inżynierskie metody numeryczne D10/325,
|
|
- Tomasz Markowski
- 5 lat temu
- Przeglądów:
Transkrypt
1 inżynierskie metody numeryczne D10/325, cel przedmiotu: przygotowanie do pracy w zakresie numerycznego modelowania zjawisk i urządzeń stosowanego w zagadnieniach techniki (inżynierii) i nauki symulacje obliczeniowe: w technice: inżynieria obliczeniowa: modelowanie i symulacja zjawisk i działania urządzeń. badania i optymalizacji procesów produkcyjnych oraz produktów. w nauce: interpretacja i przewidywanie danych doświadczalnych, zrozumienie obserwacji, przewidywanie nowych zjawisk. Modelowanie naukowe/inżynieryjne: metody podobne, różnica w celu oraz obiekcie badań
2 Metody badań układów/zjawisk/urządzeń: 1)Metody teoretyczne (modele rozwiązywane ściśle - analityczne) ograniczone do prostych problemów (w nauce te często najważniejsze) 2)Badania doświadczalne: nieodzowne i najważniejsze dla nauk przyrodniczych i dla przemysłu często nie wystarczają dla zrozumienia zjawisk przydatne wsparcie ze strony obliczeń ścisłych lub przybliżonych 3) Symulacje numeryczne pozwalają na rozwiązywanie dokładnych równań z kontrolowaną dokładnością często do wykonania taniej i szybciej niż badania doświadczalne pozwalają prześledzić wyniki w funkcji dowolnych parametrów pełna informacja o zachowaniu układu (modelu)
3 Tematyka wykładu: rozwiązywanie równań różniczkowych: zwyczajnych i cząstkowych. Równania różniczkowe opis zjawisk wprowadzony w XVII - XIX w. Problemy rozwiązywalne analitycznie nieliczne. [np. Równania dynamiki płynów znane od połowy XIX wieku Navier/Stokes - od stosunkowo niedawna są rozwiązywane poza najprostszymi przypadkami] Metody numeryczne przybliżone i wydajne rozwiązania równań. -- niemal równie stare jak teoria równania różniczkowych Metoda Eulera XVIII w. Metody Rungego-Kutty, Galerkina początek XX wieku. Kwadratury Newtona, Gaussa stara historia (odkrycie Neptuna połowa XIX wieku wynik symulacji numerycznej). Nowsza historia: szybka transformata Fouriera, iteracje wielosiatkowe, niejawne metody RK Stosowanie metod numerycznych ograniczone i żmudne przed wynalezieniem komputerów.
4 Znaczenie modelowania numerycznego rosło i będzie rosło z rozwojem sprzętu... Rok FLOPS Pamięć 1949 EDSAC (lampowy) kB 1997 ASCI Red (symulator eksplozji jądrowych) GB 2002 NEC Earth Simulator (modelowanie klimatu) TB 2009 IBM Blue Gene / Q TB oraz metod obliczeniowych (za M. Schaeferem, Computational Engineering) Rok 1970 Eliminacja Gaussa Metoda Gaussa-Seidla Nadrelaksacja Metoda gradientów sprzężonych 1 k 1990 Metody wielosiatkowe 5 k Siatka adaptowana 50 k Tempo rachunków
5 Symulacje numeryczne -- z natury interdyscyplinarne (matematyka, metody numeryczne, nauki ścisłe, konkretna dziedzina inżynierii / nauki + programowanie) - gdzie trzeba będę starał się podawać elementarną wiedzę z zakresu fizyki opisywanych zjawisk. Matematyka numeryczna Informatyka Fizyka/Chemia Symulacja numeryczne Dziedzina pochodzenia problemu (inżynieria/nauka) Tylko w ujęciu inter symulacje są użyteczne (interesujące)
6 Miejsce numeryki w rozwiązywaniu problemów Problem (naukowy/inżynieryjny) Rozwiązanie Dane doświadczalne, modele matematyczne Analiza i interpretacja Równania różniczkowe / warunki brzegowe Weryfikacja i korekta modelu wartości użyteczne / mierzalne Przetworzona informacja *** Generacja siatki, dyskretyzacja (czasu / obszaru całkowania) * Obróbka danych *** Układy równań algebraicznych *wykład (FDM,,FEM,BEM) ** wykład (ten lub MN) Algebraiczne algorytmy numeryczne ** programowanie *** Rozwiązanie numeryczne (milion liczb) *** *** laboratorium
7 Treść wykładu IMN 1 rozwiązywanie równań różniczkowych metodą różnic skończonych. Program: Zwyczajne jawne i niejawne schematy różnicowe do rozwiązywania równań różniczkowych zwyczajnych. Błędy schematów różnicowych, zbieżność, bezwzględna stabilność, iteracja Newtona dla schematów niejawnych. Automatyczny dobór kroku czasowego. Problemy sztywne. Metody Rungego-Kutty. Tabele Butchera. Dwupunktowe problemy brzegowe. Metoda strzałów. Liniowe metody wielokrokowe. Równania cząstkowe. Typy równań. Metody iteracyjne dla równania Poissona. Metody wielosiatkowe. Równania Naviera Stokesa. Równanie adwekcji. Analiza stabilności schematów. Dyfuzja numeryczna. Schematy niejawne i wielopoziomowe. Schematy różnicowe dla równania dyfuzji. Problem odwrotny do równania dyfyzji. Szacowanie błędów i adapacja kroku czasowego. Równanie falowe. Drgania własne, schematy Newmarka i Verleta.
8 Literatura: Butcher, Numerical Methods for Ordinary Differential Equations Press, Numerical Recipes (The art of scientific computing). Koonin, Computational Physics. Quarteroni, Numerical mathematics. Trefethen, Finite difference and spectral methods for ordinary and partial differential equations. Sewell, The numerical solution of ordinary and partial differential equations. Evans, Numerical Methods for Partial Differential Equations Weinberger, A first course in partial differential equations. Solin, Partial Differential Equations and the Finite Element Method. Zienkiewicz, Finite Element Method, its basis & fundamentals. Lienhard, A Heat Transfer Textbook. Sabersky, Fluid flow : a first course in fluid mechanics. R.Grzymkowski, A.Kapusta, I. Nowak, D. Słota, Metody Numeryczne, Zagadnienia Brzegowe Schafer, Computational Engineering, Introduction to Numerical Methods
9 Laboratorium: staramy się aby związek wykładu z laboratorium był bliski Tematy (za treść odpowiedzialny wykładowca oraz mgr inż. Elżbieta Wach) Treść (od zajęć II) nie później niż 7 dni przed zajęciami laboratoryjnymi.
10 Ocena z laboratorium: Aktywność: oceniana na podstawie wyników i źródeł przesłanych prowadzącemu pod koniec zajęć. Student, który na zajęciach nie uzyska 50% punktów, może zdobyć 50% (i nie więcej) dosyłając raport z uzyskanymi wynikami +kod w terminie do 7 dni po zakończeniu zajęć. Uwaga: popełnienie (jednorazowego) plagiatu w kodzie lub raporcie grozi brakiem zaliczenia Regulamin studiów AGH: 11.1.c; 16.6;
11 Ocena z laboratorium: Średnia arytmetyczna z ocen za każde ćwiczenie. Przed liczeniem średniej anulujemy każdemu studentowi jedną najgorszą ocenę. Egzamin: pisemny. Ocena końcowa: średnia arytmetyczna z oceny z laboratorium i ocen ze wszystkich terminów egzaminu
12 Równania różniczkowe: równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji zazwyczaj dane równanie różniczkowe spełnia pewna klasa funkcji dla jednoznacznego rozwiązania konieczne wprowadzenie warunków początkowych i / lub brzegowych związanych z danym problemem cząstkowe: funkcja więcej niż jednej zmienna, np.: czas i położenie np. wychylenie u(x,t) struny w położeniu x i czasie t u t x druga zasada dynamiki Newtona dla struny t+dt Typowy problem: znany stan początkowy, zadanie: przewidzieć przyszłość równania cząstkowe: nie zawsze jedną ze zmiennych jest czas, ale zawsze opisują obiekty rozciągłe
13 równania różniczkowe zwyczajne: jedna zmienna niezależna np. czas dla elementów punktowych, nierozciągłych r=(x,y) ruch w polu centralnym v(t) R C L napięciowe prawo Kirchoffa równanie liniowe drugiego rzędu (nieliniowe) równania Lotki-Volterry układ równań nieliniowych 2 rzędu problem początkowy po zadaniu x(t=0),y(t=0), x (t=0), y (t=0). układ r. 1 rzędu nieliniowe z populacja zajęcy, w wilków - naturalne tempo wzrostu pop. zajęcy (pod nieobecność w), zaniku wilków bez z b, d - parametry oddziaływania populacji
14 zwyczajne zagadnienie brzegowe (zamiast czasu, położenie w 1D -element rozciągły opisany jedną współrzędną) zwyczajne rzędu drugiego lub wyższego + warunki na funkcje i pochodne na końcach przedziału np. równanie Eulera-Bernoulliego: wygięcie jednorodnego elastycznego pręta pod wpływem rozłożonego obciążenia w(x) lewy koniec: zamocowany i podparty prawy koniec: swobodny
15 Zaczynamy od rozwiązywania równań zwyczajnych 1) prostsza analiza niż dla cząstkowych 2) wprowadzimy pojęcia zbieżności, dokładności, stabilności itd. przydatne do metod rozwiązywania równań cząstkowych 3) jedna z metod rozwiązywania równań cząstkowych (metoda linii) - sprowadzamy równanie cząstkowe do układu równań zwyczajnych
16 Metoda linii: t układy równań różniczkowych zwyczajnych - po dyskretyzacji przestrzennej cząstkowego równania różniczkowego równanie adwekcji u n (t)=u(x n,t) x x 1 x 2 x 3 x 4 x 5 Dx centralny iloraz na pochodną przestrzenną układ N równań zwyczajnych
17 zwyczajne równania różniczkowe rzędu pierwszego [oraz ich układy] warianty: inna forma nieliniowe liniowe (układy równań liniowych rozwiązuje się analitycznie) b=0 jednorodne jeśli f=f(t) (nie zależy od y) rozwiązanie całka nieoznaczona jeśli f=f(y) (nie zależy od t) równanie autonomiczne (nie podlega zaburzeniom zależnym od t)
18 zagadnienie początkowe: równanie różniczkowe + warunek początkowy jeśli f=f(t) rozwiązanie: całka oznaczona
19 Równanie różniczkowe zwyczajne dowolnego rzędu można sprowadzić do układu równań pierwszego rzędu wystarczy jeśli potrafimy efektywnie rozwiązać układ równań rzędu pierwszego Przykład: Zmiana oznaczeń Układ równań do rozwiązania Definicja traktowana jako jedno z równań do rozwiązania Równanie na najwyższą pochodną - jedyne niedefinicyjne
20 O konieczności numerycznego rozwiązywania RRZ 1R: analitycznie rozwiązać można układ równań liniowych. nieliniowe: na ogół nie. zazwyczaj nie znamy rozwiązań analitycznych równań nieliniowych Układ 2 ciał oddziaływujących grawitacyjnie - analitycznie rozwiązany przez Newtona r 3 V 3 r 2 V 2 Układ 3: ciał nie posiada analitycznego rozwiązania r 1 V 1 ponadto: automaty mające reagować na otoczenie nie znają postaci analitycznej f : ta jest brana z pomiarów bez wzoru na f skazani jesteśmy na rachunki numeryczne
21 Numeryczne rozwiązywanie problemu początkowego jeśli potrafimy rozwiązać układ równań rzędu pierwszego -rozwiążemy każdy różniczkowy problem początkowy
22 Numeryczne rozwiązywanie problemu początkowego Dyskretyzacja zmiennej czasowej n n+1 n+2 itd. t Dt n+1 Dt n+2 dyskretyzacja zmiennej czasowej sprowadza równania różniczkowe do różnicowych (metoda różnic skończonych) Dobra metoda ma zapewnić zadaną dokładność przy pomocy minimalnej liczby wywołań f (przy maksymalnym kroku czasowym) przy dyskusji metod zakłada się, że wyliczenie f jest kosztowne [jeśli nie jest kosztowne nie ma problemu]
23 tw. Taylora - między t a Dt istnieje taki punkt x, że im więcej znamy pochodnych w punkcie t tym większe otoczenie t możemy dobrze przybliżyć obciętym rozwinięciem Taylora ograniczenie na resztę: maksymalna wartość czwartej pochodnej u w okolicy t dokładniej: między t a t+dt. Wartość błędu obcięcia znika do zera z Dt jak O(Dt 4 )
24 Rząd błędu obcięcia w rozwinięciu Taylora rozwijane wokół t=0 [w roz.t. Dt=t] 1.0 u(0)=1 u=exp(-t 2 /2) u=exp(-t 2 /2) t
25 Jawny schemat Eulera Idea: niech u położenie, a f prędkość krok czasowy mały, od chwili t do Dt prędkość zmienia się niewiele, wtedy: u(t+dt)=u(t)+dt f(t,u) Wzór ścisły tylko dla f=const (np. ruch jednostajny)
26 Jawny schemat Eulera
27 Jawny schemat Eulera przepis na pojedynczy krok z u(t) do u(t+dt) można wyliczyć bo znamy t i u(t) błąd lokalny jawnego Eulera w kroku t n-1 wg tw. Taylora l n = t n błąd lokalny schematu różnicowego: odchylenie wyniku numerycznego od dokładnego, które pojawia się w pojedynczym kroku całkowania
28 Jawny schemat Eulera eksperyment numeryczny: błąd lokalny (w pierwszym kroku) problem początkowy: u =-100 u, u(0)=1 z rozwiązaniem dokładnym u(t)=exp(-100 t) u(dt)=u(0)-100*u(0)*dt dt=1/2 i i u(dt) exp(-100 dt) różnica
29 Jawny schemat Eulera eksperyment numeryczny: błąd lokalny (w pierwszym kroku) dt=1/2 i problem początkowy: u =-100 u, u(0)=1 i u(dt) exp(-100 dt) różnica z rozwiązaniem dokładnym u(t)=exp(-100 t) u(dt)=u(0)-100*u(0)*dt Gdy krok zmniejszymy o połowę błąd w pierwszym kroku maleje około 4 razy
30 Jawny schemat Eulera stosowany wielokrotnie:... krok wcale nie musi być taki sam dla każdego n, ale tak przyjmiemy do analizy
31 Jawny schemat Eulera dokładny u(t)=exp(t) dla du/dt=u W rozwiązaniu dokładnym nachylenie u dane jest przez u w każdej chwili Jawnym schemat Eulera zakłada, że nachylenie jest stałe w jednym kroku czasowym i bierze je z wartości przybliżonej dla początku kroku Dt Dt Dt Jawny schemat Eulera Tylko u 0 = u (0) później u n < u(t n ) Co prowadzi do akumulacji błędów
32 Jawny schemat Eulera dokładny u(t)=exp(t) dla du/dt=u każdy krok wykonywany z nachyleniem branym z chwili, w której krok się zaczyna Zmniejszamy krok Dt: Błąd lokalny zmaleje, ale do ustalonej chwili T musimy wykonać więcej kroków. W każdym kroku wprowadzamy nowy błąd. Błędy się akumulują. Czy opłaca się zmniejszać kroki czasowe? Definicja: Błąd globalny różnica między rozwiązaniem dokładnym a numerycznym w chwili t Czy się opłaca znaczy: Czy błąd globalny maleje gdy Dt maleje? a jeśli tak - czy maleje do zera? (czy możliwe jest dokładne rozwiązanie równania różniczkowego uzyskane jako granica schematu różnicowego)
33 e (błąd globalny) = u dokładny - numeryczny u Jawny schemat Eulera Czy błąd całkowity maleje gdy Dt maleje? Czy maleje do zera? eksperyment numeryczny problem początkowy: u =lu, u(0)=1 z rozwiązaniem dokładnym u(t)=exp(lt) l=-100 Dt= dokładny jawny Euler t t
34 Jawny schemat Eulera Czy błąd globalny maleje gdy Dt maleje? Czy maleje do zera? eksperyment numeryczny problem początkowy: u =lu, u(0)=1 z rozwiązaniem dokładnym u(t)=exp(lt) l=-100 zmniejszajmy krok czasowy, jaki wynik w chwili t=0.01? [1/e= ] n Dt u n exp(-1)-u n błąd globalny w chwili t=0.01 wydaje się zmieniać liniowo z krokiem czasowym interpretacja: błąd lokalny rzędu Dt 2 popełniony n = t/dt razy daje błąd globalny rzędu Dt
35 zmniejszajmy krok czasowy, jaki wynik w chwili t=0.01? [1/e= ] n Dt u n exp(-1)-u n błąd globalny w chwili t=0.01 wydaje się zmieniać liniowo z krokiem czasowym Definicja: Metody różnicowa jest zbieżna jeśli błąd globalny e znika do zera w chwili T gdy z Dt do 0
36 rząd zbieżności (dokładności) określa jakość metody: jak szybko błąd globalny zmierza do zera w funkcji Dt jawna metoda Eulera = pierwszy rząd dokładności O(Dt) jest to minimalny rząd dokładności dla użytecznej metody zmniejszajmy krok czasowy, jaki wynik w chwili t=0.01? [1/e= ] n Dt u n exp(-1)-u n
37 czy jawny schemat Eulera jest zbieżny? sprawdźmy analitycznie propagacje błędu (błąd globalny) dla ogólniejszego problemu modelowego. rozwiązanie analityczne: problem modelowy: ogólne liniowe niejednorodne o stałych współczynnikach zmiana y proporcjonalna do wartości y i niejednorodności s t=0 t t warunek początkowy wzmacniany z czynnikiem exp(lt) wzór Duhamela ten sam czynnik [tzw. propagator] wzmacnia scałkowaną po czasie niejednorodność s niejednorodność wchodzi do rozwiązania tak jak warunek początkowy z opóźnieniem odpowiadającym chwili w której się pojawia
38 oznaczenia y n = rozwiązanie równania różnicowego w chwili t n =Dt n y(t n ) = rozwiązanie dokładne r. różniczkowego schemat Eulera: odpowiedni wzór dla rozwiązania dokładnego z równania różniczkowego Aby wyliczyć błąd globalny e n+1 =y(t n+1 )-y n+1 odejmujemy stronami podkreślone wzory
39 (Euler) (dokładny) e n+1 =y(t n+1 )-y n+1 gdzieś między t n a t n+1 błąd globalny w kroku n+1= błąd globalny w kroku n wzmocniony o czynnik (1+lDt) i powiększony o nowy błąd lokalny cofnijmy się do chwili początkowej w n-1 w n
40 dyskretna zasada Duhamel: błąd początkowy wzmacniany jak (1+lDt) liczba kroków błąd który pojawia się w kroku i-tym wzmacniany w ten sam sposób, co początkowy Rozwiązanie dokładne równania przybliżonego:
41 Czy metoda zbieżna?? załóżmy, że potrafimy wstawić warunek początkowy bezbłędnie : e 0 = 0 Zakładamy, że arytmetyka jest dokładna
42 pierwsze dwa wyrazy r.t. reszta + Dt 2 l ^2 /2 exp(lx n )? Pokazaliśmy, że metoda Eulera zbieżna dla problemu modelowego. Jej rząd zbieżności (dokładności) pierwszy
43 rząd zbieżności (dokładności) określa jakość metody: jak szybko błąd globalny dla chwili T zmierza do zera w funkcji Dt jawna metoda Eulera = pierwszy rząd dokładności O(Dt) jest to minimalny rząd dokładności dla użytecznej metody zmniejszajmy krok czasowy, jaki wynik w chwili t=0.01? [1/e= ] n Dt u n exp(-1)-u n
44 Wróćmy do eksperymentu numerycznego i zwiększmy krok czasowy do Dt=0.05 problem początkowy: u =-100u, u(0)=1 z rozwiązaniem dokładnym u(t)=exp(-100t) iteracja się rozbiega t n u n wniosek: wyniki metody zbieżnej mogą eksplodować dla zbyt dużego kroku czasowego
45 bezwzględna stabilność schematu różnicowego schemat różnicowy dla du/dt = f (dla danego f) i dla danego kroku czasowego jest bezwzględnie stabilny jeśli kolejne generowane przez niego wartości pozostają skończone. Uwaga: Zbieżność jest cechą schematu nie zależną od f Bezwzględna stabilność określa się dla schematu i konkretnego równania W charakterystyce schematów Najczęściej stabilność bezwzględna: określana jest dla autonomicznego problemu liniowego
46 Weźmy l = -1, u(0)=1, rozwiązanie dokładne u(t)=exp(-t) Przepis Eulera: u n+1 =u n -Dtu n u ( t ) dokładny Dt=0.5 Dt= Dt=1.2 Dt=2 Dt=2.5 u ( t ) 0. 2 Dt=1 : wszędzie t t Schemat bezwzględnie stabilny dla Dt 2 uwaga: rozwiązanie bezwzględnie stabilne (np. Dt=1 lub Dt=2) może być bardzo niedokładne lub wręcz - jakościowo złe = tutaj stałe i niemonotoniczne odpowiednio
47 bezwzględna stabilność jawnej metody Eulera u n = u n-1 + ldt u n-1 wsp. wzmocnienia wyniki pozostaną skończone dla n jeśli:
48 Zmienna zespolona z= ldt region bezwzględnej stabilności metody: zbiór z=ldt, dla których metoda jest bezwzględnie stabilna region bezwzględnej stabilności jawnej metody Eulera: zbiór punktów odległych od (-1,0) o nie więcej niż 1 koło o środku w (-1,0) i promieniu 1 Dt Im (l) Dt Re(l) niestabilność bezwzględna metody dla prawej połowy p. Gaussa = nic dziwnego rozwiązanie dokładne y 0 exp(lt) eksploduje do nieskończoności gdy t.
49 pozbyć się ograniczenia na krok czasowy ze strony bezwzględnej stabilności: niejawna metoda Eulera jawna metoda Eulera niejawna metoda Eulera jawna metoda Eulera (funkcjonuje jak podstawienie) funkcjonuje jak równanie nieliniowe metoda odważna metoda ostrożna zmiana u zgodna z prawą stroną w punkcie docelowym
50 niejawna metoda Eulera: problem początkowy: u =-100u, u(0)=1 niejawny Euler z rozwiązaniem dokładnym u(t)=exp(-100t) t n jawny Euler u n t n u n e(t n ) (6) (7) (629) W naszym problemie u n = 1/6 n itd.. exp(-100 t n ) gaśnie znacznie szybciej niż 1/6 n mało dokładne, ale zawsze to lepiej niż eksplodująca oscylacja jawnego Eulera
51 niejawna metoda Eulera: region bezwzględnej stabilności Dt Im (l) 1-1 Dt Re(l) rejon bezwzględnej stabilności: dopełnienie pustego koła o środku w (1,0) i promieniu 1
52 Dt Im (l) 1-1 Dt Re(l) Niejawny schemat Eulera l=1 zakres niestabilności Dt (0,2) Dt=0.1 exp(t) Dt=0.8 Zbliżamy się do Dt=1 wyniki schematu rosną coraz szybciej Dla Dt=1 nieskończoność w pierwszym kroku Dt=1.2 Dt=1.5 Dt=2 1,-1,1,-1 itd
53 regiony stabilności metod Eulera Dt Im (l) Dt Im (l) Dt Re(l) -1 Dt Re(l) metoda Eulera jawna niejawna metoda Eulera
54 niejawna metoda Eulera: region bezwzględnej stabilności Dt Im (l) 1-1 Dt Re(l) Re(l)<0 : niejawny Euler bezwzględnie stabilny dla dowolnego kroku czasowego takie metody: tzw. A-stabilne dla Re(l)>0, poza kołem metoda Eulera jest bezwzględnie stabilna mimo, że rozwiązania równania różniczkowego są niestabilne (patrz wyżej) w tym obszarze metoda jest nadstabilna daje skończone wartości, mimo że rozwiązania dokładne dąży do nieskończoności bezwzględna stabilność nie oznacza dobrej dokładności. W regionie nadstabilności dla Re(l)>0 błędy będą rosły w nieskończoność.
55 jak rozwiązać, gdy nie można rozwikłać równania (f nieliniowe względem u) lub gdy f nieznane w formie wzoru (np. gdy piszemy program dla ogólnego f) 1) iteracja funkcjonalna iterować do zbieżności jeśli się zbiegnie u m =u m-1 i mamy rozwiązanie równania nieliniowego
56 iteracja funkcjonalna przykład problem początkowy: u =-100u, u(0)=1, dt=0.05 z rozwiązaniem dokładnym u(t)=exp(-100t) t n u n e(t n ) (6) (7) (629) kolejne oszacowania: 1, -4, 21, -104, 521, -2604,... iteracja się nie zbiega cały zysk z niejawności stracony bo nie potrafimy wykonać kroku
57 iteracja funkcjonalna przykład iteracja się nie zbiega. zmniejszymy krok dt, zaczynając iterację od u n-1 będziemy bliżej rozwiązania. Może się zbiegnie. dt=0.01 dt=0.001 (1,0,1,0,1,0) 1, 0.9, 0.91, 0.909, , , , iteracja funkcjonalna się zbiega gdy Dt max f u (t,u) 1 (w otoczeniu u) u =-100u, Dt 100 < 1 uwaga: w tej sytuacji jawny Euler jest bezwzględnie stabilny dla 2-krotnie większego kroku! [dla jawnego Eulera Dt 100 < 2] Z iteracją funkcjonalną stosować wstecznego Eulera nie ma sensu.
58 problem początkowy: u =-100u, u(0)=1, dt=0.05 1, -4, 21, -104, 521, -2604,... z rozwiązaniem dokładnym u(t)=exp(-100t) oscylująca rozbieżność - stłumimy ją: iteracja funkcjonalna zapewniamy zbieżność modyfikując przepis iteracyjny zamiast: mieszając nowe i stare rozwiązania z wagą w, 0 w 1 Zabieg podobny do podrelaksacji jeśli się zbiegnie to do rozwiązania schematu niejawnego
59 problem początkowy: u =-100u, u(0)=1, dt=0.05 z rozwiązaniem dokładnym u(t)=exp(-100t) w=0.1 w=0.3 iterujemy u(dt) wybierając w odpowiedni sposób wagę w: potrafimy ustabilizować iterację i doprowadzić ją do zbieżności w=
60 w=0 dt=0.01 (1,0,1,0,1,0) w=.2 (optymalne dla dt=0.05) 0.8,0.68, 0.608, , , , , , , 0.503, , , , ,..., 1/2 tutaj optymalne byłoby w=1/2 (zbieżność w jednej iteracji) dt=0.001 w=1 1, 0.9, 0.91, 0.909, , , , w=0.2 dla w=.7 0.3,0.58,0.468,0.512,0.4948,0.5003,0.4998
61 dt=0.01 w=0 (1,0,1,0,1,0) dt=0.001 w=.2 (optymalne dla dt=0.05) 0.8,0.68, 0.608, , , , , , , 0.503, , , , ,..., 1/2 tutaj optymalne byłoby w=.5 (zbieżność w jednej iteracji natychmiastowa) w=1 1, 0.9, 0.91, 0.909, , , , w=0.2 dla Problem: w=.7 0.3,0.58,0.468,0.512,0.4948,0.5003, ) w trzeba odpowiednio dobrać (mniejszy krok czasowy, w bliższe 1) 2) dla źle dobranego w iteracja może być wolnozbieżna Proces optymalizacji (np. dynamicznej) w może być kłopotliwy.
inżynierskie metody numeryczne cel przedmiotu:
inżynierskie metody numeryczne cel przedmiotu: przygotowanie do pracy w zakresie numerycznego modelowania zjawisk i urządzeń stosowanego w zagadnieniach techniki (inżynierii) i nauki symulacje obliczeniowe:
inżynierskie metody numeryczne D10/325, Konsultacje 8:00 9:30
inżynierskie metody numeryczne D10/325, bszafran@agh.edu.pl http://galaxy.uci.agh.edu.pl/~bszafran/ Konsultacje 8:00 9:30 cel przedmiotu: przygotowanie do pracy w zakresie numerycznego modelowania zjawisk
równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji
Równania różniczkowe: równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji cząstkowe: funkcja więcej niż jednej zmienna, np.: czas i położenie np. wychylenie u(x,t)
inżynierskie metody numeryczne D11/106, konsultacje: piątki 8:30-10:30
inżynierskie metody numeryczne D11/106, bszafran@agh.edu.pl konsultacje: piątki 8:30-10:30 http://galaxy.uci.agh.edu.pl/~bszafran/imn11 cel przedmiotu: przygotowanie do pracy w zakresie numerycznego modelowania
inżynierskie metody numeryczne D10/325, Konsultacje 8:00 9:30
inżynierskie metody numeryczne D10/325, bszafran@agh.edu.pl http://galaxy.uci.agh.edu.pl/~bszafran/ Konsultacje 8:00 9:30 cel przedmiotu: przygotowanie do pracy w zakresie numerycznego modelowania zjawisk
Prawa fizyki: zapisywane w postaci równań różniczkowych (Newtona, Maxwella, dyfuzji, falowe, Poissona, Laplace a, Naviera-Stokesa, Schroedingera)
Numeryczne techniki rozwiązywania równań fizyki I D10/325, bszafran@agh.edu.pl Wykłady będą dostępne z: http://galaxy.uci.agh.edu.pl/~bszafran/ Konsultacje: poniedziałek 8-9:30 cel przedmiotu: przygotowanie
pozbyć się ograniczenia na krok czasowy ze strony bezwzględnej stabilności: niejawna metoda Eulera
pozbyć się ograniczenia na krok czasowy ze strony bezwzględnej stabilności: niejawna metoda Eulera jawna metoda Eulera niejawna metoda Eulera jawna metoda Eulera (funkcjonuje jak podstawienie) funkcjonuje
y i b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta
b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta przedział (a,b) dzielimy na siatkę, powiedzmy o stałym kroku: punkty siatki: u A y i w metodzie strzałów używamy
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Tomasz Chwiej 6 czerwca 2016 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów różnicowych: iloraz
Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład
Inżynierskie metody numeryczne II Konsultacje: wtorek 8-9:30 Wykład Metody numeryczne dla równań hiperbolicznych Równanie przewodnictwa cieplnego. Prawo Fouriera i Newtona. Rozwiązania problemów 1D metodą
u(t) RRZ: u (t)=f(t,u) Jednokrokowy schemat różnicowy
u(t) t Dt RRZ: u (t)=f(t,u) Jednokrokowy schemat różnicowy u(t+dt)=u(t)+f(t,u(t),dt) klasyczna formuła RK4: u(t) k 1 u k 2 k 3 k 4 4 wywołania f na krok, błąd lokalny O(Dt 5 ) gdy f tylko funkcja czasu
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018 Tomasz Chwiej 22 stycznia 2019 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, 2017 Spis treści Od autorów 11 I. Klasyczne metody numeryczne Rozdział 1. Na początek 15 1.1.
Δt)] niejawny schemat Eulera [globalny błąd O(Δt)] u(t) f(t,u) f(t,u) u(t) [t+ Δt,u(t+Δt)]
jawny schemat Eulera [globalny błąd O(Δt)] niejawny schemat Eulera [globalny błąd O(Δt)] u(t) f(t,u) [t,u(t)] )]dokładne d u(t) () f(t,u) [t+ Δt,u(t+Δt)] [t+ Δt,u(t+Δt)] Δt)] Δt t Δt t u(t) [t,u(t)] dokładne
t. sztywny problem w pojedynczym równaniu: u(t)=cos(t) dla dużych ż t rozwiązanie i ustalone
Problem opisany RRZ jest sztywny gdy: 1.... jest charakteryzowany yróżnymi skalami czasowymi. 2. Stabilność bezwzględna nakłada silniejsze ograniczenia na krok czasowy niż dokładność. 3. Metody jawne się
Metoda różnic wstecznych: interpolujemy u wielomianem od chwili n-k aż do n-1
Metoda różnic wstecznych: interpolujemy u wielomianem od chwili n-k aż do n-1 następnie żądamy, aby jego pochodna w chwili n spełniała równania różniczkowe (kolokacja) z tego warunku wyliczamy z niego
numeryczne rozwiązywanie równań całkowych r i
numeryczne rozwiązywanie równań całkowych r i Γ Ω metoda elementów brzegowych: punktem wyjściowym było rozwiązanie równania całkowego na brzegu obszaru całkowania równanie: wygenerowane z równania różniczkowego
Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)
Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Obliczenia Naukowe Nazwa w języku angielskim : Scientific Computing. Kierunek studiów : Informatyka Specjalność
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Wprowadzenie do numerycznej mechaniki płynów Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności: Inżynieria cieplna i samochodowa Rodzaj zajęć: wykład,
automatyka i robotyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44
Księgarnia PWN: Ryszard Rudnicki, Wykłady z analizy matematycznej Spis treści Rozdział I. Wstęp do matematyki... 13 1.1. Elementy logiki i teorii zbiorów... 13 1.1.1. Rachunek zdań... 13 1.1.2. Reguły
Karta (sylabus) przedmiotu
Karta (sylabus) przedmiotu [Budownictwo] Studia I stopnia Przedmiot: Metody obliczeniowe Rok: III Semestr: VI Rodzaj zajęć i liczba godzin: Studia stacjonarne Studia niestacjonarne Wykład 15 16 Ćwiczenia
Zwięzły kurs analizy numerycznej
Spis treści Przedmowa... 7 1. Cyfry, liczby i błędy podstawy analizy numerycznej... 11 1.1. Systemy liczbowe... 11 1.2. Binarna reprezentacja zmiennoprzecinkowa... 16 1.3. Arytmetyka zmiennopozycyjna...
Metody numeryczne równań różniczkowych zwyczajnych
Metody numeryczne równań różniczkowych zwyczajnych Marcin Jenczmyk m.jenczmyk@knm.katowice.pl 9 maja 2015 M. Jenczmyk XXX Sesja KNM Metody numeryczne R.R.Z. 1 / 18 Omawiany problem dotyczyć będzie numerycznego
Metody obliczeniowe fizyki i techniki I. 30h wykładu, 15h projektu
Metody obliczeniowe fizyki i techniki I 30h wykładu, 15h projektu Treść wykładu: -rozwiązywanie numeryczne zwyczajnych i cząstkowych równań różniczkowych fizyki i techniki - podstawowe metody numeryczne
Nazwa modułu kształcenia Nazwa jednostki prowadzącej moduł Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia
Nazwa modułu kształcenia Nazwa jednostki prowadzącej moduł Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia Numeryczne rozwiązywanie równań różniczkowych zwyczajnych Wydział Matematyki
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp
x y
Przykłady pytań na egzamin końcowy: (Uwaga! Skreślone pytania nie obowiązują w tym roku.). Oblicz wartość interpolacji funkcjami sklejanymi (przypadek (case) a), dla danych i =[- 4 5], y i =[0 4 -]. Jaka
użyteczne, gdy problem nie wymaga zmiany dt ważne: schematy do rozwiązywania równań cząstkowych mają często wielokrokowy charakter
Liniowe metody wielokrokowe dla równań zwyczajnych starsze niż RKo50lat użyteczne, gdy problem nie wymaga zmiany dt ważne: schematy do rozwiązywania równań cząstkowych mają często wielokrokowy charakter
Wstęp do równań różniczkowych
Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych
Metody numeryczne Numerical methods. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13
Metody numeryczne. dr hab inż. Tomasz Chwiej. Syllabus:
Metody numeryczne dr hab inż. Tomasz Chwiej Syllabus: https://syllabuskrk.agh.edu.pl/pl Plan wykładu 1. Arytmetyka komputerowa, błędy numeryczne 2. Rozwiązywanie układów algebraicznych równań liniowych
Specjalnościowy Obowiązkowy Polski Semestr szósty
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-ZIP-541z Techniki obliczeniowe w zagadnieniach inżynierskich Numerical
S Y L A B U S P R Z E D M I O T U
"Z A T W I E R D Z A M Prof. dr hab. inż. Radosław TRĘBIŃSKI dm Dziekan Wydziału Mechatroniki i Lotnictwa Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: NUMERYCZNE METODY OBLICZENIOWE
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Nazwa w języku angielskim ORDINARY DIFFERENTIAL EQUATIONS Kierunek studiów
Elementy rachunku różniczkowego i całkowego
Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami
OBLICZANIE POCHODNYCH FUNKCJI.
OBLICZANIE POCHODNYCH FUNKCJI. ROZWIĄZYWANIE RÓWNAŃ RÓŻNICZKOWYCH. ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ LINIOWYCH. Obliczanie pochodnych funkcji. Niech będzie dana funkcja y(x określona i różniczkowalna na przedziale
Wstęp do równań różniczkowych
Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia Metody obliczeniowe Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Państwowa Szkoła Wyższa im. Papieża Jana Pawła II,Katedra Nauk Technicznych,
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: METODY NUMERYCZNE W RÓWNANIACH RÓŻNICZKOWYCH Nazwa w języku angielskim: NUMERICAL METHODS IN DIFFERENTIAL EQUATIONS Kierunek
Egzamin / zaliczenie na ocenę* 1,6 1,6
Zał. nr 4 do ZW 33/0 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Metody numeryczne Nazwa w języku angielskim Numerical methods Kierunek studiów (jeśli dotyczy): Inżynieria Systemów Specjalność
Metody numeryczne rozwiązywania równań różniczkowych
Metody numeryczne rozwiązywania równań różniczkowych Marcin Orchel Spis treści Wstęp. Metody przybliżone dla równań pierwszego rzędu................ Metoda kolejnych przybliżeń Picarda...................2
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Matematyka 4 Rok akademicki: 2012/2013 Kod: JFM-1-401-s Punkty ECTS: 5 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Medyczna Specjalność: Poziom studiów: Studia I stopnia Forma
Metoda różnic skończonych dla
Metoda różnic skończonych dla cząstkowych równań różniczkowych na laboratorium rozwiązywać będziemy typowe równania: dyfuzji (również przewodnictwo cieplne) paraboliczne równanie Poissona (np. pole elektrostatyczne,
Metody numeryczne w przykładach
Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 (1) Nazwa Równania różniczkowe zwyczajne i cząstkowe (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot
dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska
Program wykładów z metod numerycznych na semestrze V stacjonarnych studiów stopnia I Podstawowe pojęcia metod numerycznych: zadanie numeryczne, algorytm. Analiza błędów: błąd bezwzględny i względny, przenoszenie
PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION
Mirosław GUZIK Grzegorz KOSZŁKA PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION W artykule przedstawiono niektóre
Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I
Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I dr inż. Tomasz Goetzendorf-Grabowski (tgrab@meil.pw.edu.pl) Dęblin, 11 maja 2009 1 Organizacja wykładu 5 dni x 6 h = 30 h propozycja zmiany: 6
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim WSTĘP DO TEORII RÓWNAŃ RÓŻNICZKOWYCH Nazwa w języku angielskim INTRODUCTION TO DIFFERENTIAL EQUATIONS THEORY
Metody numeryczne Numerical methods. Energetyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim uje od roku akademickiego 2012/13 2013/14
Równania różniczkowe Differential Equations
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 01/016 Z-ID-0a Równania różniczkowe Differential Equations A. USYTUOWANIE MODUŁU
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Środowiska obowiązuje studentów rozpoczynających studia w roku akademickim 206/207 Kierunek studiów: Budownictwo Profil:
Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński
Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa
inżynierskie metody numeryczne konsultacje: środy 8:30 10:00
inżynierskie metody numeryczne D11/106, bszafran@agh.edu.pl @g konsultacje: środy 8:30 10:00 http://galaxy.uci.agh.edu.pl/~bszafran/imn10 cel przedmiotu: przygotowanie do pracy w zakresie numerycznego
Metody numeryczne I Równania nieliniowe
Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem
Fizyka komputerowa(ii)
Instytut Fizyki Fizyka komputerowa(ii) Studia magisterskie Prowadzący kurs: Dr hab. inż. Włodzimierz Salejda, prof. PWr Godziny konsultacji: Poniedziałki i wtorki w godzinach 13.00 15.00 pokój 223 lub
PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika
PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika METODY NUMERYCZNE WYKŁAD Andrzej M. Dąbrowski amd@agh.edu.pl Paw.C p.100e Konsultacje: środa 14 45-15 30 czwartek 14 45 - Wykład 2 godz. lekcyjne.
KARTA KURSU (realizowanego w module specjalności) Metody numeryczne
KARTA KURSU (realizowanego w module ) Administracja systemami informatycznymi (nazwa ) Nazwa Nazwa w j. ang. Metody numeryczne Numerical methods Kod Punktacja ECTS* 3 Koordynator dr Kazimierz Rajchel Zespół
Wykład Ćwiczeni a 15 30
Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA AiR Nazwa w języku angielskim Mathematics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień studiów
Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu
Sylabus przedmiotu: Specjalność: Matematyka II Wszystkie specjalności Data wydruku: 21.01.2016 Dla rocznika: 2015/2016 Kierunek: Wydział: Zarządzanie i inżynieria produkcji Inżynieryjno-Ekonomiczny Dane
Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć
Analiza matematyczna Mathematical analysis. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Analiza matematyczna Mathematical analysis A. USYTUOWANIE MODUŁU W SYSTEMIE
METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer.
METODY NUMERYCZNE Wykład 3. dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. wykład 3 1 Plan Aproksymacja Interpolacja wielomianowa Przykłady Met.Numer. wykład 3 2 1 Aproksymacja Metody numeryczne
Równania różniczkowe zwyczajne: problem brzegowy [1D]
Równania różniczkowe zwyczajne: problem brzegowy [1D] 1) Równania różniczkowe zwyczajne jako szczególny przypadek problemów opisywanych przez eliptyczne równania cząstkowe 2) Problem brzegowy a problem
Metody numeryczne Numerical methods. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Matematyka (EiT stopień) Nazwa w języku angielskim: Mathematics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: PODSTAWY MODELOWANIA PROCESÓW WYTWARZANIA Fundamentals of manufacturing processes modeling Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie
BŁĘDY OBLICZEŃ NUMERYCZNYCH
BŁĘDY OBLICZEŃ NUMERYCZNYCH błędy zaokrągleń skończona liczba cyfr (bitów) w reprezentacji numerycznej błędy obcięcia rozwinięcia w szeregi i procesy iteracyjne - w praktyce muszą być skończone błędy metody
1 Równania nieliniowe
1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),
Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems)
Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems) P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Wprowadzenie Rozważmy
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym
Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Mathematics 1 for Economists Kierunek studiów (jeśli dotyczy): Specjalność (jeśli
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka w informatyce Rocznik: 2013/2014 Język wykładowy: Polski
Z-ETI-1040 Metody numeryczne Numerical Methods
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Z-ETI-1040 Metody numeryczne Numerical Methods Kod modułu Nazwa modułu Nazwa modułu w języku angielskim
SYLABUS. Studia Kierunek studiów Poziom kształcenia Forma studiów. stopnia
SYLABUS Nazwa przedmiotu Analiza matematyczna Nazwa jednostki prowadzącej Wydział Matematyczno-Przyrodniczy, przedmiot Instytut Fizyki Kod przedmiotu Studia Kierunek studiów Poziom kształcenia Forma studiów
Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych
Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych Rozwiązywanie równań różniczkowych zwyczajnych za pomocą szeregów metody dyskretne Metoda współczynników nieoznaczonych Metoda kolejnego
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: MODELOWANIE PROCESÓW ENERGETYCZNYCH Kierunek: ENERGETYKA Rodzaj przedmiotu: specjalności obieralny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
I. KARTA PRZEDMIOTU. Nazwa przedmiotu: Matematyka III. Kod przedmiotu:. Jednostka prowadząca: Wydział Nawigacji i Uzbrojenia Okrętowego. Kierunek: Informatyka 5. Specjalność: Systemy wspomagania decyzji\technologie
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2013/2014 Język wykładowy: Polski
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2013/2014 Język wykładowy: Polski Semestr
Matematyka I i II - opis przedmiotu
Matematyka I i II - opis przedmiotu Informacje ogólne Nazwa przedmiotu Matematyka I i II Kod przedmiotu Matematyka 02WBUD_pNadGenB11OM Wydział Kierunek Wydział Budownictwa, Architektury i Inżynierii Środowiska
Metody rozwiązania równania Schrödingera
Metody rozwiązania równania Schrödingera Równanie Schrödingera jako algebraiczne zagadnienie własne Rozwiązanie analityczne dla skończonej i nieskończonej studni potencjału Problem rozwiązania równania
2. Opis zajęć dydaktycznych i pracy studenta
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Technologia chemiczna, I Sylabus modułu: Matematyka B (006) 1. Informacje ogólne koordynator modułu rok akademicki 2013/2014 semestr forma
Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.
Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie
Zaliczenie na ocenę 1 0,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
Zał. nr 4 do ZW WYDZIAŁ ****** KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE I FUNKCJE ZESPOLONE Nazwa w języku angielskim Differential equations and complex functions Kierunek studiów (jeśli
Modelowanie rynków finansowych z wykorzystaniem pakietu R
Modelowanie rynków finansowych z wykorzystaniem pakietu R Metody numeryczne i symulacje stochastyczne Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Całkowanie
Podstawowy (podstawowy / kierunkowy / inny HES) Obowiązkowy (obowiązkowy / nieobowiązkowy) Semestr 2. Semestr letni (semestr zimowy / letni)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012 r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka 2 Nazwa modułu w języku angielskim Mathematics 2 Obowiązuje od
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Reprezentacja
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych Omówienie
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych Omówienie P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Nazwa przedmiotu Przedmiot ten występuje pod dwoma
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2014/2015 Język wykładowy: Polski Semestr
Układy równań liniowych. Krzysztof Patan
Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z własnościami
GEODEZJA I KARTOGRAFIA I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka II Nazwa modułu w języku angielskim Mathematics II Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra
Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania
INSTRUKCJA DO ĆWICZENIA NR 7
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym
Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Mathematics 1 for Economists Kierunek studiów (jeśli dotyczy): Specjalność (jeśli
Rok akademicki: 2013/2014 Kod: WGG s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Matematyka stosowana Rok akademicki: 2013/2014 Kod: WGG-1-304-s Punkty ECTS: 5 Wydział: Wiertnictwa, Nafty i Gazu Kierunek: Górnictwo i Geologia Specjalność: - Poziom studiów: Studia I stopnia
WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Nazwa w języku angielskim ORDINARY DIFFERENTIAL EQUATIONS Kierunek studiów (jeśli dotyczy): Automatyka
PRZEWODNIK PO PRZEDMIOCIE MATEMATYKA II E. Logistyka (inżynierskie) niestacjonarne. I stopnia. dr inż. Władysław Pękała. ogólnoakademicki.
Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Rok Semestr Jednostka prowadząca Osoba sporządzająca Profil Rodzaj