczania w środowisku Simulink oporów cieplnych promieniowania i konwekcji oraz mocy traconej tak, by uwzględniały zależność od poszukiwanej temperatury. Opracował: dr hab. inż. Włodzimierz Kałat 5
Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi
. Cele ćwiczenia Laboratorium nr Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi zapoznanie się z metodami symbolicznego i numerycznego rozwiązywania równań różniczkowych w Matlabie,
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA II rok Kierunek Transport Temat: Transmitancja operatorowa. Badanie odpowiedzi układów automatyki. Opracował
ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013
SIMULINK część pakietu numerycznego MATLAB (firmy MathWorks) służąca do przeprowadzania symulacji komputerowych. Atutem programu jest interfejs graficzny (budowanie układów na bazie logicznie połączonych
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 7a. Metody wielokrokowe
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 7a. Metody wielokrokowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Motywacja Metody wielokrokowe sa
Wprowadzenie do Mathcada 1
Wprowadzenie do Mathcada Ćwiczenie. - Badanie zmienności funkcji kwadratowej Ćwiczenie. pokazuje krok po kroku tworzenie prostego dokumentu w Mathcadzie. Dokument ten składa się z następujących elementów:.
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych
Laboratorium nr 1. dsolve( rownanie1, rownanie2,, warunek 1, warunek 2 );
Laboratorium nr. Cele ćwiczenia zapoznanie si z metodami symbolicznego i numerycznego rozwi zywania równa ró niczkowych w Matlabie, wykorzystanie Simulinka do tworzenia modelu równania ró niczkowego, archiwizacja
Laboratorium 1. Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi
Laboratorium 1 1. Cel ćwiczenia Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi Zapoznanie się z metodami symbolicznego i numerycznego rozwiązywania równań różniczkowych w Matlabie,
Ćw. 1. BADANIE PRZEBIEGÓW NAGRZEWANIA SIĘ I STYGNIĘCIA PRZEWODÓW PRZY OBCIĄŻENIU PRZERYWANYM
Ćw. 1. BADANIE PRZEBIEGÓW NAGRZEWANIA SIĘ I SYGNIĘCIA PRZEWODÓW PRZY OBCIĄŻENIU PRZERYWANYM 1. Wprowadzenie 1.1. Wiadomości podstawowe W eksploatacji urządzeń elektroenergetycznych i ich elementów, a do
E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu. Dynamicznych. Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu Dynamicznych Nazwa modułu w języku
Różniczkowanie numeryczne
Różniczkowanie numeryczne Przyjmijmy, że funkcja ciągła y = f(x) = 4sin(3x)e -x/2, gdzie x 0,2π, dana jest w postaci dyskretnej jako ciąg wartości y odpowiadających zmiennej niezależnej x, również danej
Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych
Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z metodą wyznaczania odpowiedzi skokowych oraz impulsowych podstawowych obiektów regulacji.
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Technologie informatyczne Wprowadzenie do Simulinka w środowisku MATLAB Pytania i zadania do ćwiczeń laboratoryjnych
Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy. Obowiązkowy Polski VI semestr zimowy
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems)
Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems) P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Wprowadzenie Rozważmy
Opis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk
Opis systemów dynamicznych Mieczysław Brdyś 27.09.2010, Gdańsk Rozważmy układ RC przedstawiony na rysunku poniżej: wejscie u(t) R C wyjście y(t)=vc(t) Niech u(t) = 2 + sin(t) dla t t 0 gdzie t 0 to chwila
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Środowiska obowiązuje studentów rozpoczynających studia w roku akademickim 206/207 Kierunek studiów: Budownictwo Profil:
Numeryczne rozwiązywanie równań różniczkowych ( )
Numeryczne rozwiązywanie równań różniczkowych Równanie różniczkowe jest to równanie, w którym występuje pochodna (czyli różniczka). Przykładem najprostszego równania różniczkowego może być: y ' = 2x które
Ćwiczenie 3. Iteracja, proste metody obliczeniowe
Ćwiczenie 3. Iteracja, proste metody obliczeniowe Instrukcja iteracyjna ( pętla liczona ) Pętla pozwala na wielokrotne powtarzanie bloku instrukcji. Liczba powtórzeń wynika z definicji modyfikowanej wartości
PRAWO OHMA DLA PRĄDU PRZEMIENNEGO
ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa
Wstęp do metod numerycznych 14. Kilka wstępnych uwag na temat numerycznego rozwiazywania równań różniczkowych zwyczajnych
Wstęp do metod numerycznych 14. Kilka wstępnych uwag na temat numerycznego rozwiazywania równań różniczkowych zwyczajnych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012/13 Równania różniczkowe zwyczajne
Rozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera
Rozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera Arkadiusz Syta A. Syta (Politechnika Lubelska) 1 / 19 Wstęp Przegląd wybranych pakietów oprogramowania i funkcji Rozwiązywanie równań
Modele układów dynamicznych - laboratorium. SIMULINK - wprowadzenie
Modele układów dynamicznych - laboratorium SIMULINK - wprowadzenie SIMULINK Simulink to przybornik (toolbo) pakietu Matlab przeznaczony do symulacji układów dynamicznych w trybie graficznym. Simulink to
PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION
Mirosław GUZIK Grzegorz KOSZŁKA PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION W artykule przedstawiono niektóre
POLITECHNIKA ŚLĄSKA WYDZIAŁ GÓRNICTWA I GEOLOGII. Roman Kaula
POLITECHNIKA ŚLĄSKA WYDZIAŁ GÓRNICTWA I GEOLOGII Roman Kaula ZASTOSOWANIE NOWOCZESNYCH NARZĘDZI INŻYNIERSKICH LabVIEW oraz MATLAB/Simulink DO MODELOWANIA UKŁADÓW DYNAMICZNYCH PLAN WYKŁADU Wprowadzenie
Algorytmy i schematy blokowe
Algorytmy i schematy blokowe Algorytm dokładny przepis podający sposób rozwiązania określonego zadania w skończonej liczbie kroków; zbiór poleceń odnoszących się do pewnych obiektów, ze wskazaniem porządku,
Interpolacja. Interpolacja wykorzystująca wielomian Newtona
Interpolacja Funkcja y = f(x) jest dana w postaci dyskretnej: (1) y 1 = f(x 1 ), y 2 = f(x 2 ), y 3 = f(x 3 ), y n = f(x n ), y n +1 = f(x n +1 ), to znaczy, że w pewny przedziale x 1 ; x 2 Ú ziennej niezależnej
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Wprowadzenie do numerycznej mechaniki płynów Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności: Inżynieria cieplna i samochodowa Rodzaj zajęć: wykład,
Pracownia pomiarów i sterowania Ćwiczenie 4 Badanie ładowania i rozładowywania kondensatora
Małgorzata Marynowska Uniwersytet Wrocławski, I rok Fizyka doświadczalna II stopnia Prowadzący: dr M. Grodzicki Data wykonania ćwiczenia: 17.03.2015 Pracownia pomiarów i sterowania Ćwiczenie 4 Badanie
Wykład X Rozwiązywanie zagadnień początkowych dla równań różniczkowych zwyczajnych
Wykład X Rozwiązywanie zagadnień początkowych dla równań różniczkowych zwyczajnych Postawienie zadania i podstawowe idee jego rozwiązania Metody samostartujące (Eulera, Rungego-Kutty) Metody niesamostartujące
Rys 1 Schemat modelu masa- sprężyna- tłumik
Rys 1 Schemat modelu masa- sprężyna- tłumik gdzie: m-masa bloczka [kg], ẏ prędkośćbloczka [ m s ]. 3. W kolejnym energię potencjalną: gdzie: y- przemieszczenie bloczka [m], k- stała sprężystości, [N/m].
Przekształcanie schematów blokowych. Podczas ćwiczenia poruszane będą następujące zagadnienia:
Warszawa 2017 1 Cel ćwiczenia rachunkowego Podczas ćwiczenia poruszane będą następujące zagadnienia: zasady budowy schematów blokowych układów regulacji automatycznej na podstawie równań operatorowych;
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, 2017 Spis treści Od autorów 11 I. Klasyczne metody numeryczne Rozdział 1. Na początek 15 1.1.
przy warunkach początkowych: 0 = 0, 0 = 0
MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,
Metody numeryczne równań różniczkowych zwyczajnych
Metody numeryczne równań różniczkowych zwyczajnych Marcin Jenczmyk m.jenczmyk@knm.katowice.pl 9 maja 2015 M. Jenczmyk XXX Sesja KNM Metody numeryczne R.R.Z. 1 / 18 Omawiany problem dotyczyć będzie numerycznego
Identyfikacja i modelowanie struktur i procesów biologicznych
Identyfikacja i modelowanie struktur i procesów biologicznych Laboratorium 1: Modele ciągłe. Model Lotki-Volterry. mgr inż. Urszula Smyczyńska AGH Akademia Górniczo-Hutnicza 1. Ćwiczenie 1: Rozwiązanie
WZMACNIACZ ODWRACAJĄCY.
Ćwiczenie 19 Temat: Wzmacniacz odwracający i nieodwracający. Cel ćwiczenia Poznanie zasady działania wzmacniacza odwracającego. Pomiar przebiegów wejściowego wyjściowego oraz wzmocnienia napięciowego wzmacniacza
1 Ćwiczenia wprowadzające
1 W celu prawidłowego wykonania ćwiczeń w tym punkcie należy posiłkować się wiadomościami umieszczonymi w instrukcji punkty 1.1.1. - 1.1.4. oraz 1.2.2. 1.1 Rezystory W tym ćwiczeniu należy odczytać wartość
INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI
INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI BADANIE ZJAWISKA REZONANSU W SZEREGOWYM OBWODZIE RLC PRZY POMOCY PROGRAMU MATLAB/SIMULINK Autor: Tomasz Trawiński, Strona /7 . Cel ćwiczenia Celem ćwiczenia jest
Automatyka i sterowania
Automatyka i sterowania Układy regulacji Regulacja i sterowanie Przykłady regulacji i sterowania Funkcje realizowane przez automatykę: regulacja sterowanie zabezpieczenie optymalizacja Automatyka i sterowanie
Całkowanie numeryczne
Całkowanie numeryczne Poniżej omówione zostanie kilka metod przybliżania operacji całkowania i różniczkowania w szczególności uzależnieniu pochodnej od jej różnic skończonych gdy równanie różniczkowe mamy
Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC
Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWICZENIE Połączenia szeregowe oraz równoległe elementów C. CEL ĆWICZENIA Celem ćwiczenia jest praktyczno-analityczna ocena wartości
1 Dana jest funkcja logiczna f(x 3, x 2, x 1, x 0 )= (1, 3, 5, 7, 12, 13, 15 (4, 6, 9))*.
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 0/0 Odpowiedzi do zadań dla grupy elektronicznej na zawody II stopnia (okręgowe) Dana jest funkcja logiczna f(x 3, x,
c - częstość narodzin drapieżników lub współczynnik przyrostu drapieżników,
SIMULINK 3 Zawartość Równanie Lotki-Volterry dwa słowa wstępu... 1 Potrzebne elementy... 2 Kosmetyka 1... 3 Łączenie elementów... 3 Kosmetyka 2... 6 Symulacja... 8 Do pobrania... 10 Równanie Lotki-Volterry
Definicje i przykłady
Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest
Metody numeryczne Numerical methods. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
UWAGA. Program i przebieg ćwiczenia:
Cel ćwiczenia: Zapoznanie się z. metodami badania i analitycznego wyznaczania parametrów dynamicznych obiektów rzeczywistych na przykładzie mikrotermostatu oraz z metodami symulacyjnymi umożliwiającymi
Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II
Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II Zagadnienia na ocenę 3.0 1. Podaj transmitancję oraz naszkicuj teoretyczną odpowiedź skokową układu całkującego z inercją 1-go rzędu.
Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych
Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych Rozwiązywanie równań różniczkowych zwyczajnych za pomocą szeregów metody dyskretne Metoda współczynników nieoznaczonych Metoda kolejnego
UWAGA. Wszystkie wyniki zapisywać na dysku Dane E: Program i przebieg ćwiczenia:
Cel ćwiczenia: Zapoznanie się z. metodami badania i analitycznego wyznaczania parametrów dynamicznych obiektów rzeczywistych na przykładzie mikrotermostatu oraz z metodami symulacyjnymi umożliwiającymi
Spis treści. I. Skuteczne. Od autora... Obliczenia inżynierskie i naukowe... Ostrzeżenia...XVII
Spis treści Od autora..................................................... Obliczenia inżynierskie i naukowe.................................. X XII Ostrzeżenia...................................................XVII
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa TECHNIKI REGULACJI AUTOMATYCZNEJ
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa TECHNIKI REGULACJI AUTOMATYCZNEJ Laboratorium nr 2 Podstawy środowiska Matlab/Simulink część 2 1. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie
Zwięzły kurs analizy numerycznej
Spis treści Przedmowa... 7 1. Cyfry, liczby i błędy podstawy analizy numerycznej... 11 1.1. Systemy liczbowe... 11 1.2. Binarna reprezentacja zmiennoprzecinkowa... 16 1.3. Arytmetyka zmiennopozycyjna...
Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych
Mechatronika i inteligentne systemy produkcyjne Modelowanie systemów mechatronicznych Platformy przetwarzania danych 1 Sterowanie procesem oparte na jego modelu u 1 (t) System rzeczywisty x(t) y(t) Tworzenie
Laboratorium Komputerowego Wspomagania Analizy i Projektowania
Laboratorium Komputerowego Wspomagania Analizy i Projektowania Ćwiczenie 6. Symulacja obiektów dynamicznych w środowisku SIMULINK. Opracował: dr inż. Sebastian Dudzik 1. Cel ćwiczenia Celem ćwiczenia jest
PODSTAWY ELEKTOTECHNIKI LABORATORIUM
PODSTAWY ELEKTOTECHNIKI LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 8 OBWODY PRĄDU STAŁEGO -PODSTAWOWE PRAWA 1. Cel ćwiczenia Doświadczalne zbadanie podstawowych praw teorii
SYMULACJA ZAKŁÓCEŃ W UKŁADACH AUTOMATYKI UTWORZONYCH ZA POMOCĄ OBWODÓW ELEKTRYCZNYCH W PROGRAMACH MATHCAD I PSPICE
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 76 Electrical Engineering 2013 Piotr FRĄCZAK* SYMULACJA ZAKŁÓCEŃ W UKŁADACH AUTOMATYKI UTWORZONYCH ZA POMOCĄ OBWODÓW ELEKTRYCZNYCH W PROGRAMACH MATHCAD
Badanie wpływu parametrów korektora na własności dynamiczne układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Automatyzacji
WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego Badanie wpływu parametrów korektora na własności dynamiczne układu regulacji Ćwiczenia Laboratoryjne Podstawy Automatyki i Automatyzacji mgr inż.
Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego
Matematyka 2 Równania różniczkowe zwyczajne rzędu drugiego Równania różniczkowe liniowe rzędu II Równanie różniczkowe w postaci y + a 1 (x)y + a 0 (x)y = f(x) gdzie a 0 (x), a 1 (x) i f(x) są funkcjami
Analiza matematyczna dla informatyków 3 Zajęcia 14
Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:
Metody numeryczne Laboratorium 2
Metody numeryczne Laboratorium 2 1. Tworzenie i uruchamianie skryptów Środowisko MATLAB/GNU Octave daje nam możliwość tworzenia skryptów czyli zapisywania grup poleceń czy funkcji w osobnym pliku i uruchamiania
Rozwiązywanie równań liniowych. Transmitancja. Charakterystyki częstotliwościowe
Zał. nr do ZW 33/01 WYDZIAŁ Informatyki i Zarządzania / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Modele systemów dynamicznych Nazwa w języku angielskim Dynamic Systems Models. Kierunek studiów (jeśli
ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI
Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji
ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI
1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności
Systemy. Krzysztof Patan
Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej
Metoda Różnic Skończonych (MRS)
Metoda Różnic Skończonych (MRS) METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek () Równania różniczkowe zwyczajne
Sterowanie Napędów Maszyn i Robotów
Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi
Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna
Ćwiczenie 20 Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna Program ćwiczenia: 1. Wyznaczenie stałej czasowej oraz wzmocnienia obiektu inercyjnego I rzędu 2. orekcja dynamiczna
//warunki początkowe m=500; T=30; c=0.4; t=linspace(0,t,m); y0=[-2.5;2.5];
4.3. Przykłady wykorzystania funkcji bibliotecznych 73 MATLAB % definiowanie funkcji function [dx]=vderpol(t,y) global c; dx=[y(2); c*(1-y(1)^2)*y(2)-y(1)]; SCILAB // definiowanie układu function [f]=vderpol(t,y,c)
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)
Wyznaczanie stosunku e/m elektronu
Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się
Metody numeryczne rozwiązywania równań różniczkowych
Metody numeryczne rozwiązywania równań różniczkowych Marcin Orchel Spis treści Wstęp. Metody przybliżone dla równań pierwszego rzędu................ Metoda kolejnych przybliżeń Picarda...................2
Ćwiczenie Stany nieustalone w obwodach liniowych pierwszego rzędu symulacja komputerowa
INSTYTUT SYSTEMÓW INŻYNIERII ELEKTRYCZNEJ TEORIA OBWODÓW ELEKTRYCZNYCH LABORATORIUM Ćwiczenie Stany nieustalone w obwodach liniowych pierwszego rzędu symulacja komputerowa Grupa nr:. Zespół nr:. Skład
1. Rejestracja odpowiedzi skokowej obiektu rzeczywistego i wyznaczenie podstawowych parametrów dynamicznych obiektu
Cel ćwiczenia: Zapoznanie się z metodami badania i analitycznego wyznaczania parametrów dynamicznych rzeczywistego obiektu regulacji (identyfikacji obiektu regulacji) na przykładzie mikrotermostatu oraz
Interpolacja, aproksymacja całkowanie. Interpolacja Krzywa przechodzi przez punkty kontrolne
Interpolacja, aproksymacja całkowanie Interpolacja Krzywa przechodzi przez punkty kontrolne Aproksymacja Punkty kontrolne jedynie sterują kształtem krzywej INTERPOLACJA Zagadnienie interpolacji można sformułować
Kinematyka płynów - zadania
Zadanie 1 Zadane jest prawo ruchu w zmiennych Lagrange a x = Xe y = Ye t 0 gdzie, X, Y oznaczają współrzędne materialne dla t = 0. Wyznaczyć opis ruchu w zmiennych Eulera. Znaleźć linię prądu. Pokazać,
Badanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji
Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Opracowanie: mgr inż. Krystian Łygas, inż. Wojciech Danilczuk Na podstawie materiałów Prof. dr hab.
Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE
Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl
Wykład z Technologii Informacyjnych. Piotr Mika
Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły
Modelowanie wybranych zjawisk fizycznych
Ryszard Myhan Modelowanie zjawiska tarcia suchego Suwaka porusza się w poziomych prowadnicach, gdzie x=x(t) oznacza przesunięcie suwaka względem nieruchomej prowadnicy w kierunku zgodnym z kierunkiem siły
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 6 Model matematyczny elementu naprawialnego Prowadzący: mgr inż. Marcel Luzar Cele ćwiczenia:
Regulacja dwupołożeniowa.
Politechnika Krakowska Wydział Inżynierii Elektrycznej i Komputerowej Zakład eorii Sterowania Regulacja dwupołożeniowa. Kraków Zakład eorii Sterowania (E ) Regulacja dwupołożeniowa opis ćwiczenia.. Opis
Zadania rachunkowe z termokinetyki w programie Maxima
Zadania rachunkowe z termokinetyki w programie Maxima pliku, polecenia do wpisywania w programie Maxima zapisane są czcionką typu: zmienna_w_maximie: 10; inny przykład f(x):=x+2*x+5; Problem 1 komorze
Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"
Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres
KRYTERIA ALGEBRAICZNE STABILNOŚCI UKŁADÓW LINIOWYCH
KRYTERIA ALEBRAICZNE STABILNOŚCI UKŁADÓW LINIOWYCH Zadie 1 Problem: Zbadać stabilność układu zamkniętego przedstawionego na schemacie według kryterium Hurwitza. 1 (s) (s) Rys 1. Schemat układu regulacji
Ćw. 6 Generatory. ( ) n. 1. Cel ćwiczenia. 2. Wymagane informacje. 3. Wprowadzenie teoretyczne PODSTAWY ELEKTRONIKI MSIB
Ćw. 6 Generatory. Cel ćwiczenia Tematem ćwiczenia są podstawowe zagadnienia dotyczące generacji napięcia sinusoidalnego. Ćwiczenie składa się z dwóch części. Pierwsza z nich, mająca charakter wprowadzenia,
PRAWO OHMA DLA PRĄDU PRZEMIENNEGO
ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa
Wykład Ćwiczenia Laboratorium Projekt Seminarium 15 30
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim PAKIETY MATEMATYCZNE Nazwa w języku angielskim Mathematical Programming Packages Kierunek studiów (jeśli
Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM
Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi
INSTRUKCJA DO ĆWICZENIA NR 7
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety
METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03
METODY OBLICZENIOWE Projekt nr 3.4 Dariusz Ostrowski, Wojciech Muła 2FD/L03 Zadanie Nasze zadanie składało się z dwóch części: 1. Sformułowanie, przy użyciu metody Lagrange a II rodzaju, równania różniczkowego
Wykład 3 Równania rózniczkowe cd
7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy
O co chodzi z tym MATLAB'em?!
O co chodzi z tym MATLAB'em?! Część 1. SIMULINK W pliku data.mat jest zapisany przebieg. Gdzieś tam i kiedyś tam zarejestrowany. Widać go na fioletowo poniżej. Powstał on z obiektu, co ciekawe wiemy jak
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych
Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 4 - algebra schematów blokowych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Schemat blokowy Schemat blokowy (strukturalny): przedstawia wzajemne powiązania pomiędzy poszczególnymi zespołami
Sterowanie Napędów Maszyn i Robotów
Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi