Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe
|
|
- Magda Skiba
- 6 lat temu
- Przeglądów:
Transkrypt
1 Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe P. F. Góra
2 Problem Cauchy ego dy dx = f(x, y) (1) y(x 0 ) = y 0 to przepis na to jak uzyskać rozwiazanie po infinitezymalnie małym kroku czasowym. Copyright c P. F. Góra 3 2
3 Metody numeryczne zamiana problemu ciagłego na dyskretny x 0, x 1 = x 0 + h, x 2 = x 1 + h,..., x n = x n 1 + h,... y 0 = y(x 0 ), y 1 = y(x 1 ), y 2 = y(x 2 ),..., y n = y(x n ),... h krok czasowy (niekiedy może się zmieniać, ale o tym później) Copyright c P. F. Góra 3 3
4 Metoda jawna (explicit) s krokowa, rzędu p: y n+1 = F(h; x n, y n, y n 1,..., y n s+1 ) + O(h p+1 ) (2) Przepis konstrukcyjny pozwalajacy wyliczyć wartość poszukiwanej funkcji w kolejnym punkcie korzystajac z s punktów, w których wartość ta jest znana. Różnica pomiędzy dokładnym a przybliżonym rozwiazaniem jest (w jednym kroku) rzędu h p+1. Copyright c P. F. Góra 3 4
5 Metoda niejawna (implicit) s krokowa, rzędu p: y n+1 = G(h; x n, y n+1, y n, y n 1,..., y n s+1 ) + O(h p+1 ) (3) Równanie algebraiczne (na ogół nieliniowe, wielowymiarowe), jakie musi spełniać poszukiwana funkcja w kolejnym punkcie. Równanie to trzeba numerycznie rozwiazać w każdym kroku całkowania równania różniczkowego. W równaniu uwzględniane sa informacje z s punktów, w których poszukiwana funkcja jest już znana. Różnica pomiędzy dokładnym a przybliżonym rozwiazaniem jest (w jednym kroku) rzędu h p+1. Copyright c P. F. Góra 3 5
6 Zgodność Od każdej metody numerycznego całkowania równań różniczkowych wymaga się, aby była zgodna z wyjściowym równaniem, to jest aby odtwarzała je w granicy nieskończenie małych kroków. Przykład: Dla metody jawnej (2) rozpatrzmy wyrażenie y n+1 y n h = F(h; x n, y n, y n 1,..., y n s+1 ) y n h. (4) Lewa strona (4) nie zależy od wyboru metody i jest równa (y n+1 y n )/h = (y(x n +h) y(x n ))/h, a zatem jej granica przy h 0 + wynosi dy/dx x=xn = f(x n, y n ). Copyright c P. F. Góra 3 6
7 Cała informacja o metodzie zawarta jest w prawej stronie (4), a zatem warunkiem zgodności metody (2) jest F(h; x n, y n, y n 1,..., y lim n s+1 ) y n h 0 + h = f(x n, y n ). (5) Dla metod niejawnych zapisanych formalnie w postaci (3) nie można podać kryterium zgodności w postaci zwartej (można to zawsze zrobić dla konkretnej metody niejawnej), tym niemniej wymaga się, aby wszystkie, a więc także niejawne, metody były zgodne. Copyright c P. F. Góra 3 7
8 Stabilność Podczas numerycznego rozwiazywania równań różniczkowych popełnia się dwa rodzaje nieuniknionych błędów numerycznych: bład metody, wynikajacy z zastapienia ścisłego problemu ciagłego problemem dyskretnym oraz bład zaokraglenia, wynikajacy z faktu, iż obliczenia prowadzone sa ze skończona dokładnościa. Copyright c P. F. Góra 3 8
9 Dlatego też warunek poczatkowy w problemie Cauchy ego ulega w każdym kroku rozmyciu : dy dx = f(x, y) y(x 0 ) = y 0 dy dx = f(x, y) y(x 1 ) = y 1 +ε 1 dy = f(x, y) dx y(x 2 ) = y 2 +ε 2 (6) Gdyby ten bład rozmycia mógł propagować się z kroku na krok, rozwiazanie numeryczne szybko mogłoby przestać mieć cokolwiek wspólnego z rozwiazaniem wyjściowego problemu Cauchy ego: aby metoda była stabilna, błędy popełniane w kolejnych krokach nie moga narastać z kroku na krok. Copyright c P. F. Góra 3 9
10 Zakładamy, że błędy sa niewielkie, ε n 1, możemy się więc ograniczyć do przybliżenia liniowego. W tym przybliżeniu ε n+1 = Gε n. (7) Błędy nie będa narastać z kroku na krok, jeśli wszystkie wartości własne macierzy G będa spełniać γ < 1. Macierz G nazywamy macierza wzmocnienia. Copyright c P. F. Góra 3 10
11 Przykład: Dla jednokrokowej metody jawnej y n+1 + ε n+1 = F(h; x n, y n + ε n ) F(h; x n, y n ) + F y y=yn ε n. (8) W powyższym wyrażeniu F/ y oznacza różniczkowanie wszystkich składowych F po wszystkich składowych y, czyli obliczanie jakobianu: Dla jednokrokowej metody jawnej G = F y (h; x n, y n ). (9) Jeżeli jakaś metoda w ogóle może być stabilna dla danego równania, wymóg stabilności oznacza na ogół wzięcie odpowiednio małego kroku h. Zgodnie z wyrażeniem (9), krok czasowy, który w pewnym punkcie zapewnia stabilność, może go nie zapewniać w innym. Copyright c P. F. Góra 3 11
12 Jawna metoda Eulera Problem Cauchy ego (1) to przepis na to jak uzyskać rozwiazanie po infinitezymalnie małym kroku czasowym. Spróbujmy zastosować ten przepis dla kroków małych, ale o skończonej długości. W tym celu dokonajmy rozwinięcia Taylora: y n+1 = y(x n+1 ) = y(x n + h) y(x n ) + dy h + O(h 2 ), (10) dx x=xn,y=y n a zatem y n+1 = y n + h f(x n, y n ) + O(h 2 ). (11) Metoda ta, zwana jawna metoda Eulera, jest najpopularniejsza (i jedna z najgorszych) metoda używanych do numerycznego całkowania równań różniczkowych zwyczajnych. Copyright c P. F. Góra 3 12
13 Uwaga na bład zaokraglenia! Zauważmy, iż po prawej stronie (11) mamy sumę dwóch wyrazów: Jednego dużego, rzędu O(1), i drugiego małego, rzędu O(h). Może to doprowadzić to utraty dokładności, zwłaszcza jeśli 0 < h 1. Problem jest tym większy, że ostateczne rozwiazanie uzyskujemy po wielu krokach Eulera. Można temu przynajmniej częściowo zaradzić odpowiednio adaptujac algorytm sumacyjny Kahana: Niech z 0 = 0. W każdym kroku obliczamy δ = h f(x n, y n ) + z n, (12a) y n+1 = y n + δ, (12b) z n+1 = δ ( ) y n+1 y n (12c) Nawiasy w ostatnim z wyrażeń (12) nie sa redundantne. W artymetyce dokładnej (bez błędów zaokraglenia) z n 0 i metoda (12) sprowadza się do metody (11). Chociaż nie będziemy tego pisać jawnie, trick zastosowany w (12) należy stosować we wszystkich metodach omawianych w trakcie tych wykładów. Copyright c P. F. Góra 3 13
14 Inne wyprowadzenie metody Eulera: (pozornie inne) y n + y(x n + h) = y n + x n +h x n +h x n dy dx dx = y n + x n +h x n f(x, y(x))dx x n (f(x n, y n ) + O(h)) dx = y n + h f(x n, y n ) + O(h 2 ). (13) Copyright c P. F. Góra 3 14
15 Interpretacja geometryczna jawnej metody Eulera (przypadek jednowymiarowy) y 0 y 1 x 0 x 1 Copyright c P. F. Góra 3 15
16 Przykład zastosowania jawnej metody Eulera dy/dx = -y + x y(0) = 1 2e -x + x -1 h=1/16 h=1/ y x Copyright c P. F. Góra 3 16
17 Stabilność jawnej metody Eulera y n+1 + ε n+1 = y n + ε n + h f(x n, y n + ε n ) y n + ε n + h f(x n, y n ) + h J(x n, y n )ε n (14) a zatem macierz wzmocnienia ma postać G = I + h J(x n, y n ), (15) gdzie J(x n, y n ) = f/ y x=xn,y=y n jest jakobianem prawej strony równania po drugiej zmiennej. I jest macierza jednostkowa. Copyright c P. F. Góra 3 17
18 Obserwacja: Dla równania liniowego dy dx = Ay, (16) gdzie A R n n, macierza wzmocnienia w jawnej metodzie Eulera jest G = I + ha. (17) Macierz A może, w ogólności, zależeć od zmiennej niezależnej, A = A(x). Copyright c P. F. Góra 3 18
19 Niejawna metoda Eulera Przy wyprowadzaniu jawnej metody Eulera rozwijaliśmy poszukiwana funkcję w szereg Taylora wokół lewego krańca przedziału. Nic jednak nie szkodzi dokonać rozwinięcia wokół prawego krańca: y n = y(x n ) = y(x n+1 h) y(x n+1 ) dy h + O(h 2 ), dx x=xn+1,y=y n+1 (18) a zatem y n+1 = y n + h f(x n+1, y n+1 ) + O(h 2 ). (19) Copyright c P. F. Góra 3 19
20 W wyrażeniu (19) nieznana wielkość y n+1 występuje po obu stronach jest to zatem równanie algebraiczne, jakie spełniać ma numeryczna wartość poszukiwanego rozwiazania. Zauważmy, że obie metody Eulera, jawna i niejawna, sa tego samego rzędu. Istotnie, y n+1 = y n + h f(x n+1, y n+1 ) + O(h 2 ) = y n + h f(x n + h, y n + h f(x n+1, y n+1 )) + O(h 2 ) ( y n + h f(x n, y n ) + f h + f ) h f( ) + O(h 2 ) + O(h 2 ) x... y... = y n + h f(x n, y n ) + O(h 2 ). (20) Copyright c P. F. Góra 3 20
21 Interpretacja geometryczna niejawnej metody Eulera (przypadek jednowymiarowy) y 0 y guess y 1 y target y expl x 0 x 1 Copyright c P. F. Góra 3 21
22 Przykład zastosowania niejawnej metody Eulera dy/dx = -y + x y(0) = 1 niejawna h=1/8 niejawna h=1/16 2e -x + x - 1 jawna h=1/ y x Copyright c P. F. Góra 3 22
23 Stabilność niejawnej metody Eulera Dla metody niejawnej (19) otrzymujemy y n+1 + ε n+1 = y n + ε n + h f(x n+1, y n+1 + ε n+1 ) y n + ε n + h f(x n+1, y n+1 ) + h J(x n+1, y n+1 )ε n+1, (21) a zatem G = ( I h J(x n+1, y n+1 ) ) 1. (22) J, jak poprzednio, jest jakobianem f po drugiej zmiennej, ale obliczanym w innym punkcie. Obserwacja: Dla równania liniowego (16) macierz wzmocnienia ma postać G = (I ha) 1. (23) Copyright c P. F. Góra 3 23
24 Przykład: Rozpatrzmy następujacy problem Cauchy ego: [ ] [ d u = dx v u(0) = 1, v(0) = 0. Analityczne rozwiazanie tego problemu ma postać ] [ u v ], (24) u(x) = e x e 1000x, (25a) v(x) = e x e 1000x. (25b) Copyright c P. F. Góra 3 24
25 Rozwiazanie (25) ma dwie charakterystyczne skale czasowe: T 1 = 1 i T 2 = 1/1000 T 1. Ta druga skala czasowa nie gra, poza poczatkowym okresem, żadnej istotnej roli w rozwiazaniu, spodziewamy się więc, że można na nia nie zwracać uwagi w rozwiazaniu numerycznym. Nic bardziej błędnego! Spróbujmy rozwiazać problem (24) przy pomocy jawnej metody Eulera z krokiem h = 1/256. Wyniki przedstawia tabela x u(x) jawna met. Eulera, h = / / / / / / / / Copyright c P. F. Góra 3 25
26 oraz wykres jawna metoda Eulera, h=1/256 rozwiazanie dokladne 10 0 u(x) /128 2/128 3/128 4/128 x Copyright c P. F. Góra 3 26
27 Skad bierze się taki wynik? Zauważmy, że du dx = 1009, a zatem dla małych wartości argumentu szukana funkcja narasta bardzo szybko, jednak, jak się x=0 okazuje, wybrany krok czasowy jest większy niż charakterystyczna skala tego narastania przybliżenie numeryczne przestrzeliwuje, w następnym kroku stara się ten bład skompensować i w rezultacie rozwiazanie rozbiega się oscylacyjnie. Rozwiazanie jawna metoda Eulera z krokiem dwa razy mniejszym, h = 1/512, także wykazuje silne oscylacje dla małych wartości argumentu, ale oscylacje te sa tłumione. Jednocześnie jawna metoda Eulera z krokiem h = 1/2048 oraz niejawna metoda Eulera z krokiem h = 1/256 nie oscyluja i mimo poczatkowych odchyleń od rozwiazania dokładnego, zbiegaja się do niego bardzo szybko. Copyright c P. F. Góra 3 27
28 2.0 u(x) jawna, h=1/512 rozwiazanie dokladne 0 1/32 2/32 3/32 4/32 5/32 6/32 7/32 8/32 0 1/128 2/128 3/128 4/128 x jawna, h=1/2048 rozwiazanie dokladne niejawna, h=1/256 Copyright c P. F. Góra 3 28
29 Zjawiska te można wyjaśnić w oparciu o teorię stabilności. Wartości własne macierzy z problemu (24) wynosza λ 1 = 1, λ 2 = Wobec tego wartości własne macierzy wzmocnienia (17) wynosza γ 1 = 1 h, γ 2 = h. Z warunku γ 1,2 < 1 wynika, iż dla zapewnienia stabilności rozwiazania problemu (24) w jawnej metodzie Eulera musi zachodzić 0 < h < Układ typu (24), w którym występuje kilka wyraźnie różnych skal czasowych i jawna metoda numeryczna w celu zapewnienia stabilności musi się dostosować do najszybszej z nich, mimo iż jest ona praktycznie nieobecna w rozwiazaniu, nazywa się problemem sztywnym. Wartości własne macierzy wzmocnienia (23) w metodzie niejawnej wynosza γ 1 = (1 + h) 1, γ 2 = ( h) 1, a zatem h > 0 metoda jest stabilna. Metody takie nazywamy A stabilnymi. Copyright c P. F. Góra 3 29
30 Problem: Zmiana pochodnej na przestrzeni kroku całkowania Wróćmy do wyjściowego problemu Cauchyego (1). Metody Eulera, jawna i niejawna, ignoruja fakt, iż prawa strona (pochodna poszukiwanej funkcji) zmienia się w trakcie wykonywania kroku całkowania. Spodziewamy się, że pewna średnia pochodna będzie lepiej opisywać zmiany funkcji na całym przedziale o długości równej długości kroku całkowania. Wobec tego jako średnia pochodna przyjmijmy pochodna w środkowym punkcie przedziału. Ale jak znaleźć wartość szukanej funkcji w tym środkowym punkcie? Najprościej jest znaleźć ja korzystajac z jawnej metody Eulera z krokiem połówkowym, następnie zaś obliczona w punkcie środkowym pochodna przenosimy do lewego krańca przedziału i wykonujemy cały krok o długości h. Zatem Copyright c P. F. Góra 3 30
31 Jawna metoda punktu środkowego k 1 = f(x n, y n ), (26a) ( k 2 = f x n + h 2, y n + h ) 2 k 1, (26b) y n+1 = y n + hk 2 + O(h 3 ). (26c) Dlaczego rzad tej metody równa się 2 (odrzucone wyrazy sa rzędu O(h 2+1 )), dowiemy się później. Podobnie później, w szerszym kontekscie, przeanalizujemy stabilność tej metody. Copyright c P. F. Góra 3 31
32 Interpretacja geometryczna jawnej metody punktu środkowego y 0 y 1/2 y 1 y Euler x 0 x 1/2 x 1 Copyright c P. F. Góra 3 32
33 Przykład zastosowania jawnej metody punktu środkowego dy/dx = -y + x y(0) = 1 2e -x + x -1 midpoint h=1/8 Euler h=1/ y x Copyright c P. F. Góra 3 33
34 Niejawna metoda punktu środkowego Metoda punktu środkowego oczywiście ma także swój wariant niejawny. W jawnej metodzie punktu środkowego konstruujemy punkt środkowy; w metodzie niejawnej poszukujemy punktu o tej własności, że jeżeli cofniemy się w kierunku wyznaczonym przez pochodna funkcji w tym punkcie, trafimy na lewy kraniec przedziału. Innymi słowy, kierunek od punktu w lewym krańcu przedziału do poszukiwanego punktu środkowego musi pokrywać się z kierunkiem pochodnej w punkcie środkowym: k 2 = f ( x n + h 2, y n + h ) 2 k 2, (27a) y n+1 = y n + hk 2 + O(h 3 ). (27b) Zauważmy, że metoda (27) formalnie wymaga tylko jednego obliczenia prawej strony równania różniczkowego, a mimo to jest metoda rzędu drugiego. Tego, że tak jest, dowiedziemy później. Copyright c P. F. Góra 3 34
35 Interpretacja geometryczna niejawnej metody punktu środkowego y 0 y 1/2 y 1 x 0 x 1/2 x 1 Copyright c P. F. Góra 3 35
36 Jawna metoda trapezowa Jest szereg innych sposobów uśredniania zmian pochodnej na długości kroku całkowania. Metoda równie dobra, co metoda punktu środkowego, jest metoda oparta na następujacym schemacie: 1. oblicz pochodna w lewym krańcu przedziału 2. idź z krokiem Eulera do prawego krańca przedziału, 3. oblicz pochodna w osiagniętym punkcie na prawym krańcu przedziału, 4. przejdź jeszcze raz cały przedział w kierunku danym przez średnia z obu obliczonych pochodnych czyli k 1 = f(x n, y n ), (28a) k 2 = f(x n + h, y n + hk 1 ), (28b) y n+1 = y n + h k 1 + k O(h 3 ). (28c) Metoda ta bierze swoja nazwę od metody trapezowej całkowania funkcji, opartej na podobnym schemacie. Inna nazwa tej metody jest metoda Heuna. Copyright c P. F. Góra 3 36
37 Interpretacja geometryczna metody trapezowej y 0 y 1 y Euler x 0 x 1 Copyright c P. F. Góra 3 37
38 Niejawna metoda trapezowa W jawnej metodzie trapezowej średnia pochodna jest średnia arytmetyczna pochodnej w lewym krańcu przedziału i w eulerowskim przybliżeniu pochodnej w prawym krańcu przedziału. W niejawnej metodzie trapezowej, zamiast przybliżenia eulerowskiego biorę poszukiwany punkt, otrzymujac y n+1 = y n + h f(x n, y n ) + f(x n+1, y n+1 ) 2 Zauważmy, że metodę tę można w sposób równoważny zapisać w postaci (29) k 1 = f(x n, y n ), (30a) k 2 = f ( x n + h, y n h k h k 2), (30b) y n+1 = y n h (k 1 + k 2 ). (30c) Copyright c P. F. Góra 3 38
39 Metody predyktor-korektor Metody niejawne sa kosztowne w użyciu, wymagaja bowiem rozwiazywania u- kładu równań algebraicznych, na ogół nieliniowego, w każdym kroku iteracji. Czasami ułatwiamy sobie życie, zastępujac rozwiazanie ścisłe rozwiazaniem samouzgodnionym (self-consistent). Podejście to prowadzi do całej klasy metod, znanych jako metody predyktor-korektor. Jeśli F jest pewna metoda jawna, G pewna metoda niejawna, obliczamy predyktor: korektor: y predict n+1 = F(h; x n, y n, y n 1,... ), (31a) y correct n+1 = G(h; x n, y predict n+1, y n, y n 1,... ). (31b) Krok korektora możemy iterować. Copyright c P. F. Góra 3 39
40 Niejawna metoda trapezowa w postaci predyktor-korektor Dla niejawnej metody trapezowej wyglada to tak: y predict n+1 = (obliczony z jawnej metody trapezowej), (32a) n+1 = y n + h f(x n, y n ) + f(x n+1, y predict n+1 ), (32b) 2 n+1 = y n + h f(x n, y n ) + f(x n+1, y correct s 1 n+1 ), s = 2, 3,...(32c) 2 y correct 1 y correct s Uwaga: Po jednym kroku korektora odtwarzamy jawna metodę trapezowa (metodę Heuna). Nie jest reguła, że tak się dzieje. Copyright c P. F. Góra 3 40
41 Uwagi Wiadomo, że często rozwiazania samouzgodnione różnia się od rozwiazań dokładnych układów równań algebraicznych. W praktyce wykonuje się tylko kilka (niewiele!) kroków korektora w przeciwnym razie zysk na czasie wykonania jest niewielki lub nie ma go wcale. Metody predyktor-korektor sa metodami jawnymi, a zatem na ogół nie maja korzystnych własności stabilności, typowych dla metod niejawnych. Copyright c P. F. Góra 3 41
42 Metody punktu środkowego oraz metody trapezowe, jawne i niejawne, to tylko szczególne sposoby uwzględniania zmienności pochodnej w trakcie kroku całkowania. Należa one do bardzo szerokiej kategorii, znanej ogólnie jako metody Rungego Kutty Copyright c P. F. Góra 3 42
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 5. Terminologia. Metody Eulera, metody punktu środkowego i metody trapezowe
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 5. Terminologia. Metody Eulera, metody punktu środkowego i metody trapezowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr
Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe
Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011 Problem Cauchy ego dy dx = f(x, y) (1) y(x
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp
Wstęp do metod numerycznych 14. Kilka wstępnych uwag na temat numerycznego rozwiazywania równań różniczkowych zwyczajnych
Wstęp do metod numerycznych 14. Kilka wstępnych uwag na temat numerycznego rozwiazywania równań różniczkowych zwyczajnych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012/13 Równania różniczkowe zwyczajne
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 7a. Metody wielokrokowe
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 7a. Metody wielokrokowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Motywacja Metody wielokrokowe sa
Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems)
Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems) P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Wprowadzenie Rozważmy
Wstęp do metod numerycznych 9a. Układy równań algebraicznych. P. F. Góra
Wstęp do metod numerycznych 9a. Układy równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Układy równań algebraicznych Niech g:r N równanie R N będzie funkcja klasy co najmniej
Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne. P. F. Góra
Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Zasady zaliczenie ćwiczeń egzamin ustny; na egzaminie
Komputerowa analiza zagadnień różniczkowych 6. Metoda diagramowa. Obszary stabilności. P. F. Góra
Komputerowa analiza zagadnień różniczkowych 6. Metoda diagramowa. Obszary stabilności. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2013 Metoda diagramowa Ręczne wyprowadzanie równan wiaż acych współczynniki
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele
Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra
Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania
Metody numeryczne równań różniczkowych zwyczajnych
Metody numeryczne równań różniczkowych zwyczajnych Marcin Jenczmyk m.jenczmyk@knm.katowice.pl 9 maja 2015 M. Jenczmyk XXX Sesja KNM Metody numeryczne R.R.Z. 1 / 18 Omawiany problem dotyczyć będzie numerycznego
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam
Komputerowa analiza zagadnień różniczkowych 5. Metody Rungego-Kutty (II) P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/
Komputerowa analiza zagadnień różniczkowych 5. Metody Rungego-Kutty (II) P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ Metody DIRK Jeśli spodziewamy się problemów ze stabilnościa, w szczególności jeśli
Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych
Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych Rozwiązywanie równań różniczkowych zwyczajnych za pomocą szeregów metody dyskretne Metoda współczynników nieoznaczonych Metoda kolejnego
Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne. P. F. Góra
Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2013 Zasady zaliczenie ćwiczeń egzamin ustny; na egzaminie
Układy równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
Numeryczne rozwiązywanie równań różniczkowych ( )
Numeryczne rozwiązywanie równań różniczkowych Równanie różniczkowe jest to równanie, w którym występuje pochodna (czyli różniczka). Przykładem najprostszego równania różniczkowego może być: y ' = 2x które
Definicje i przykłady
Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na
ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH
Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym
Wstęp do metod numerycznych Faktoryzacja QR i SVD. P. F. Góra
Wstęp do metod numerycznych Faktoryzacja QR i SVD P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Transformacja Householdera Niech u R N, u 0. Tworzymy macierz W sposób oczywisty P T = P. Obliczmy
Komputerowa analiza zagadnień różniczkowych 6. Metody wielokrokowe. P. F. Góra
Komputerowa analiza zagadnień różniczkowych 6. Metody wielokrokowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Liniowe metody wielokrokowe Często przywoływana wada metod Rungego-Kutty jest konieczność
Wstęp do metod numerycznych Zagadnienia wstępne Uwarunkowanie. P. F. Góra
Wstęp do metod numerycznych Zagadnienia wstępne Uwarunkowanie P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2014 Sposoby reprezentacji liczb całkowitych i rzeczywistych patrz wykład z Teoretycznych Podstaw
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy
Wstęp do równań różniczkowych
Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych
Wstęp do metod numerycznych 11. Minimalizacja: funkcje wielu zmiennych. P. F. Góra
Wstęp do metod numerycznych 11. Minimalizacja: funkcje wielu zmiennych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Strategia minimalizacji wielowymiarowej Zakładamy, że metody poszukiwania minimów
Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)
Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości
Wstęp do metod numerycznych 9. Rozwiazywanie równań algebraicznych. P. F. Góra
Wstęp do metod numerycznych 9. Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania
Całkowanie numeryczne
Całkowanie numeryczne Poniżej omówione zostanie kilka metod przybliżania operacji całkowania i różniczkowania w szczególności uzależnieniu pochodnej od jej różnic skończonych gdy równanie różniczkowe mamy
x y
Przykłady pytań na egzamin końcowy: (Uwaga! Skreślone pytania nie obowiązują w tym roku.). Oblicz wartość interpolacji funkcjami sklejanymi (przypadek (case) a), dla danych i =[- 4 5], y i =[0 4 -]. Jaka
Wstęp do równań różniczkowych
Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych
Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć
KADD Minimalizacja funkcji
Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego
1 Równania nieliniowe
1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),
Równania różniczkowe liniowe wyższych rzędów o stałych współcz
Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym
Metoda Różnic Skończonych (MRS)
Metoda Różnic Skończonych (MRS) METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek () Równania różniczkowe zwyczajne
Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.
Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 8. Metody wielokrokowe Metody Verleta
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 8. Metody wielokrokowe Metody Verleta P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Motywacja Metody wielokrokowe
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)
II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski
II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski 1 1 Różniczkowanie numeryczne Rozważmy funkcję f(x) określoną na sieci równoodległyc węzłów. Funkcja f(x) może być dana za pomocą wzoru analitycznego
u(t) RRZ: u (t)=f(t,u) Jednokrokowy schemat różnicowy
u(t) t Dt RRZ: u (t)=f(t,u) Jednokrokowy schemat różnicowy u(t+dt)=u(t)+f(t,u(t),dt) klasyczna formuła RK4: u(t) k 1 u k 2 k 3 k 4 4 wywołania f na krok, błąd lokalny O(Dt 5 ) gdy f tylko funkcja czasu
ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ
ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w
7 zaokr aglamy do liczby 3,6. Bład względny tego przybliżenia jest równy A) 0,8% B) 0,008% C) 8% D) 100
ZADANIE 1 (1 PKT) Dane sa zbiory A = ( 6 7, 6) i B = N liczb naturalnych dodatnich. Wówczas iloczyn zbiorów A B jest równy A) {1, 2,, 4, 5} B) (, 5 C) {1, 2,, 4, 5, 6} D) (, 6) ZADANIE 2 (1 PKT) Jeśli
27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE
27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
13. Równania różniczkowe - portrety fazowe
13. Równania różniczkowe - portrety fazowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 13. wrównania Krakowie) różniczkowe - portrety fazowe 1 /
pozbyć się ograniczenia na krok czasowy ze strony bezwzględnej stabilności: niejawna metoda Eulera
pozbyć się ograniczenia na krok czasowy ze strony bezwzględnej stabilności: niejawna metoda Eulera jawna metoda Eulera niejawna metoda Eulera jawna metoda Eulera (funkcjonuje jak podstawienie) funkcjonuje
3. Interpolacja. Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która
3. Interpolacja Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która przyjmuje wartości y 1, y 2,, y n, dla skończonego zbioru argumentów x 1, x
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,
Komputerowa analiza zagadnień różniczkowych 2. O tym, co można rozwiazać analitycznie. P. F. Góra
Komputerowa analiza zagadnień różniczkowych 2. O tym, co można rozwiazać analitycznie P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Jeszcze o równaniach liniowych Rozważmy skalarne, jednorodne równanie
5 Równania różniczkowe zwyczajne rzędu drugiego
5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =
Metody numeryczne w przykładach
Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach
Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego
Matematyka 2 Równania różniczkowe zwyczajne rzędu drugiego Równania różniczkowe liniowe rzędu II Równanie różniczkowe w postaci y + a 1 (x)y + a 0 (x)y = f(x) gdzie a 0 (x), a 1 (x) i f(x) są funkcjami
Rozwiązywanie równań nieliniowych
Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej
Analiza matematyczna i algebra liniowa Elementy równań różniczkowych
Analiza matematyczna i algebra liniowa Elementy równań różniczkowych Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936
Wstęp do metod numerycznych Eliminacja Gaussa Faktoryzacja LU. P. F. Góra
Wstęp do metod numerycznych Eliminacja Gaussa Faktoryzacja LU P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2014 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam
Metody numeryczne I Równania nieliniowe
Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem
Wstęp do metod numerycznych Zagadnienia wstępne Uwarunkowanie. P. F. Góra
Wstęp do metod numerycznych Zagadnienia wstępne Uwarunkowanie P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Źródła błędów numerycznych Wyniki obliczeń numerycznych obarczone sa błędami. Ich najważniejszymi
Równania różniczkowe. Analiza Matematyczna. Aleksander Denisiuk
Analiza Matematyczna Równania różniczkowe Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Analiza
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie
Równanie przewodnictwa cieplnego (I)
Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca
Wstęp do metod numerycznych Zagadnienia wstępne Uwarunkowanie. P. F. Góra
Wstęp do metod numerycznych Zagadnienia wstępne Uwarunkowanie P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2017 Źródła błędów numerycznych Wyniki obliczeń numerycznych obarczone sa błędami. Ich najważniejszymi
UKŁADY RÓWNAŃ LINIOWYCH
Projekt dofinansowała Fundacja mbanku UKŁADY RÓWNAŃ LINIOWYCH CZĘŚĆ I Układ równań to przynajmniej dwa równania spięte z lewej strony klamrą, np.: x + 0 Każde z równań musi zawierać przynajmniej jedną
Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L
Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com
Matematyka licea ogólnokształcące, technika
Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem
Obliczenia iteracyjne
Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej
Metody numeryczne rozwiązywania równań różniczkowych
Metody numeryczne rozwiązywania równań różniczkowych Marcin Orchel Spis treści Wstęp. Metody przybliżone dla równań pierwszego rzędu................ Metoda kolejnych przybliżeń Picarda...................2
Rozkłady wielu zmiennych
Rozkłady wielu zmiennych Uogólnienie pojęć na rozkład wielu zmiennych Dystrybuanta, gęstość prawdopodobieństwa, rozkład brzegowy, wartości średnie i odchylenia standardowe, momenty Notacja macierzowa Macierz
Układy równań liniowych. Krzysztof Patan
Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych
Równania różniczkowe wyższych rzędów
Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1. Rozwiązanie ogólne............................... 1.3 Obniżanie rzędu
Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A
Funkcje analityczne Wykład 3. Funkcje holomorficzne Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Funkcje zespolone zmiennej zespolonej Funkcje zespolone zmiennej zespolonej Niech A C. Funkcja
1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych
Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci
KADD Minimalizacja funkcji
Minimalizacja funkcji n-wymiarowych Forma kwadratowa w n wymiarach Procedury minimalizacji Minimalizacja wzdłuż prostej w n-wymiarowej przestrzeni Metody minimalizacji wzdłuż osi współrzędnych wzdłuż kierunków
13 Równanie struny drgającej. Równanie przewodnictwa ciepła.
Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu
INTERPOLACJA I APROKSYMACJA FUNKCJI
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
Równania różniczkowe zwyczajne
Równania różniczkowe zwyczajne Zajmiemy się teraz problemem numerycznego rozwiązywania równań różniczkowych zwyczajnych o postaci: z warunkeim początkowym. Zauważmy że przykładowe równanie różniczkowe
Wybrane metody przybliżonego. wyznaczania rozwiązań (pierwiastków) równań nieliniowych
Wykład trzeci 1 Wybrane metody przybliżonego wyznaczania rozwiązań pierwiastków równań nieliniowych 2 Metody rozwiązywania równań nieliniowych = 0 jest unkcją rzeczywistą zmiennej rzeczywistej Rozwiązanie
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi
Wstęp do metod numerycznych 12. Minimalizacja: funkcje wielu zmiennych. P. F. Góra
Wstęp do metod numerycznych 12. Minimalizacja: funkcje wielu zmiennych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Strategia minimalizacji wielowymiarowej Zakładamy, że metody poszukiwania minimów
Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.
Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy
RÓWNANIA NIELINIOWE Maciej Patan
RÓWNANIA NIELINIOWE Maciej Patan Uniwersytet Zielonogórski Przykład 1 Prędkość v spadającego spadochroniarza wyraża się zależnością v = mg ( 1 e c t) m c gdzie g = 9.81 m/s 2. Dla współczynnika oporu c
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Wstęp do metod numerycznych 11. Minimalizacja: funkcje jednej zmiennej. P. F. Góra
Wstęp do metod numerycznych 11. Minimalizacja: funkcje jednej zmiennej P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Lokalna minimalizacja ciagła Minimalizacja funkcji jest jedna z najważniejszych
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Tomasz Chwiej 6 czerwca 2016 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów różnicowych: iloraz
5. Równania różniczkowe zwyczajne pierwszego rzędu
5. Równania różniczkowe zwyczajne pierwszego rzędu 5.1. Wstęp. Definicja 5.1. Niech V R 3 będzie obszarem oraz F : V R. Równaniem różniczkowym zwyczajnym rzędu pierwszego nazywamy równanie postaci Równanie
Wstęp do metod numerycznych Interpolacja. P. F. Góra
Wstęp do metod numerycznych Interpolacja P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Interpolacja Dana jest funkcja w postaci stabelaryzowanej x i x 1 x 2 x 3... x n f i = f(x i ) f 1 f 2 f 3...
Iteracyjne rozwiązywanie równań
Elementy metod numerycznych Plan wykładu 1 Wprowadzenie Plan wykładu 1 Wprowadzenie 2 Plan wykładu 1 Wprowadzenie 2 3 Wprowadzenie Metoda bisekcji Metoda siecznych Metoda stycznych Plan wykładu 1 Wprowadzenie
Metody numeryczne. dr Artur Woike. Ćwiczenia nr 2. Rozwiązywanie równań nieliniowych metody połowienia, regula falsi i siecznych.
Ćwiczenia nr 2 metody połowienia, regula falsi i siecznych. Sformułowanie zagadnienia Niech będzie dane równanie postaci f (x) = 0, gdzie f jest pewną funkcją nieliniową (jeżeli f jest liniowa to zagadnienie
Wykład 3 Równania rózniczkowe cd
7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy
Wstęp do metod numerycznych Eliminacja Gaussa i faktoryzacja LU. P. F. Góra
Wstęp do metod numerycznych Eliminacja Gaussa i faktoryzacja LU P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2018 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam
Laboratorium 5 Przybliżone metody rozwiązywania równań nieliniowych
Uniwersytet Zielonogórski Wydział Informatyki, Elektrotechniki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Elektrotechnika niestacjonarne-zaoczne pierwszego stopnia z tyt. inżyniera
KADD Metoda najmniejszych kwadratów funkcje nieliniowe
Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji
Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np.
Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona f(x 0, f ( f, f,..., f n gdzie 2 x ( x, x 2,..., x n dla n2 np. f ( x, y 0 g( x, y 0 dla każdej wielowymiarowej rozwinięcie w szereg Taylora
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
Definicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
Wstęp do metod numerycznych Algebraiczna metoda gradientów sprzężonych. P. F. Góra
Wstęp do metod numerycznych Algebraiczna metoda gradientów sprzężonych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Metoda gradientów sprzężonych motywacja Rozważmy funcję f : R N R f(x) = 1 2
Matematyka dyskretna dla informatyków
Matematyka dyskretna dla informatyków Część I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szymański Uniwersytet im. Adama Mickiewicza Poznań 2007 4 Zależności rekurencyjne Wiele zależności