inżynierskie metody numeryczne cel przedmiotu:
|
|
- Izabela Czech
- 5 lat temu
- Przeglądów:
Transkrypt
1 inżynierskie metody numeryczne cel przedmiotu: przygotowanie do pracy w zakresie numerycznego modelowania zjawisk i urządzeń stosowanego w zagadnieniach techniki (inżynierii) i nauki symulacje obliczeniowe: w technice: inżynieria obliczeniowa: modelowanie i symulacja zjawisk i urządzeń. badania i optymalizacji procesów produkcyjnych oraz produktów. w nauce: interpretacja i przewidywanie danych doświadczalnych, zrozumienie obserwacji, przewidywanie nowych zjawisk. Modelowanie naukowe/inżynieryjne: metody podobne, różnica w celu oraz obiekcie badań 1
2 Metody badania układów/zjawisk/urządzeń: 1) Metody teoretyczne (modele rozwiązywane - analityczne) ściśle ograniczone do prostych problemów (w nauce te akurat są często najważniejsze) lub wyidealizowanych modeli. Idealizacja oparta na intuicji, które bywa błędna. 2) Badania doświadczalne nieodzowne i najważniejsze, dla nauk przyrodniczych i dla przemysłu lecz drogie (i / lub czasochłonne) często nie wystarczają dla zrozumienia zjawisk przydatne wsparcie ze strony obliczeń ścisłych lub przybliżonych 3) Symulacje numeryczne pozwalają na rozwiązywanie dokładnych równań z kontrolowalną dokładnością często do wykonania taniej i szybciej niż badania doświadczalne pozwalają prześledzić wyniki w funkcji dowolnych parametrów pełna informacja o możliwych do osiągnięcia własnościach 2
3 Tematyka wykładu: rozwiązywanie równań różniczkowych zwyczajnych i cząstkowych. Równania różniczkowe opis zjawisk wprowadzony w XVII - XIX w. Problemy rozwiązywalne analitycznie nieliczne. [np. Równania dynamiki płynów znane od połowy XIX wieku Navier/Stokes - od stosunkowo niedawna są rozwiązywane poza najprostszymi przypadkami] Metody numeryczne przybliżone i wydajne rozwiązania równań. -- niemal równie stare jak teoria równania różniczkowych Metoda Eulera XVIII w. Metody Rungego-Kutty, Galerkina początek XX wieku. Kwadratury Newtona, Gaussa stara historia (odkrycie Neptuna połowa XIX wieku wynik symulacji numerycznej). Nowsza historia: szybka transformata Fouriera, iteracje wielosiatkowe, niejawne metody RK Stosowanie metod numerycznych ograniczone i żmudne przed wynalezieniem komputerów. 3
4 Znaczenie modelowania numerycznego rosło i będzie rosło z rozwojem sprzętu... Rok FLOPS Pamięć 1949 EDSAC (lampowy) kB 1997 ASCI Red (symulator eksplozji jądrowych) GB 2002 NEC Earth Simulator (modelowanie klimatu) TB 2009 IBM Blue Gene / Q TB oraz metod obliczeniowych (za M. Schaeferem, computational engineering) Rok 1970 Eliminacja Gaussa Metoda Gaussa-Seidla Nadrelaksacja Metoda gradientów sprzężonych 1 k 1990 Metody wielosiatkowe 5 k Siatka adaptowana 50 k Tempo rachunków 4
5 Symulacje numeryczne są ze swej natury interdyscyplinarne (matematyka, metody numeryczne, nauki ścisłe, konkretna dziedzina inżynierii / nauki + programowanie) - gdzie trzeba będę starał się podawać elementarną wiedzę z zakresu fizyki opisywanych zjawisk. Matematyka numeryczna Informatyka Fizyka/Chemia Symulacja numeryczne Dziedzina pochodzenia problemu (inżynieria/nauka) Tylko w ujęciu inter symulacje są użyteczne (interesujące) 5
6 Miejsce numeryki w rozwiązywaniu problemów Problem (naukowy/inżynieryjny) Rozwiązanie Dane doświadczalne, modele matematyczne Analiza i interpretacja Równania różniczkowe / warunki brzegowe Weryfikacja i korekta modelu wartości użyteczne / mierzalne Przetworzona informacja *** Generacja siatki, dyskretyzacja (czasu / obszaru całkowania) * Obróbka danych *** Układy równań algebraicznych *wykład (FDM,FVM,FEM,BEM) ** wykład (ten lub MN) *** laboratorium Algebraiczne algorytmy numeryczne ** programowanie *** Rozwiązanie numeryczne (milion liczb) *** 6
7 Treść wykładu IMN 1 Rozwiązywanie równań różniczkowych metodą różnic skończonych. Program: Zwyczajne jawne i niejawne schematy różnicowe do rozwiązywania równań różniczkowych zwyczajnych. Błędy schematów różnicowych, zbieżność, bezwzględna stabilność, iteracja Newtona dla schematów niejawnych. Automatyczny dobór kroku czasowego. Problemy sztywne. Metody Rungego-Kutty. Tabele Butchera. Dwupunktowe problemy brzegowe. Metoda strzałów. Liniowe metody wielokrokowe. Równania cząstkowe. Typy równań. Metody iteracyjne dla równania Poissona. Metody wielosiatkowe. Równania Naviera Stokesa. Równanie adwekcji. Analiza stabilności schematów. Dyfuzja numeryczna. Schematy niejawne i wielopoziomowe. Schematy różnicowe dla równania dyfuzji. Problem odwrotny do równania dyfyzji. Szacowanie błędów i adapacja kroku czasowego. Równanie falowe. Drgania własne, schematy Newmarka i Verleta. 7
8 Literatura: Press, Numerical Recipes (The art of scientific computing). Weinberger, A first course in partial differential equations. Koonin, Computational Physics. Solin, Partial Differential Equations and the Finite Element Method. Zienkiewicz, Finite Element Method, its basis & fundamentals. Lienhard, A Heat Transfer Textbook. Sabersky, Fluid flow : a first course in fluid mechanics. Quarteroni, Numerical mathematics. Trefethen, Finite difference and spectral methods for ordinary and partial differential equations. Cichoń, Metody Obliczeniowe. Sewell, The numerical solution of ordinary and partial differential equations. Evans, Numerical Methods for Partial Differential Equations R.Grzymkowski, A.Kapusta, I. Nowak, D. Słota, Metody Numeryczne, Zagadnienia Brzegowe Schafer, Computational Engineering, Introduction to Numerical Methods 8
9 Równania różniczkowe: równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji zazwyczaj dane równanie różniczkowe spełnia pewna klasa funkcji dla jednoznacznego rozwiązania konieczne wprowadzenie warunków początkowych i / lub brzegowych związanych z danym problemem cząstkowe: funkcja więcej niż jednej zmienna, np.: czas i położenie np. wychylenie u(x,t) struny w położeniu x i czasie t u t x druga zasada dynamiki Newtona dla struny t+dt równania cząstkowe: nie zawsze jedną ze zmiennych jest czas, ale zawsze opisują obiekty rozciągłe 9
10 równania różniczkowe zwyczajne: jedna zmienna niezależna np. czas dla elementów punktowych, nierozciągłych r=(x,y) ruch w polu centralnym v(t) R C L napięciowe prawo Kirchoffa równanie liniowe drugiego rzędu (nieliniowe) równania Lotki-Volterry układ równań nieliniowych 2 rzędu problem początkowy po zadaniu x(t=0),y(t=0), x (t=0), y (t=0). układ r. 1 rzędu nieliniowe z populacja zajęcy, w wilków - naturalne tempo wzrostu pop. zajęcy (pod nieobecność w), zaniku wilków bez z 10 b, d - parametry oddziaływania populacji
11 zwyczajne zagadnienie brzegowe (zamiast czasu, położenie w 1D -element rozciągły opisany jedną współrzędną) zwyczajne rzędu drugiego lub wyższego + warunki na funkcje i pochodne na końcach przedziału np. równanie Eulera-Bernoulliego: wygięcie jednorodnego elastycznego pręta pod wpływem rozłożonego obciążenia w(x) lewy koniec: zamocowany i podparty prawy koniec: swobodny 11
12 Zaczynamy od rozwiązywania równań zwyczajnych 1) prostsza analiza niż dla cząstkowych 2) wprowadzimy pojęcia zbieżności, dokładności, stabilności itd. przydatne do metod rozwiązywania równań cząstkowych 3) jedna z metod rozwiązywania równań cząstkowych (metoda linii) - sprowadzamy równanie cząstkowe do układu równań zwyczajnych 12
13 Metoda linii: t układy równań różniczkowych zwyczajnych - po dyskretyzacji przestrzennej cząstkowego równania różniczkowego równanie adwekcji u n (t)=u(x n,t) x x 1 x 2 x 3 x 4 x 5 Dx centralny iloraz na pochodną przestrzenną układ N równań zwyczajnych 13
14 zwyczajne równania różniczkowe rzędu pierwszego [oraz ich układy] warianty: inna forma nieliniowe liniowe (układy równań liniowych rozwiązuje się analitycznie) b=0 jednorodne jeśli f=f(t) (nie zależy od y) rozwiązanie całka nieoznaczona jeśli f=f(y) (nie zależy od t) równanie autonomiczne (nie podlega zaburzeniom zależnym od t) 14
15 zagadnienie początkowe: równanie różniczkowe + warunek początkowy jeśli f=f(t) rozwiązanie: całka oznaczona 15
16 Równanie różniczkowe zwyczajne dowolnego rzędu można sprowadzić do układu równań pierwszego rzędu wystarczy jeśli potrafimy efektywnie rozwiązać układ równań rzędu pierwszego Przykład: Zmiana oznaczeń Układ równań do rozwiązania Definicja traktowana jako jedno z równań do rozwiązania Równanie na najwyższą pochodną - jedyne niedefinicyjne 16
17 O konieczności numerycznego rozwiązywania RRZ 1R: analitycznie rozwiązać można układ równań liniowych. nieliniowe: na ogół nie. zazwyczaj nie znamy rozwiązań analitycznych równań nieliniowych Układ 2 ciał oddziaływujących grawitacyjnie - analitycznie rozwiązany przez Newtona r 3 V 3 r 2 V 2 Układ 3: ciał nie posiada analitycznego rozwiązania r 1 V 1 ponadto: automaty mające reagować na otoczenie nie znają postaci analitycznej f : ta jest brana z pomiarów bez wzoru na f skazani jesteśmy na rachunki numeryczne 17
18 Numeryczne rozwiązywanie problemu początkowego jeśli potrafimy rozwiązać układ równań rzędu pierwszego -rozwiążemy każdy różniczkowy problem początkowy 18
19 Numeryczne rozwiązywanie problemu początkowego Dyskretyzacja zmiennej czasowej n n+1 n+2 itd. t Dt n+1 Dt n+2 dyskretyzacja zmiennej czasowej sprowadza równania różniczkowe do różnicowych (metoda różnic skończonych) Dobra metoda ma zapewnić zadaną dokładność przy pomocy minimalnej liczby wywołań f (przy maksymalnym kroku czasowym) przy dyskusji metod zakłada się, że wyliczenie f jest kosztowne [jeśli nie jest kosztowne nie ma problemu] 19
20 tw. Taylora - między t a Dt istnieje taki punkt x, że im więcej znamy pochodnych w punkcie t tym większe otoczenie t możemy dobrze przybliżyć obciętym rozwinięciem Taylora ograniczenie na resztę: maksymalna wartość czwartej pochodnej u w okolicy t dokładniej: między t a t+dt. Wartość błędu obcięcia znika do zera z Dt jak O(Dt 4 ) 20
21 Rząd błędu obcięcia w rozwinięciu Taylora rozwijane wokół t=0 [w roz.t. Dt=t] 1.0 u(0)=1 u=exp(-t 2 /2) u=exp(-t 2 /2) t 21
22 Jawny schemat Eulera 22
23 Jawny schemat Eulera przepis na pojedynczy krok z u(t) do u(t+dt) można wyliczyć bo znamy t i u(t) błąd lokalny jawnego Eulera w kroku t n-1 wg tw. Taylora l n = t n błąd lokalny schematu różnicowego: odchylenie wyniku numerycznego od dokładnego, które pojawia się w pojedynczym kroku całkowania 23
24 Jawny schemat Eulera stosowany wielokrotnie:... krok wcale nie musi być taki sam dla każdego n, ale tak przyjmiemy do analizy 24
25 Jawny schemat Eulera dokładny u(t)=exp(t) dla du/dt=u W rozwiązaniu dokładnym nachylenie u dane jest przez u w każdej chwili Jawnym schemat Eulera zakłada, że nachylenie jest stałe w jednym kroku czasowym i bierze je z wartości przybliżonej dla początku kroku Dt Dt Dt Jawny schemat Eulera Tylko u 0 = u (0) później u n < u(t n ) Co prowadzi do akumulacji błędów 25
26 Jawny schemat Eulera dokładny u(t)=exp(t) dla du/dt=u każdy krok wykonywany z nachyleniem branym z chwili, w której krok się zaczyna Zmniejszamy krok Dt: Błąd lokalny zmaleje, ale do ustalonej chwili T musimy wykonać więcej kroków. W każdym kroku wprowadzamy nowy błąd. Błędy się akumulują. Czy opłaca się zmniejszać kroki czasowe? Definicja: Błąd globalny różnica między rozwiązaniem dokładnym a numerycznym w chwili t Czy się opłaca znaczy: Czy błąd globalny maleje gdy Dt maleje? a jeśli tak - czy maleje do zera? (czy możliwe jest dokładne rozwiązanie równania różniczkowego uzyskane jako granica schematu różnicowego) 26
27 Jawny schemat Eulera Czy błąd całkowity maleje gdy Dt maleje? Czy maleje do zera? eksperyment numeryczny problem początkowy: u =lu, u(0)=1 z rozwiązaniem dokładnym u(t)=exp(lt) u l=-100 Dt=0.001 dokładny jawny Euler t e (błąd globalny) = u dokładny - numeryczny t 27
28 Jawny schemat Eulera Czy błąd globalny maleje gdy Dt maleje? Czy maleje do zera? eksperyment numeryczny problem początkowy: u =lu, u(0)=1 z rozwiązaniem dokładnym u(t)=exp(lt) l=-100 zmniejszajmy krok czasowy, jaki wynik w chwili t=0.01? [1/e= ] n Dt u n exp(-1)-u n błąd globalny w chwili t=0.01 wydaje się zmieniać liniowo z krokiem czasowym interpretacja: błąd lokalny rzędu Dt 2 popełniony n = t/dt razy daje błąd globalny rzędu Dt 28
29 zmniejszajmy krok czasowy, jaki wynik w chwili t=0.01? [1/e= ] n Dt u n exp(-1)-u n błąd globalny w chwili t=0.01 wydaje się zmieniać liniowo z krokiem czasowym Definicja: Metody różnicowa jest zbieżna jeśli błąd globalny e znika do zera w chwili T gdy z Dt do 0 29
30 rząd zbieżności (dokładności) określa jakość metody: jak szybko błąd globalny zmierza do zera w funkcji Dt jawna metoda Eulera = pierwszy rząd dokładności O(Dt) jest to minimalny rząd dokładności dla użytecznej metody zmniejszajmy krok czasowy, jaki wynik w chwili t=0.01? [1/e= ] n Dt u n exp(-1)-u n Dowód zbieżności metody Eulera dla ogólnego równania liniowego pokażemy później. 30
31 Wróćmy do eksperymentu numerycznego i zwiększmy krok czasowy do Dt=0.05 problem początkowy: u =-100u, u(0)=1 z rozwiązaniem dokładnym u(t)=exp(-100t) iteracja się rozbiega t n u n wniosek: wyniki metody zbieżnej mogą eksplodować dla zbyt dużego kroku czasowego 31
32 bezwzględna stabilność schematu różnicowego schemat różnicowy dla du/dt = f (dla danego f) i dla danego kroku czasowego jest bezwzględnie stabilny jeśli kolejne generowane przez niego wartości pozostają skończone. Uwaga: Zbieżność jest cechą schematu nie zależną od f Bezwzględna stabilność określa się dla schematu i konkretnego równania W charakterystyce schematów Najczęściej stabilność bezwzględna: określana jest dla autonomicznego problemu liniowego 32
33 Weźmy l = -1, u(0)=1, rozwiązanie dokładne u(t)=exp(-t) Przepis Eulera: u n+1 =u n -Dtu n u ( t ) dokładny Dt=0.5 Dt=0.9 Dt=1 : wszędzie 0 u ( t ) Dt=1.2 Dt=2 Dt= t t Schemat bezwzględnie stabilny dla Dt 2 uwaga: rozwiązanie bezwzględnie stabilne (np. Dt=1 lub Dt=2) może być bardzo niedokładne lub wręcz - jakościowo złe = tutaj stałe i niemonotoniczne odpowiednio 33
34 bezwzględna stabilność jawnej metody Eulera u n = u n-1 + ldt u n-1 wsp. wzmocnienia wyniki pozostaną skończone dla n jeśli: 34
35 Zmienna zespolona z= ldt region bezwzględnej stabilności metody: zbiór z=ldt, dla których metoda jest bezwzględnie stabilna region bezwzględnej stabilności jawnej metody Eulera: zbiór punktów odległych od (-1,0) o nie więcej niż 1 koło o środku w (-1,0) i promieniu 1 Dt Im (l) Dt Re(l) niestabilność bezwzględna metody dla prawej połowy p. Gaussa = nic dziwnego rozwiązanie dokładne y 0 exp(lt) eksploduje do nieskończoności gdy t. 35
36 pozbyć się ograniczenia na krok czasowy ze strony bezwzględnej stabilności: niejawna metoda Eulera jawna metoda Eulera niejawna metoda Eulera jawna metoda Eulera (funkcjonuje jak podstawienie) funkcjonuje jak równanie nieliniowe metoda odważna metoda ostrożna zmiana u zgodna z prawą stroną w punkcie docelowym 36
37 niejawna metoda Eulera: problem początkowy: u =-100u, u(0)=1 niejawny Euler z rozwiązaniem dokładnym u(t)=exp(-100t) t n jawny Euler u n t n u n e(t n ) (6) (7) (629) W naszym problemie u n = 1/6 n itd.. exp(-100 t n ) gaśnie znacznie szybciej niż 1/6 n mało dokładne, ale zawsze to lepiej niż eksplodująca oscylacja jawnego Eulera 37
38 niejawna metoda Eulera: region bezwzględnej stabilności Dt Im (l) 1-1 Dt Re(l) rejon bezwzględnej stabilności: dopełnienie pustego koła o środku w (1,0) i promieniu 1 38
39 Dt Im (l) 1-1 Dt Re(l) Niejawny schemat Eulera l=1 zakres niestabilności Dt (0,2) nse nse Dt=0.1 exp(t) Dt=0.8 Zbliżamy się do Dt=1 wyniki schematu rosną coraz szybciej Dla Dt=1 nieskończoność w pierwszym kroku Dt=1.2 Dt=1.5 Dt=2 1,-1,1,-1 itd 39
40 regiony stabilności metod Eulera Dt Im (l) Dt Im (l) Dt Re(l) -1 Dt Re(l) metoda Eulera jawna niejawna metoda Eulera 40
41 niejawna metoda Eulera: region bezwzględnej stabilności Dt Im (l) 1-1 Dt Re(l) Re(l)<0 : niejawny Euler bezwzględnie stabilny dla dowolnego kroku czasowego takie metody: tzw. A-stabilne dla Re(l)>0, poza kołem metoda Eulera jest bezwzględnie stabilna mimo, że rozwiązania równania różniczkowego są niestabilne (patrz wyżej) w tym obszarze metoda jest nadstabilna daje skończone wartości, mimo że rozwiązania dokładne dąży do nieskończoności bezwzględna stabilność nie oznacza dobrej dokładności. W regionie nadstabilności dla Re(l)>0 błędy będą rosły w nieskończoność. 41
42 jak rozwiązać, gdy nie można rozwikłać równania (f nieliniowe względem u) lub gdy f nieznane w formie wzoru 1) iteracja funkcjonalna iterować do zbieżności jeśli się zbiegnie u m =u m-1 i mamy rozwiązanie równania nieliniowego 42
43 iteracja funkcjonalna przykład problem początkowy: u =-100u, u(0)=1, dt=0.05 z rozwiązaniem dokładnym u(t)=exp(-100t) t n u n e(t n ) (6) (7) (629) kolejne oszacowania: 1, -4, 21, -104, 521, -2604,... iteracja się nie zbiega cały zysk z niejawności stracony bo nie potrafimy wykonać kroku 43
44 iteracja funkcjonalna przykład iteracja się nie zbiega. zmniejszymy krok dt, zaczynając iterację od u n-1 będziemy bliżej rozwiązania. Może się zbiegnie. dt=0.01 dt=0.001 (1,0,1,0,1,0) 1, 0.9, 0.91, 0.909, , , , iteracja funkcjonalna się zbiega gdy Dt max f u (t,u) 1 (w otoczeniu u) u =-100u, Dt 100 < 1 uwaga: w tej sytuacji jawny Euler jest bezwzględnie stabilny dla 2-krotnie większego kroku! [dla jawnego Eulera Dt 100 < 2] Z iteracją funkcjonalną stosować wstecznego Eulera nie ma sensu. 44
45 problem początkowy: u =-100u, u(0)=1, dt=0.05 1, -4, 21, -104, 521, -2604,... z rozwiązaniem dokładnym u(t)=exp(-100t) oscylująca rozbieżność - stłumimy ją: iteracja funkcjonalna zapewniamy zbieżność modyfikując przepis iteracyjny zamiast: mieszając nowe i stare rozwiązania z wagą w, 0 w 1 Zabieg podobny do podrelaksacji jeśli się zbiegnie to do rozwiązania schematu niejawnego 45
46 problem początkowy: u =-100u, u(0)=1, dt=0.05 z rozwiązaniem dokładnym u(t)=exp(-100t) w=0.1 w=0.3 iterujemy u(dt) wybierając w odpowiedni sposób wagę w: potrafimy ustabilizować iterację i doprowadzić ją do zbieżności w=
47 47 w=0 dt=0.01 (1,0,1,0,1,0) w=.2 (optymalne dla dt=0.05) 0.8,0.68, 0.608, , , , , , , 0.503, , , , ,..., 1/2 tutaj optymalne byłoby w=1/2 (zbieżność w jednej iteracji) dt=0.001 w=1 1, 0.9, 0.91, 0.909, , , , w=0.2 dla w=.7 0.3,0.58,0.468,0.512,0.4948,0.5003,0.4998
48 48 dt=0.01 w=0 (1,0,1,0,1,0) dt=0.001 w=.2 (optymalne dla dt=0.05) 0.8,0.68, 0.608, , , , , , , 0.503, , , , ,..., 1/2 tutaj optymalne byłoby w=.5 (zbieżność w jednej iteracji natychmiastowa) w=1 1, 0.9, 0.91, 0.909, , , , w=0.2 dla Problem: w=.7 0.3,0.58,0.468,0.512,0.4948,0.5003, ) w trzeba odpowiednio dobrać (mniejszy krok czasowy, w bliższe 1) 2) dla źle dobranego w iteracja może być wolnozbieżna Proces optymalizacji (np. dynamicznej) w może być kłopotliwy.
49 Na szczęście nie jesteśmy skazani na iterację funkcjonalną 2) metoda Newtona-Raphsona (stycznych) szukamy zera równania nieliniowego F(x) F(x n +Dx)=F(x n )+Dx F (x n ) F(x n +Dx)=0 x n+1 =x n -F(x n )/F (x n ) 49
50 2) metoda Newtona-Raphsona szukamy zera równania nieliniowego F(x n +Dx)=F(x n )+Dx F (x n ) F(x n +Dx)=0 x n+1 =x n -F(x n )/F (x n ) 50
51 niejawny schemat Eulera z metodą Newtona-Raphsona, zastosowanie problem początkowy: u =-100u, u(0)=1 z rozwiązaniem dokładnym u(t)=exp(-100 t) kolejne przybliżenia: Dt=0.05 (jawny Euler stabilny bezwzględnie dla Dt <0.02) 1, , zbieżność w jednej iteracji - F jest liniowa w u Wniosek: dla liniowych f liniowe jest również F wtedy iteracja Newtona zbiega się w jednej iteracji niezależnie od wielkości Dt zakres zbieżności: w praktyce Dt znacznie większy niż w iteracji funkcjonalnej ale: niedostępne proste oszacowane przedziału zbieżności w praktyce iteracja Newtona szybsza i szerzej zbieżna niż iteracja funkcjonalna 51
52 niejawny schemat Eulera z metodą Newtona-Raphsona, zastosowanie dla problemu nieliniowego problem początkowy: dla równania: u =u(u-1)
53 1.0 czerwone niejawny Euler z krokiem Dt=0.1 u(0)= iteracja dla u(dt) ze startem w u(0):
54 niejawny schemat Eulera z metodą Newtona-Raphsona gdy przepis funkcyjny nieznany (np. programujemy metodę dla dowolnego f ) można szacować z ilorazu różnicowego (poniżej centralny = dokładnie różniczkuje parabole) cena zastąpienia dokładnej pochodnej ilorazem różnicowym? przy osiągniętej zbieżności - nie zmieni rozwiązania! może tylko spowolnić iterację! dla naszego przykładu u =u(u-1) centralny iloraz różnicowy zadziała dokładnie dla dowolnego du żeby przykład był ciekawszy: policzmy pochodną z wstecznego ilorazu różnicowego 54
55 u(0)=0.8, pierwszy krok t=dt: u =f(u)=u(u-1) metoda Newtona dla pochodnej f liczonej numerycznie w każdej iteracji: dokładna pochodna iloraz wsteczny du=u/ iloraz wsteczny du=u/ przybliżenie w liczeniu pochodnej nie zmienia wyniku do którego iteracja zbiega bo: x n+1 =x n -F(x n )/F (x n ) nieco spowalnia iterację numeryczne liczenie pochodnych w każdej iteracji może być kosztowne w praktyce można np. wstawić tutaj u n-1 można również używać oszacowania pochodnej w wielu kolejnych iteracjach odnawiać pochodną gdy iteracja zwalnia 55
56 zamiast iteracja Newtona z pochodną liczoną w poprzednim kroku (nieiterowaną) dla naszego przykładu: f(u)=u(u-1) z dt=0.1 iterowana pochodna pochodna brana z punktu t n-1, u n dt=0.5 iterowana z poprzedniego kroku dt=1 iterowana stara bez różnicy! wolniej brak zbieżności w mianowniku: 1-dt(2u-1) stara: 0.94, doiterowana stara: 0.7 doiterowana: stara 0.4 doiterowana
inżynierskie metody numeryczne D11/106, konsultacje: piątki 8:30-10:30
inżynierskie metody numeryczne D11/106, bszafran@agh.edu.pl konsultacje: piątki 8:30-10:30 http://galaxy.uci.agh.edu.pl/~bszafran/imn11 cel przedmiotu: przygotowanie do pracy w zakresie numerycznego modelowania
inżynierskie metody numeryczne D10/325, Konsultacje 8:00 9:30
inżynierskie metody numeryczne D10/325, bszafran@agh.edu.pl http://galaxy.uci.agh.edu.pl/~bszafran/ Konsultacje 8:00 9:30 cel przedmiotu: przygotowanie do pracy w zakresie numerycznego modelowania zjawisk
inżynierskie metody numeryczne D10/325,
inżynierskie metody numeryczne D10/325, bszafran@agh.edu.pl http://galaxy.uci.agh.edu.pl/~bszafran/imn11 cel przedmiotu: przygotowanie do pracy w zakresie numerycznego modelowania zjawisk i urządzeń stosowanego
Prawa fizyki: zapisywane w postaci równań różniczkowych (Newtona, Maxwella, dyfuzji, falowe, Poissona, Laplace a, Naviera-Stokesa, Schroedingera)
Numeryczne techniki rozwiązywania równań fizyki I D10/325, bszafran@agh.edu.pl Wykłady będą dostępne z: http://galaxy.uci.agh.edu.pl/~bszafran/ Konsultacje: poniedziałek 8-9:30 cel przedmiotu: przygotowanie
pozbyć się ograniczenia na krok czasowy ze strony bezwzględnej stabilności: niejawna metoda Eulera
pozbyć się ograniczenia na krok czasowy ze strony bezwzględnej stabilności: niejawna metoda Eulera jawna metoda Eulera niejawna metoda Eulera jawna metoda Eulera (funkcjonuje jak podstawienie) funkcjonuje
inżynierskie metody numeryczne D10/325, Konsultacje 8:00 9:30
inżynierskie metody numeryczne D10/325, bszafran@agh.edu.pl http://galaxy.uci.agh.edu.pl/~bszafran/ Konsultacje 8:00 9:30 cel przedmiotu: przygotowanie do pracy w zakresie numerycznego modelowania zjawisk
równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji
Równania różniczkowe: równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji cząstkowe: funkcja więcej niż jednej zmienna, np.: czas i położenie np. wychylenie u(x,t)
y i b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta
b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta przedział (a,b) dzielimy na siatkę, powiedzmy o stałym kroku: punkty siatki: u A y i w metodzie strzałów używamy
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Tomasz Chwiej 6 czerwca 2016 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów różnicowych: iloraz
u(t) RRZ: u (t)=f(t,u) Jednokrokowy schemat różnicowy
u(t) t Dt RRZ: u (t)=f(t,u) Jednokrokowy schemat różnicowy u(t+dt)=u(t)+f(t,u(t),dt) klasyczna formuła RK4: u(t) k 1 u k 2 k 3 k 4 4 wywołania f na krok, błąd lokalny O(Dt 5 ) gdy f tylko funkcja czasu
Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład
Inżynierskie metody numeryczne II Konsultacje: wtorek 8-9:30 Wykład Metody numeryczne dla równań hiperbolicznych Równanie przewodnictwa cieplnego. Prawo Fouriera i Newtona. Rozwiązania problemów 1D metodą
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018 Tomasz Chwiej 22 stycznia 2019 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, 2017 Spis treści Od autorów 11 I. Klasyczne metody numeryczne Rozdział 1. Na początek 15 1.1.
numeryczne rozwiązywanie równań całkowych r i
numeryczne rozwiązywanie równań całkowych r i Γ Ω metoda elementów brzegowych: punktem wyjściowym było rozwiązanie równania całkowego na brzegu obszaru całkowania równanie: wygenerowane z równania różniczkowego
Metody obliczeniowe fizyki i techniki I. 30h wykładu, 15h projektu
Metody obliczeniowe fizyki i techniki I 30h wykładu, 15h projektu Treść wykładu: -rozwiązywanie numeryczne zwyczajnych i cząstkowych równań różniczkowych fizyki i techniki - podstawowe metody numeryczne
Metoda różnic wstecznych: interpolujemy u wielomianem od chwili n-k aż do n-1
Metoda różnic wstecznych: interpolujemy u wielomianem od chwili n-k aż do n-1 następnie żądamy, aby jego pochodna w chwili n spełniała równania różniczkowe (kolokacja) z tego warunku wyliczamy z niego
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp
Δt)] niejawny schemat Eulera [globalny błąd O(Δt)] u(t) f(t,u) f(t,u) u(t) [t+ Δt,u(t+Δt)]
jawny schemat Eulera [globalny błąd O(Δt)] niejawny schemat Eulera [globalny błąd O(Δt)] u(t) f(t,u) [t,u(t)] )]dokładne d u(t) () f(t,u) [t+ Δt,u(t+Δt)] [t+ Δt,u(t+Δt)] Δt)] Δt t Δt t u(t) [t,u(t)] dokładne
Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć
Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44
Księgarnia PWN: Ryszard Rudnicki, Wykłady z analizy matematycznej Spis treści Rozdział I. Wstęp do matematyki... 13 1.1. Elementy logiki i teorii zbiorów... 13 1.1.1. Rachunek zdań... 13 1.1.2. Reguły
x y
Przykłady pytań na egzamin końcowy: (Uwaga! Skreślone pytania nie obowiązują w tym roku.). Oblicz wartość interpolacji funkcjami sklejanymi (przypadek (case) a), dla danych i =[- 4 5], y i =[0 4 -]. Jaka
1 Równania nieliniowe
1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),
Zwięzły kurs analizy numerycznej
Spis treści Przedmowa... 7 1. Cyfry, liczby i błędy podstawy analizy numerycznej... 11 1.1. Systemy liczbowe... 11 1.2. Binarna reprezentacja zmiennoprzecinkowa... 16 1.3. Arytmetyka zmiennopozycyjna...
Elementy rachunku różniczkowego i całkowego
Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami
Karta (sylabus) przedmiotu
Karta (sylabus) przedmiotu [Budownictwo] Studia I stopnia Przedmiot: Metody obliczeniowe Rok: III Semestr: VI Rodzaj zajęć i liczba godzin: Studia stacjonarne Studia niestacjonarne Wykład 15 16 Ćwiczenia
t. sztywny problem w pojedynczym równaniu: u(t)=cos(t) dla dużych ż t rozwiązanie i ustalone
Problem opisany RRZ jest sztywny gdy: 1.... jest charakteryzowany yróżnymi skalami czasowymi. 2. Stabilność bezwzględna nakłada silniejsze ograniczenia na krok czasowy niż dokładność. 3. Metody jawne się
Metoda różnic skończonych dla
Metoda różnic skończonych dla cząstkowych równań różniczkowych na laboratorium rozwiązywać będziemy typowe równania: dyfuzji (również przewodnictwo cieplne) paraboliczne równanie Poissona (np. pole elektrostatyczne,
użyteczne, gdy problem nie wymaga zmiany dt ważne: schematy do rozwiązywania równań cząstkowych mają często wielokrokowy charakter
Liniowe metody wielokrokowe dla równań zwyczajnych starsze niż RKo50lat użyteczne, gdy problem nie wymaga zmiany dt ważne: schematy do rozwiązywania równań cząstkowych mają często wielokrokowy charakter
METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer.
METODY NUMERYCZNE Wykład 3. dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. wykład 3 1 Plan Aproksymacja Interpolacja wielomianowa Przykłady Met.Numer. wykład 3 2 1 Aproksymacja Metody numeryczne
Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I
Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I dr inż. Tomasz Goetzendorf-Grabowski (tgrab@meil.pw.edu.pl) Dęblin, 11 maja 2009 1 Organizacja wykładu 5 dni x 6 h = 30 h propozycja zmiany: 6
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów.
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Plan wykładu: 1. Wyznaczanie pojedynczych pierwiastków rzeczywistych równań nieliniowych metodami a) połowienia (bisekcji)
Metody numeryczne I Równania nieliniowe
Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem
Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych
Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych Rozwiązywanie równań różniczkowych zwyczajnych za pomocą szeregów metody dyskretne Metoda współczynników nieoznaczonych Metoda kolejnego
Metody numeryczne rozwiązywania równań różniczkowych
Metody numeryczne rozwiązywania równań różniczkowych Marcin Orchel Spis treści Wstęp. Metody przybliżone dla równań pierwszego rzędu................ Metoda kolejnych przybliżeń Picarda...................2
Metody numeryczne równań różniczkowych zwyczajnych
Metody numeryczne równań różniczkowych zwyczajnych Marcin Jenczmyk m.jenczmyk@knm.katowice.pl 9 maja 2015 M. Jenczmyk XXX Sesja KNM Metody numeryczne R.R.Z. 1 / 18 Omawiany problem dotyczyć będzie numerycznego
Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra
Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania
Metody numeryczne Wykład 7
Metody numeryczne Wykład 7 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Plan wykładu Rozwiązywanie równań algebraicznych
automatyka i robotyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)
Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Obliczenia Naukowe Nazwa w języku angielskim : Scientific Computing. Kierunek studiów : Informatyka Specjalność
Metody numeryczne w przykładach
Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach
inżynierskie metody numeryczne konsultacje: środy 8:30 10:00
inżynierskie metody numeryczne D11/106, bszafran@agh.edu.pl @g konsultacje: środy 8:30 10:00 http://galaxy.uci.agh.edu.pl/~bszafran/imn10 cel przedmiotu: przygotowanie do pracy w zakresie numerycznego
Wstęp do równań różniczkowych
Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych
ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH
Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym
Iteracyjne rozwiązywanie równań
Elementy metod numerycznych Plan wykładu 1 Wprowadzenie Plan wykładu 1 Wprowadzenie 2 Plan wykładu 1 Wprowadzenie 2 3 Wprowadzenie Metoda bisekcji Metoda siecznych Metoda stycznych Plan wykładu 1 Wprowadzenie
S Y L A B U S P R Z E D M I O T U
"Z A T W I E R D Z A M Prof. dr hab. inż. Radosław TRĘBIŃSKI dm Dziekan Wydziału Mechatroniki i Lotnictwa Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: NUMERYCZNE METODY OBLICZENIOWE
Równania różniczkowe zwyczajne: problem brzegowy [1D]
Równania różniczkowe zwyczajne: problem brzegowy [1D] 1) Równania różniczkowe zwyczajne jako szczególny przypadek problemów opisywanych przez eliptyczne równania cząstkowe 2) Problem brzegowy a problem
Wstęp do równań różniczkowych
Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia Metody obliczeniowe Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Państwowa Szkoła Wyższa im. Papieża Jana Pawła II,Katedra Nauk Technicznych,
PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION
Mirosław GUZIK Grzegorz KOSZŁKA PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION W artykule przedstawiono niektóre
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Wprowadzenie do numerycznej mechaniki płynów Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności: Inżynieria cieplna i samochodowa Rodzaj zajęć: wykład,
Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.
Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie
Modelowanie rynków finansowych z wykorzystaniem pakietu R
Modelowanie rynków finansowych z wykorzystaniem pakietu R Metody numeryczne i symulacje stochastyczne Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Całkowanie
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)
Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński
Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa
OBLICZANIE POCHODNYCH FUNKCJI.
OBLICZANIE POCHODNYCH FUNKCJI. ROZWIĄZYWANIE RÓWNAŃ RÓŻNICZKOWYCH. ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ LINIOWYCH. Obliczanie pochodnych funkcji. Niech będzie dana funkcja y(x określona i różniczkowalna na przedziale
Metody numeryczne Numerical methods. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Reprezentacja
Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe
Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011 Problem Cauchy ego dy dx = f(x, y) (1) y(x
Układy równań liniowych. Krzysztof Patan
Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych
METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. prof. dr hab.inż. Katarzyna Zakrzewska
METODY NUMERYCZNE Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą prof. dr hab.inż. Katarzyna Zakrzewska Met.Numer. Wykład 4 1 Rozwiązywanie równań nieliniowych z jedną niewiadomą
Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems)
Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems) P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Wprowadzenie Rozważmy
METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH
METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH Jednym z zastosowań metod numerycznych jest wyznaczenie pierwiastka lub pierwiastków równania nieliniowego. W tym celu stosuje się szereg metod obliczeniowych np:
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 5. Terminologia. Metody Eulera, metody punktu środkowego i metody trapezowe
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 5. Terminologia. Metody Eulera, metody punktu środkowego i metody trapezowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr
Całkowanie numeryczne
Całkowanie numeryczne Poniżej omówione zostanie kilka metod przybliżania operacji całkowania i różniczkowania w szczególności uzależnieniu pochodnej od jej różnic skończonych gdy równanie różniczkowe mamy
Metoda różnic skończonych dla
Metoda różnic skończonych dla cząstkowych równań różniczkowych na laboratorium rozwiązywać będziemy typowe równania: dyfuzji (również przewodnictwo cieplne) paraboliczne równanie Poissona (np. pole elektrostatyczne,
II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski
II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski 1 1 Różniczkowanie numeryczne Rozważmy funkcję f(x) określoną na sieci równoodległyc węzłów. Funkcja f(x) może być dana za pomocą wzoru analitycznego
KADD Metoda najmniejszych kwadratów funkcje nieliniowe
Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji
BŁĘDY OBLICZEŃ NUMERYCZNYCH
BŁĘDY OBLICZEŃ NUMERYCZNYCH błędy zaokrągleń skończona liczba cyfr (bitów) w reprezentacji numerycznej błędy obcięcia rozwinięcia w szeregi i procesy iteracyjne - w praktyce muszą być skończone błędy metody
INFORMATYKA ELEMENTY METOD NUMERYCZNYCH.
INFORMATYKA ELEMENTY METOD NUMERYCZNYCH http://www.infoceram.agh.edu.pl METODY NUMERYCZNE Metody numeryczne zbiór metod rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
Specjalnościowy Obowiązkowy Polski Semestr szósty
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-ZIP-541z Techniki obliczeniowe w zagadnieniach inżynierskich Numerical
Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe
Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Problem Cauchy ego dy dx = f(x, y) (1) y(x
dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska
Program wykładów z metod numerycznych na semestrze V stacjonarnych studiów stopnia I Podstawowe pojęcia metod numerycznych: zadanie numeryczne, algorytm. Analiza błędów: błąd bezwzględny i względny, przenoszenie
Zajęcia nr 1: Zagadnienia do opanowania:
Laboratorium komputerowe oraz Ćwiczenia rachunkowe z przedmiotu Metody obliczeniowe Prowadzący: L. Bieniasz (semestr letni 018) Zagadnienia do opanowania przed zajęciami, pomocnicze zadania rachunkowe
Egzamin z Metod Numerycznych ZSI, Grupa: A
Egzamin z Metod Numerycznych ZSI, 06.2005. Grupa: A Nazwisko: Imię: Numer indeksu: Ćwiczenia z: Data: Część 1. Test wyboru, max 36 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa
region bezwzględnej stabilności dla ogólnej niejawnej metody RK R(z) 1 może być nieograniczony niejawna 1 stopniowa
region bezwzględnej stabilności dla ogólnej niejawnej metody RK u =λu u=λu, z=λδt dla metod niejawnych: ij nie można ż obciąć bićrozwinięcia i i Taylora, bo A pełnał współczynnik wzmocnienia nie jest wielomianem,
Całkowanie numeryczne przy użyciu kwadratur
Całkowanie numeryczne przy użyciu kwadratur Plan wykładu: 1. Kwadratury Newtona-Cotesa a) wzory: trapezów, parabol etc. b) kwadratury złożone 2. Ekstrapolacja a) ekstrapolacja Richardsona b) metoda Romberga
Metody numeryczne Numerical methods. Energetyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim uje od roku akademickiego 2012/13 2013/14
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów.
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Plan wykładu: 1. Wyznaczanie pojedynczych pierwiastków rzeczywistych równań nieliniowych metodami a) połowienia (bisekcji)
Wstęp do metod numerycznych 9a. Układy równań algebraicznych. P. F. Góra
Wstęp do metod numerycznych 9a. Układy równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Układy równań algebraicznych Niech g:r N równanie R N będzie funkcja klasy co najmniej
RÓWNANIA NIELINIOWE Maciej Patan
RÓWNANIA NIELINIOWE Maciej Patan Uniwersytet Zielonogórski Przykład 1 Prędkość v spadającego spadochroniarza wyraża się zależnością v = mg ( 1 e c t) m c gdzie g = 9.81 m/s 2. Dla współczynnika oporu c
Nazwa modułu kształcenia Nazwa jednostki prowadzącej moduł Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia
Nazwa modułu kształcenia Nazwa jednostki prowadzącej moduł Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia Numeryczne rozwiązywanie równań różniczkowych zwyczajnych Wydział Matematyki
ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ
ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny
Metody rozwiązania równania Schrödingera
Metody rozwiązania równania Schrödingera Równanie Schrödingera jako algebraiczne zagadnienie własne Rozwiązanie analityczne dla skończonej i nieskończonej studni potencjału Problem rozwiązania równania
Fizyka komputerowa(ii)
Instytut Fizyki Fizyka komputerowa(ii) Studia magisterskie Prowadzący kurs: Dr hab. inż. Włodzimierz Salejda, prof. PWr Godziny konsultacji: Poniedziałki i wtorki w godzinach 13.00 15.00 pokój 223 lub
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: METODY NUMERYCZNE W RÓWNANIACH RÓŻNICZKOWYCH Nazwa w języku angielskim: NUMERICAL METHODS IN DIFFERENTIAL EQUATIONS Kierunek
Egzamin / zaliczenie na ocenę* 1,6 1,6
Zał. nr 4 do ZW 33/0 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Metody numeryczne Nazwa w języku angielskim Numerical methods Kierunek studiów (jeśli dotyczy): Inżynieria Systemów Specjalność
Metody numeryczne. materiały do wykładu dla studentów
Metody numeryczne materiały do wykładu dla studentów 5. Przybliżone metody rozwiązywania równań 5.1 Lokalizacja pierwiastków 5.2 Metoda bisekcji 5.3 Metoda iteracji 5.4 Metoda stycznych (Newtona) 5.5 Metoda
Laboratorium II: Modelowanie procesów fizycznych Skrypt do ćwiczeń
PJWSTK/KMKT-07082006 Laboratorium II: Modelowanie procesów fizycznych Katedra Metod Komputerowych Techniki Polsko Japońska Wyższa Szkoła Technik Komputerowych I. KINETYKA Kinetyka zajmuje się ruchem ciał
Definicje i przykłady
Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest
Równania różniczkowe cząstkowe (RRCz) równanie eliptyczne równanie Poissona
Równania różniczkowe cząstkowe (RRCz) równanie eliptyczne równanie Poissona 1. Klasyfikacja RRCz, przykłady 2. Metody numerycznego rozwiązywania równania Poissona a) FFT (met. bezpośrednia) b) metoda różnic
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 7a. Metody wielokrokowe
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 7a. Metody wielokrokowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Motywacja Metody wielokrokowe sa
Informatyka i komputerowe wspomaganie prac inżynierskich
Informatyka i komputerowe wspomaganie prac inżynierskich Dr Zbigniew Kozioł - wykład Dr Grzegorz Górski - laboratorium Wykład III Numeryczne rozwiązywanie równań różniczkowych. MES, Metoda Elementów Skończonych
Optymalizacja ciągła
Optymalizacja ciągła 1. Optymalizacja funkcji jednej zmiennej Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.02.2019 1 / 54 Plan wykładu Optymalizacja funkcji jednej
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych Omówienie
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych Omówienie P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Nazwa przedmiotu Przedmiot ten występuje pod dwoma
Metoda Różnic Skończonych (MRS)
Metoda Różnic Skończonych (MRS) METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek () Równania różniczkowe zwyczajne
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Nazwa w języku angielskim ORDINARY DIFFERENTIAL EQUATIONS Kierunek studiów
Metody rozwiązywania równań nieliniowych
Metody rozwiązywania równań nieliniowych Rozwiązywanie równań nieliniowych Ogólnie równanie o jednej niewiadomej x można przedstawić w postaci f ( x)=0, x R, (1) gdzie f jest wystarczająco regularną funkcją.
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka w informatyce Rocznik: 2013/2014 Język wykładowy: Polski