Wstęp do metod numerycznych 14. Kilka wstępnych uwag na temat numerycznego rozwiazywania równań różniczkowych zwyczajnych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wstęp do metod numerycznych 14. Kilka wstępnych uwag na temat numerycznego rozwiazywania równań różniczkowych zwyczajnych"

Transkrypt

1 Wstęp do metod numerycznych 14. Kilka wstępnych uwag na temat numerycznego rozwiazywania równań różniczkowych zwyczajnych P. F. Góra /13

2 Równania różniczkowe zwyczajne Najogólniejsza postacia równania różniczkowego zwyczajnego (ODE, Ordinary Differential Equation) rzędu n jest wyrażenie postaci F ( x, y, dy dx,..., dn y dx n ) = 0, (1) gdzie y : R R lub, niekiedy, y : C C. Copyright c P. F. Góra 14 2

3 Jeśli pochodna F po ostatnim argumencie nie znika (przynajmniej lokalnie), (1) zapisujemy jako d n y dx n = F ( x, y, dy dx,..., dn 1 y dx n 1 ). (2) Trzeba jednak pamiętać, iż transformacja od (1) do (2) może wymagać dookreślenia (w tym sensie równanie (1) może nie być jednoznaczne). Copyright c P. F. Góra 14 3

4 Przykład: Równanie ( ) dy 2 + y 2 = 1 (3a) dx można zinterpretować na jeden z dwu sposobów: dy dx = 1 y 2, (3b) dy dx = 1 y 2. (3c) Copyright c P. F. Góra 14 4

5 Przykład Rozważmy równanie (1 y) d2 ( ) y dy 2 dx 2 + y = 0. (4) dx Poza punktem y = 1 nie ma problemu. Co zrobić dla y = 1? Możliwe sa dwa scenariusze: Który wybrać? dy dx = y=1 1 1 lub (5) Pozornie! Copyright c P. F. Góra 14 5

6 Układy równań pierwszego rzędu Równanie w postaci (2) na ogół przedstawia się w postaci układu n równań pierwszego rzędu. Najprostsza co nie oznacza, iż w każdym wypadku najlepsza transformacja od równania rzędu n do układu n równań pierwszego rzędu ma postać: y 1 y, dy dx dy 1 dx = y 2, d2 y dx 2 dy 2 dx = y 3,..., dn 1 y dx n 1 dy n 1 = y n, (6) dx d n y dx n dy n dx = F (x, y 1, y 2,..., y n ). Dlatego od tej pory będziemy się zajmować głównie układami równań rzędu pierwszego. Układy te nie musza mieć postaci sugerowanej przez transformację (6), ale widać, że takie zainteresowanie nie ogranicza ogólności rozważań. Copyright c P. F. Góra 14 6

7 Rozwiazania ogólne i szczególne Rozwiazaniem ogólnym równania różniczkowego zwyczajnego rzędu n nazywam najbardziej ogólna postać funkcji y : R R, klasy co najmniej C n, spełniajac a równanie (2). Rozwiazanie to zależy od n parametrów. Przykład: Rozwiazaniem ogólnym równania oscylatora harmonicznego jest funkcja d 2 y dt 2 = ω2 y (7) y(t) = A sin(ωt + ϕ). (8) Copyright c P. F. Góra 14 7

8 Rozwiazaniem szczególnym równania różniczkowego zwyczajnego rzędu n jest pewien przypadek szczególny rozwiazania ogólnego taki, w którym wartości wszystkich stałych dowolnych zostały ustalone, najczęściej poprzez podanie warunków, jakie ma spełniać rozwiazanie równania. Przykład: Rozwiazaniem szczególnym równania oscylatora harmonicznego (7) może być funkcja y(t) = cos ωt. (9a) Innym rozwiazaniem szczególnym tego równania może być funkcja y(t) = 3 ( 4 sin ωt + 9π ). (9b) 17 Obserwacja: Rozwiazaniem szczególnym układu n równań różniczkowych zwyczajnych rzędu pierwszego jest krzywa y : R R n. Copyright c P. F. Góra 14 8

9 Numerycznie można poszukiwać tylko szczególnych (nie ogólnych) rozwiazań równań różniczkowych. Rozwiazanie równania rzędu n lub też, co równoważne, układu n równań rzędu pierwszego, zależy od n stałych wyznaczanych z warunków, jakie spełniać ma poszukiwana funkcja. Jeśli wszystkie te warunki zadane sa w jednym punkcie, czyli dla jednej wartości zmiennej niezależnej, mówimy, iż dany jest problem poczatkowy, zwany inaczej problemem Cauchy ego. Copyright c P. F. Góra 14 9

10 Problem Cauchy ego: dy dx = f(x, y) (10) y(x 0 ) = y 0 gdzie y, y 0 R n, f : R R n R n (czasami zamiast R bierze się C). Copyright c P. F. Góra 14 10

11 Twierdzenie Picarda Twierdzenie 1. Jeżeli funkcja f jest ciagła w pasie x 0 x X oraz spełnia warunek Lipschitza ze względu na druga zmienna: L > 0 x : x 0 x X, y 1, y 2 : f(x, y 1 ) f(x, y 2 ) L y 1 y 2 to problem Cauchy ego (10) ma w tym pasie rozwiazanie i jest ono jednoznaczne. Metody numeryczne w zasadzie ograniczaja się do przypadków spełniajacych założenia twierdzenia Picarda. Copyright c P. F. Góra 14 11

12 Problem Cauchy ego to przepis na to jak uzyskać rozwiazanie po infinitezymalnie małym kroku. Metody numeryczne zamiana problemu ciagłego na dyskretny x 0, x 1 = x 0 + h, x 2 = x 1 + h,..., x n = x n 1 + h,... y 0 = y(x 0 ), y 1 = y(x 1 ), y 2 = y(x 2 ),..., y n = y(x n ),... h krok (niekiedy może się zmieniać) Copyright c P. F. Góra 14 12

13 Metody jawne (explicit) Metoda jawna to przepis rachunkowy pozwalajacy wyliczyć wartość poszukiwanej funkcji y(x) w punkcie x n+1 na podstawie znajomości wartości funkcji (a także prawej strony równania) w punktach x n, x n 1, x n 2,.... Przykład: Metoda ( 3 y n+1 = y n + h 2 f n 1 ) 2 f n 1, (11) gdzie f k f(x k, y k ) (f oznacza prawa stronę równania różniczkowego w problemie (10)), jest jawna. Uwaga! Jeżeli w jakiejś metodzie, jawnej lub niejawnej (patrz niżej), zachodzi konieczność użycia prawej strony równania obliczanej we wcześniejszych punktach (f n 1, f n 2,... ), na ogół nie należy ich za każdym razem obliczać na nowo numerycznie szybciej jest je zapamiętać. Copyright c P. F. Góra 14 13

14 Metody niejawne (implicit) Metoda niejawna to równanie algebraiczne (w ogólności wielowymiarowe równanie algebraiczne), jakie musi spełniać poszukiwana wartość y n+1. Wyliczenie tej wartości polega na numerycznym rozwiazaniu odpowiedniego równania algebraicznego. Przykład: Metoda ( 1 y n+1 = y n + h 2 f n f n, (12) jest niejawna, gdyż poszukiwana wielkość y n+1 jest potrzebna do obliczenia f n+1. ) Copyright c P. F. Góra 14 14

15 Przykładu ciag dalszy Dane jest (skalarne) równanie różniczkowe dy dx = y x y 2 + x. (13) Zastosowanie metody niejawnej (12) do równania (13) prowadzi do następujacego równania algebraicznego na nieznana wielkość y n+1 : y n+1 = y n h y n+1 x n+1 yn x + y n x n n+1 yn 2. (14) + x n Copyright c P. F. Góra 14 15

16 Zgodność Od każdej metody numerycznego całkowania równań różniczkowych wymaga się, aby była zgodna z wyjściowym równaniem, to jest aby odtwarzała je w granicy nieskończenie małych kroków. Przykład: Przekształcajac wyrażenie (11) otrzymujemy y(x n + h) y(x n ) h y n+1 = y n + h y n+1 y n h ( 3 2 f n 1 ) 2 f n 1 (15a) = 3 2 f n 1 2 f n 1 (15b) = 3 2 f(x n + h, y(x n + h)) 1 2 f(x n, y(x n )) (15c) W granicy h 0 lewa strona (15c) daży do pochodnej x=xn, natomiast oba argumenty po prawej stronie daż dy dx a do (x n, y(x n )). Ostatecznie Copyright c P. F. Góra 14 16

17 otrzymujemy co jest zgodne z równaniem (10). dy = f(x n, y(x n )), dx x=xn (15d) Analogicznie można wykazać zgodność metody (12). Natomiast metoda ( 3 y n+1 = y n + h 2 f n 1 ) 3 f n 1, nie jest zgodna z równaniem (10). Copyright c P. F. Góra 14 17

18 Rzad metody Podczas numerycznego rozwiazywania równań różniczkowych popełnia się dwa rodzaje nieuniknionych błędów numerycznych: bład metody, wynikajacy z zastapienia ścisłego problemu ciagłego problemem dyskretnym oraz bład zaokraglenia, wynikajacy z faktu, iż obliczenia prowadzone sa ze skończona dokładnościa. Copyright c P. F. Góra 14 18

19 Uzyskane rozwiazanie numeryczne jest tylko przybliżeniem rozwiazania dokładnego. Niech y n y(x n ) będzie uzyskanym rozwiazaniem przybliżonym, natomiast ỹ(x n ) niech będzie (nieznanym, ale istniejacym) rozwia- zaniem dokładnym. Zgodność metody oznacza, że w granicy lim y n = h 0 ỹ(x n ), a wobec tego spodziewamy się, że dla małych h zachodzi y n ỹ(x n ) O(h p+1 ) (16) Liczbę p nazywamy rzędem metody. Ogólna postać metody rzędu p zapisuje się najczęściej jako y n+1 = G(h; y n+1, y n, y n 1,... ) + O(h p+1 ) (17) Copyright c P. F. Góra 14 19

20 Stabilność Na skutek popełnianych błędów, warunek poczatkowy w problemie Cauchy ego ulega w każdym kroku rozmyciu : dy dx = f(x, y) y(x 0 ) = y 0 dy dx = f(x, y) y(x 1 ) = y 1 +ε 1 dy dx = f(x, y) y(x 2 ) = y 2 +ε 2 (18) Gdyby ten bład rozmycia mógł propagować się z kroku na krok, rozwia- zanie numeryczne szybko mogłoby przestać mieć cokolwiek wspólnego z rozwiazaniem wyjściowego problemu Cauchy ego: aby metoda była stabilna, błędy popełniane w kolejnych krokach nie moga narastać z kroku na krok. Copyright c P. F. Góra 14 20

21 Zakładamy, że błędy sa niewielkie, ε n 1, możemy się więc ograniczyć do przybliżenia liniowego. W tym przybliżeniu ε n+1 = Gε n. (19) Błędy nie będa narastać z kroku na krok, jeśli wszystkie wartości własne macierzy G będa spełniać γ < 1. Macierz G nazywamy macierza wzmocnienia. Copyright c P. F. Góra 14 21

22 Przykład: Dla jednokrokowej metody jawnej y n+1 + ε n+1 = F(h; x n, y n + ε n ) F(h; x n, y n ) + F y y=yn ε n. (20) W powyższym wyrażeniu F/ y oznacza różniczkowanie wszystkich składowych F po wszystkich składowych y, czyli obliczanie jakobianu: Dla jednokrokowej metody jawnej G = F y (h; x n, y n ). (21) Jeżeli jakaś metoda w ogóle może być stabilna dla danego równania, wymóg stabilności oznacza na ogół wzięcie odpowiednio małego kroku h. Zgodnie z wyrażeniem (21), krok czasowy, który w pewnym punkcie zapewnia stabilność, może go nie zapewniać w innym. Copyright c P. F. Góra 14 22

23 Jawna metoda Eulera Problem Cauchy ego (10) to przepis na to jak uzyskać rozwiazanie po infinitezymalnie małym kroku. Spróbujmy zastosować ten przepis dla kroków małych, ale o skończonej długości. W tym celu dokonajmy rozwinięcia Taylora: y n+1 = y(x n+1 ) = y(x n + h) y(x n ) + dy h + O(h 2 ), dx x=xn,y=y n (22) a zatem y n+1 = y n + h f(x n, y n ) + O(h 2 ). (23) Metoda ta, zwana jawna metoda Eulera, jest najpopularniejsza (i jedna z najgorszych) metoda używanych do numerycznego całkowania równań różniczkowych zwyczajnych. Copyright c P. F. Góra 14 23

24 Inne wyprowadzenie metody Eulera: (pozornie inne) y n + y(x n + h) = y n + x n +h x n +h x n dy dx dx = y n + x n +h x n f(x, y(x))dx x n (f(x n, y n ) + O(h)) dx = y n + h f(x n, y n ) + O(h 2 ). (24) Copyright c P. F. Góra 14 24

25 Interpretacja geometryczna jawnej metody Eulera (przypadek jednowymiarowy) y 0 y 1 x 0 x 1 Copyright c P. F. Góra 14 25

26 Przykład zastosowania jawnej metody Eulera dy/dx = -y + x y(0) = 1 2e -x + x -1 h=1/16 h=1/ y x Copyright c P. F. Góra 14 26

27 Stabilność jawnej metody Eulera y n+1 + ε n+1 = y n + ε n + h f(x n, y n + ε n ) y n + ε n + h f(x n, y n ) + h J(x n, y n )ε n (25) a zatem macierz wzmocnienia ma postać G = I + h J(x n, y n ), (26) gdzie J(x n, y n ) = f/ y x=xn,y=y n jest jakobianem prawej strony równania po drugiej zmiennej. I jest macierza jednostkowa. Copyright c P. F. Góra 14 27

28 Obserwacja: Dla równania liniowego dy dx = Ay, (27) gdzie A R n n, macierza wzmocnienia w jawnej metodzie Eulera jest G = I + ha. (28) Macierz A może, w ogólności, zależeć od zmiennej niezależnej, A = A(x). Copyright c P. F. Góra 14 28

29 Przykład zastosowania niejawnej metody Eulera dy/dx = -y + x y(0) = 1 niejawna h=1/8 niejawna h=1/16 2e -x + x - 1 jawna h=1/ y x Copyright c P. F. Góra 14 29

30 Przykład: Rozpatrzmy następujacy problem Cauchy ego: [ ] [ d u = dx v u(0) = 1, v(0) = 0. Analityczne rozwiazanie tego problemu ma postać ] [ u v ], (29) u(x) = e x e 1000x, (30a) v(x) = e x e 1000x. (30b) Copyright c P. F. Góra 14 30

31 Rozwiazanie (30) ma dwie charakterystyczne skale czasowe: T 1 = 1 i T 2 = 1/1000 T 1. Ta druga skala czasowa nie gra, poza poczatko- wym okresem, żadnej istotnej roli w rozwiazaniu, spodziewamy się więc, że można na nia nie zwracać uwagi w rozwiazaniu numerycznym. Nic bardziej błędnego! Spróbujmy rozwiazać problem (29) przy pomocy jawnej metody Eulera z krokiem h = 1/256. Wyniki przedstawia tabela x u(x) jawna met. Eulera, h = / / / / / / / / Copyright c P. F. Góra 14 31

32 oraz wykres jawna metoda Eulera, h=1/256 rozwiazanie dokladne 10 0 u(x) /128 2/128 3/128 4/128 Skad bierze się taki wynik? x dx Zauważmy, że du = 1009, a zatem x=0 Copyright c P. F. Góra 14 32

33 dla małych wartości argumentu szukana funkcja narasta bardzo szybko, jednak, jak się okazuje, wybrany krok czasowy jest większy niż charakterystyczna skala tego narastania przybliżenie numeryczne przestrzeliwuje, w następnym kroku stara się ten bład skompensować i w rezultacie rozwiazanie rozbiega się oscylacyjnie. Rozwiazanie jawna metoda Eulera z krokiem dwa razy mniejszym, h = 1/512, także wykazuje silne oscylacje dla małych wartości argumentu, ale oscylacje te sa tłumione. Jednocześnie jawna metoda Eulera z krokiem h = 1/2048 oraz niejawna metoda Eulera z krokiem h = 1/256 nie oscyluja i mimo poczatkowych odchyleń od rozwiazania dokładnego, zbiegaja się do niego bardzo szybko. Copyright c P. F. Góra 14 33

34 2.0 u(x) jawna, h=1/512 rozwiazanie dokladne 0 1/32 2/32 3/32 4/32 5/32 6/32 7/32 8/32 0 1/128 2/128 3/128 4/128 x jawna, h=1/2048 rozwiazanie dokladne niejawna, h=1/256 Copyright c P. F. Góra 14 34

35 Zjawiska te można wyjaśnić w oparciu o teorię stabilności. Wartości własne macierzy z problemu (29) wynosza λ 1 = 1, λ 2 = Wobec tego wartości własne macierzy wzmocnienia (28) wynosza γ 1 = 1 h, γ 2 = h. Z warunku γ 1,2 < 1 wynika, iż dla zapewnienia stabilności rozwiazania problemu (29) w jawnej metodzie Eulera musi zachodzić 0 < h < Układ typu (29), w którym występuje kilka wyraźnie różnych skal czasowych i jawna metoda numeryczna w celu zapewnienia stabilności musi się dostosować do najszybszej z nich, mimo iż jest ona praktycznie nieobecna w rozwiazaniu, nazywa się problemem sztywnym. Copyright c P. F. Góra 14 35

36 Problem: Zmiana pochodnej na przestrzeni kroku całkowania Wróćmy do wyjściowego problemu Cauchyego (10). Metody Eulera, jawna i niejawna, ignoruja fakt, iż prawa strona (pochodna poszukiwanej funkcji) zmienia się w trakcie wykonywania kroku całkowania. Spodziewamy się, że pewna średnia pochodna będzie lepiej opisywać zmiany funkcji na całym przedziale o długości równej długości kroku całkowania. Wobec tego jako średnia pochodna przyjmijmy pochodna w środkowym punkcie przedziału. Ale jak znaleźć wartość szukanej funkcji w tym środkowym punkcie? Najprościej jest znaleźć ja korzystajac z jawnej metody Eulera z krokiem połówkowym, następnie zaś obliczona w punkcie środkowym pochodna przenosimy do lewego krańca przedziału i wykonujemy cały krok o długości h. Zatem Copyright c P. F. Góra 14 36

37 Jawna metoda punktu środkowego k 1 = f(x n, y n ), (31a) ( k 2 = f x n + h 2, y n + h ) 2 k 1, (31b) y n+1 = y n + hk 2 + O(h 3 ). (31c) Dlaczego rzad tej metody równa się 2 (odrzucone wyrazy sa rzędu O(h 2+1 )), dowiemy się później. Podobnie później, w szerszym kontekscie, przeanalizujemy stabilność tej metody. Copyright c P. F. Góra 14 37

38 Interpretacja geometryczna jawnej metody punktu środkowego y 0 y 1/2 y 1 y Euler x 0 x 1/2 x 1 Copyright c P. F. Góra 14 38

39 Przykład zastosowania jawnej metody punktu środkowego dy/dx = -y + x y(0) = 1 2e -x + x -1 midpoint h=1/8 Euler h=1/ y x Copyright c P. F. Góra 14 39

40 Metody Rungego-Kutty Jawna metoda punktu środkowego należy do bardzo szerokiej klasy metod, w których dla poprawienia rzędu wartość prawej strony równania oblicza się w pewnych punktach pośrednich. Metody te nazywane sa metodami Rungego-Kutty. Z pewnych względów najpopularniesza z nich jest jawna, czteroetapowa (klasyczna) metoda Rungego-Kutty: k 1 = f (x n, y n ) (32a) ( k 2 = f x n h, y n hk 1 ( k 3 = f x n h, y n hk 2 ) ) (32b) (32c) k 4 = f (x n + h, y n + hk 3 ) (32d) ( 1 y n+1 = y n + h 6 k k k ) 6 k 3 + O(h 5 ) (32e) Copyright c P. F. Góra 14 40

41 Liniowe metody wielokrokowe Często przywoływana wada metod Rungego-Kutty jest konieczność obliczania prawej strony równania w punktach pośrednich, w których rozwiazania nie potrzebujemy. Zamiast tego, do uwzględnienia zmienności prawej strony na przestrzeni kroku całkowania, można wykorzystać informację zgromadzona w poprzednich punktach. Metody takie nosza nazwę liniowych metod wielokrokowych. Copyright c P. F. Góra 14 41

42 Ogólna metoda wielokrokowa ma postać k j=0 α j y n j h k j=0 β j f n j = 0, (33) gdzie f s f(x s, y s ). h jest krokiem całkowania, o którym w tym momencie zakładamy, że jest stały. (33) zawiera kombinacje liniowe poprzednio wyliczonych wartości funkcji i prawych stron równania, co uzasadnia człon liniowe w nazwie. Jeżeli β 0 0, metoda jest niejawna. Copyright c P. F. Góra 14 42

43 Metody Adamsa ogólne sformułowanie Rozważamy problem Cauchy ego dy = f(x, y), dx y(x) = y 0. (34) Rozwiazanie ma postać y(x n+1 ) = y n + x n+1 x n f(x, y(x)) dx. (35) Klasyczne metody Adamsa polegaja na zastapieniu f(x, y(x)) w (35) przez wzór ekstrapolacyjny (Bashforth) lub interpolacyjny (Moulton) z węzłami Copyright c P. F. Góra 14 43

44 interpolacji odległymi o krok całkowania, h, i scałkowaniu tego wzoru. Celem takiego postępowania, podobnie jak w metodach Rungego-Kutty, jest uwzględnienie zmienności pochodnej w obrębie kroku całkowania. Zauważmy, że wynik całkowania wielomianu interpolacyjnego nie zależy od wartości funkcji wartości f(x l, y l ) wchodza jako ustalone wartości interpolowanej funkcji w węzłach. k-krokowe metody Adamsa: Adams-Bashforth: y n+1 = y n + h Adams-Moulton: y n+1 = y n + h k j=1 k 1 j=0 β j f n+1 j + O(h k+1 ), (36) β j f n+1 j + O(h k+1 ). (37) Copyright c P. F. Góra 14 44

45 Przykład - wyprowadzenie trzykrokowej metody Adamsa-Bashfortha Funkcję podcałkowa w (35) przybliżam poprzez ekstrapolację wielomianowa z trzech ostatnio obliczonych punktów, odległych od siebie o h: + f(x, y(x)) f extr (x) = (x x n 1 )(x x n ) (x n 2 x n 1 )(x n 2 x n ) f n 2 (x x n 2 )(x x n ) (x n 1 x n 2 )(x n 1 x n ) f n 1 + (x x n 2 )(x x n 1 ) (x n x n 2 )(x n x n 1 ) f n = 1 2h 2(x x n + h)(x x n )f n 2 1 h 2(x x n + 2h)(x x n )f n h 2(x x n + 2h)(x x n + h)f n. (38) Copyright c P. F. Góra 14 45

46 Następnie x n+1 x n f(x, y(x)) dx 1 h 2f n 1 h 0 x n+1 x n f extr (x)dx = 1 2h 2f n 2 (z + 2h)z dz + 1 2h 2f n h 0 h 0 (z + h)z dz (z + 2h)(z + h) dz = 1 2h h3 f n 2 1 h h3 f n h h3 f n = h ( ) 23fn 16f 12 n 1 + 5f n 2. (39) Proszę to porównać z wyrażeniem (40c) poniżej. Copyright c P. F. Góra 14 46

47 Idea konstrukcji metod Adamsa: rysunek nie jest wierny, jako że pochodnej w punkcie x n+1 nie oblicza się za pomoca prostej interpolacji/ekstrapolacji metoda niejawna metoda jawna f n+1 impl f n+1 expl f(x n ) = y (x n ) f n f n-2 fn-1 x n-2 x n-1 x n x n+1 x Copyright c P. F. Góra 14 47

48 Metody Adamsa-Bashfortha (jawne) y n+1 = y n + hf n + O(h 2 ) (40a) y n+1 = y n + 2 h ( ) 3fn f n 1 + O(h 3 ) (40b) y n+1 = y n + 12 h ( ) 23fn 16f n 1 + 5f n 2 + O(h 4 ) (40c) y n+1 = y n + h 24 ( 55fn 59f n f n 2 9f n 3 ) + O(h 5 )(40d) y n+1 = y n + h 720 ( 1901fn 2774f n f n f n f n 4 ) + O(h 6 ) (40e) y n+1 = y n + h 1440 ( 4277fn 7923f n f n f n f n 4 475f n 5 ) + O(h 7 ) (40f) Copyright c P. F. Góra 14 48

49 Metody Adamsa-Moultona (niejawne) y n+1 = y n + hf n+1 + O(h 2 ) (41a) y n+1 = y n + 2 h ( ) fn+1 + f n + O(h 3 ) (41b) y n+1 = y n + 12 h ( ) 5fn+1 + 8f n f n 1 + O(h 4 ) (41c) y n+1 = y n + h 24 y n+1 = y n h + O(h 6 ) ( ) 9fn f n 5f n 1 + f n 2 + O(h 5 ) (41d) ( ) 251fn f n 264f n f n 2 19f n 3 y n+1 = y n + h 1440 ( 475fn f n 798f n f n 2 173f n f n 4 ) + O(h 7 ) (41e) (41f) Copyright c P. F. Góra 14 49

50 Podane wyżej metody sa wszystkimi sensownymi metodami wielokrokowymi o stałym kroku, opartymi o interpolację/ekstrapolację wielomianowa. Zgodność metod Adamsa jest oczywista. Copyright c P. F. Góra 14 50

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe

Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011 Problem Cauchy ego dy dx = f(x, y) (1) y(x

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 5. Terminologia. Metody Eulera, metody punktu środkowego i metody trapezowe

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 5. Terminologia. Metody Eulera, metody punktu środkowego i metody trapezowe Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 5. Terminologia. Metody Eulera, metody punktu środkowego i metody trapezowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe

Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Problem Cauchy ego dy dx = f(x, y) (1) y(x

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 7a. Metody wielokrokowe

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 7a. Metody wielokrokowe Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 7a. Metody wielokrokowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Motywacja Metody wielokrokowe sa

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne. P. F. Góra

Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne. P. F. Góra Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Zasady zaliczenie ćwiczeń egzamin ustny; na egzaminie

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne. P. F. Góra

Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne. P. F. Góra Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2013 Zasady zaliczenie ćwiczeń egzamin ustny; na egzaminie

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems)

Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems) Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems) P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Wprowadzenie Rozważmy

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 6. Metody wielokrokowe. P. F. Góra

Komputerowa analiza zagadnień różniczkowych 6. Metody wielokrokowe. P. F. Góra Komputerowa analiza zagadnień różniczkowych 6. Metody wielokrokowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Liniowe metody wielokrokowe Często przywoływana wada metod Rungego-Kutty jest konieczność

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 8. Metody wielokrokowe Metody Verleta

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 8. Metody wielokrokowe Metody Verleta Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 8. Metody wielokrokowe Metody Verleta P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Motywacja Metody wielokrokowe

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 6. Metoda diagramowa. Obszary stabilności. P. F. Góra

Komputerowa analiza zagadnień różniczkowych 6. Metoda diagramowa. Obszary stabilności. P. F. Góra Komputerowa analiza zagadnień różniczkowych 6. Metoda diagramowa. Obszary stabilności. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2013 Metoda diagramowa Ręczne wyprowadzanie równan wiaż acych współczynniki

Bardziej szczegółowo

Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych

Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych Rozwiązywanie równań różniczkowych zwyczajnych za pomocą szeregów metody dyskretne Metoda współczynników nieoznaczonych Metoda kolejnego

Bardziej szczegółowo

Definicje i przykłady

Definicje i przykłady Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest

Bardziej szczegółowo

Wstęp do metod numerycznych 9a. Układy równań algebraicznych. P. F. Góra

Wstęp do metod numerycznych 9a. Układy równań algebraicznych. P. F. Góra Wstęp do metod numerycznych 9a. Układy równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Układy równań algebraicznych Niech g:r N równanie R N będzie funkcja klasy co najmniej

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra

Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 5. Metody Rungego-Kutty (II) P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/

Komputerowa analiza zagadnień różniczkowych 5. Metody Rungego-Kutty (II) P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ Komputerowa analiza zagadnień różniczkowych 5. Metody Rungego-Kutty (II) P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ Metody DIRK Jeśli spodziewamy się problemów ze stabilnościa, w szczególności jeśli

Bardziej szczegółowo

Numeryczne rozwiązywanie równań różniczkowych ( )

Numeryczne rozwiązywanie równań różniczkowych ( ) Numeryczne rozwiązywanie równań różniczkowych Równanie różniczkowe jest to równanie, w którym występuje pochodna (czyli różniczka). Przykładem najprostszego równania różniczkowego może być: y ' = 2x które

Bardziej szczegółowo

Metody numeryczne. Sformułowanie zagadnienia interpolacji

Metody numeryczne. Sformułowanie zagadnienia interpolacji Ćwiczenia nr 4. Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n i wartości y 0,..., y n, takie że i=0,...,n y i = f (x i )). Szukamy funkcji F (funkcji interpolującej), takiej

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 2. O tym, co można rozwiazać analitycznie. P. F. Góra

Komputerowa analiza zagadnień różniczkowych 2. O tym, co można rozwiazać analitycznie. P. F. Góra Komputerowa analiza zagadnień różniczkowych 2. O tym, co można rozwiazać analitycznie P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Jeszcze o równaniach liniowych Rozważmy skalarne, jednorodne równanie

Bardziej szczegółowo

Metody numeryczne równań różniczkowych zwyczajnych

Metody numeryczne równań różniczkowych zwyczajnych Metody numeryczne równań różniczkowych zwyczajnych Marcin Jenczmyk m.jenczmyk@knm.katowice.pl 9 maja 2015 M. Jenczmyk XXX Sesja KNM Metody numeryczne R.R.Z. 1 / 18 Omawiany problem dotyczyć będzie numerycznego

Bardziej szczegółowo

Metody numeryczne rozwiązywania równań różniczkowych

Metody numeryczne rozwiązywania równań różniczkowych Metody numeryczne rozwiązywania równań różniczkowych Marcin Orchel Spis treści Wstęp. Metody przybliżone dla równań pierwszego rzędu................ Metoda kolejnych przybliżeń Picarda...................2

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

INTERPOLACJA I APROKSYMACJA FUNKCJI

INTERPOLACJA I APROKSYMACJA FUNKCJI Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

Metody numeryczne. Sformułowanie zagadnienia interpolacji

Metody numeryczne. Sformułowanie zagadnienia interpolacji Wykład nr 2 Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n (nazywane węzłami interpolacji) i wartości w węzłach y 0,..., y n. Od węzłów żądamy spełnienia warunku x i x j dla

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

Całkowanie numeryczne

Całkowanie numeryczne Całkowanie numeryczne Poniżej omówione zostanie kilka metod przybliżania operacji całkowania i różniczkowania w szczególności uzależnieniu pochodnej od jej różnic skończonych gdy równanie różniczkowe mamy

Bardziej szczegółowo

5. Równania różniczkowe zwyczajne pierwszego rzędu

5. Równania różniczkowe zwyczajne pierwszego rzędu 5. Równania różniczkowe zwyczajne pierwszego rzędu 5.1. Wstęp. Definicja 5.1. Niech V R 3 będzie obszarem oraz F : V R. Równaniem różniczkowym zwyczajnym rzędu pierwszego nazywamy równanie postaci Równanie

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

Wstęp do równań różniczkowych

Wstęp do równań różniczkowych Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE

Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć

Bardziej szczegółowo

Wstęp do równań różniczkowych

Wstęp do równań różniczkowych Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych

Bardziej szczegółowo

Wstęp do metod numerycznych Faktoryzacja QR i SVD. P. F. Góra

Wstęp do metod numerycznych Faktoryzacja QR i SVD. P. F. Góra Wstęp do metod numerycznych Faktoryzacja QR i SVD P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Transformacja Householdera Niech u R N, u 0. Tworzymy macierz W sposób oczywisty P T = P. Obliczmy

Bardziej szczegółowo

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Tomasz Chwiej 6 czerwca 2016 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów różnicowych: iloraz

Bardziej szczegółowo

1 Równania nieliniowe

1 Równania nieliniowe 1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na

Bardziej szczegółowo

Wstęp do metod numerycznych 9. Rozwiazywanie równań algebraicznych. P. F. Góra

Wstęp do metod numerycznych 9. Rozwiazywanie równań algebraicznych. P. F. Góra Wstęp do metod numerycznych 9. Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

x y

x y Przykłady pytań na egzamin końcowy: (Uwaga! Skreślone pytania nie obowiązują w tym roku.). Oblicz wartość interpolacji funkcjami sklejanymi (przypadek (case) a), dla danych i =[- 4 5], y i =[0 4 -]. Jaka

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne

1 Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równaniem

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,

Bardziej szczegółowo

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A Funkcje analityczne Wykład 3. Funkcje holomorficzne Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Funkcje zespolone zmiennej zespolonej Funkcje zespolone zmiennej zespolonej Niech A C. Funkcja

Bardziej szczegółowo

Interpolacja i modelowanie krzywych 2D i 3D

Interpolacja i modelowanie krzywych 2D i 3D Interpolacja i modelowanie krzywych 2D i 3D Dariusz Jacek Jakóbczak Politechnika Koszalińska Wydział Elektroniki i Informatyki Zakład Podstaw Informatyki i Zarządzania e-mail: Dariusz.Jakobczak@tu.koszalin.pl

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

Różniczkowanie numeryczne

Różniczkowanie numeryczne Różniczkowanie numeryczne Przyjmijmy, że funkcja ciągła y = f(x) = 4sin(3x)e -x/2, gdzie x 0,2π, dana jest w postaci dyskretnej jako ciąg wartości y odpowiadających zmiennej niezależnej x, również danej

Bardziej szczegółowo

13. Równania różniczkowe - portrety fazowe

13. Równania różniczkowe - portrety fazowe 13. Równania różniczkowe - portrety fazowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 13. wrównania Krakowie) różniczkowe - portrety fazowe 1 /

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe. Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie

Bardziej szczegółowo

Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna

Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna Interpolacja Marcin Orchel 1 Wstęp Mamy daną funkcję φ (x; a 0,..., a n ) zależną od n + 1 parametrów a 0,..., a n. Zadanie interpolacji funkcji φ polega na określeniu parametrów a i tak aby dla n + 1

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 8 Interpolacja Interpolacja polega na budowaniu tzw. funkcji interpolujących ϕ(x) na podstawie zadanych

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer.

METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer. METODY NUMERYCZNE Wykład 3. dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. wykład 3 1 Plan Aproksymacja Interpolacja wielomianowa Przykłady Met.Numer. wykład 3 2 1 Aproksymacja Metody numeryczne

Bardziej szczegółowo

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego Matematyka 2 Równania różniczkowe zwyczajne rzędu drugiego Równania różniczkowe liniowe rzędu II Równanie różniczkowe w postaci y + a 1 (x)y + a 0 (x)y = f(x) gdzie a 0 (x), a 1 (x) i f(x) są funkcjami

Bardziej szczegółowo

II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski

II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski 1 1 Różniczkowanie numeryczne Rozważmy funkcję f(x) określoną na sieci równoodległyc węzłów. Funkcja f(x) może być dana za pomocą wzoru analitycznego

Bardziej szczegółowo

Równania różniczkowe. Notatki z wykładu.

Równania różniczkowe. Notatki z wykładu. Równania różniczkowe Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem

Bardziej szczegółowo

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 3. Numeryczne zagadnienie własne

Komputerowa analiza zagadnień różniczkowych 3. Numeryczne zagadnienie własne Komputerowa analiza zagadnień różniczkowych 3. Numeryczne zagadnienie własne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Wektory i wartości własne definicje Niech A C N N. Jeżeli

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 1

RÓWNANIA RÓŻNICZKOWE WYKŁAD 1 RÓWNANIA RÓŻNICZKOWE WYKŁAD 1 Przedmiot realizowany w układzie wykład 2 godz. tygodniowo ćwiczenia 2 godz. tygodniowo Regulamin zaliczeń www.mini.pw.edu.pl/~figurny 2 Program zajęć Równania różniczkowe

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (I)

Równanie przewodnictwa cieplnego (I) Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci

Bardziej szczegółowo

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi

Bardziej szczegółowo

Metody numeryczne. dr Artur Woike. Ćwiczenia nr 2. Rozwiązywanie równań nieliniowych metody połowienia, regula falsi i siecznych.

Metody numeryczne. dr Artur Woike. Ćwiczenia nr 2. Rozwiązywanie równań nieliniowych metody połowienia, regula falsi i siecznych. Ćwiczenia nr 2 metody połowienia, regula falsi i siecznych. Sformułowanie zagadnienia Niech będzie dane równanie postaci f (x) = 0, gdzie f jest pewną funkcją nieliniową (jeżeli f jest liniowa to zagadnienie

Bardziej szczegółowo

2. Kombinacja liniowa rozwiązań zeruje się w pewnym punkcie wtedy i tylko wtedy, gdy zeruje się w każdym punkcie.

2. Kombinacja liniowa rozwiązań zeruje się w pewnym punkcie wtedy i tylko wtedy, gdy zeruje się w każdym punkcie. Wniosek 1 Rozpatrzmy układ równań postaci: y 1 = a 11 (x)y 1 + + a 1n (x)y n y 2 = a 21 (x)y 1 + + a 2n (x)y n y n = a n1 (x)y 1 + + a nn (x)y n (1) o współczynnikach ciągłych w przedziale J 1 Rozwiązanie

Bardziej szczegółowo

Równania różniczkowe wyższych rzędów

Równania różniczkowe wyższych rzędów Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1. Rozwiązanie ogólne............................... 1.3 Obniżanie rzędu

Bardziej szczegółowo

Analiza numeryczna kolokwium2a-15grudnia2005

Analiza numeryczna kolokwium2a-15grudnia2005 kolokwium2a-15grudnia2005 1.Niechf(x)=a n x n +a n 1 x n 1 +...+a 0.Jakąwartośćprzyjmujeilorazróżnicowy f[x 0,...,x n ]dladowolnychn+1paramiróżnychwęzłówx j?odpowiedźuzasadnić. 2. Pokazać, że zamiana zmiennych

Bardziej szczegółowo

Wstęp do metod numerycznych Interpolacja. P. F. Góra

Wstęp do metod numerycznych Interpolacja. P. F. Góra Wstęp do metod numerycznych Interpolacja P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Interpolacja Dana jest funkcja w postaci stabelaryzowanej x i x 1 x 2 x 3... x n f i = f(x i ) f 1 f 2 f 3...

Bardziej szczegółowo

II. Równania autonomiczne. 1. Podstawowe pojęcia.

II. Równania autonomiczne. 1. Podstawowe pojęcia. II. Równania autonomiczne. 1. Podstawowe pojęcia. Definicja 1.1. Niech Q R n, n 1, będzie danym zbiorem i niech f : Q R n będzie daną funkcją określoną na Q. Równanie różniczkowe postaci (1.1) x = f(x),

Bardziej szczegółowo

Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra

Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam

Bardziej szczegółowo

Wykład X Rozwiązywanie zagadnień początkowych dla równań różniczkowych zwyczajnych

Wykład X Rozwiązywanie zagadnień początkowych dla równań różniczkowych zwyczajnych Wykład X Rozwiązywanie zagadnień początkowych dla równań różniczkowych zwyczajnych Postawienie zadania i podstawowe idee jego rozwiązania Metody samostartujące (Eulera, Rungego-Kutty) Metody niesamostartujące

Bardziej szczegółowo

Rozwiązywanie zależności rekurencyjnych metodą równania charakterystycznego

Rozwiązywanie zależności rekurencyjnych metodą równania charakterystycznego Rozwiązywanie zależności rekurencyjnych metodą równania charakterystycznego WMS, 2019 1 Wstęp Niniejszy dokument ma na celu prezentację w teorii i na przykładach rozwiązywania szczególnych typów równań

Bardziej szczegółowo

Elementy rachunku różniczkowego i całkowego

Elementy rachunku różniczkowego i całkowego Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami

Bardziej szczegółowo

u(t) RRZ: u (t)=f(t,u) Jednokrokowy schemat różnicowy

u(t) RRZ: u (t)=f(t,u) Jednokrokowy schemat różnicowy u(t) t Dt RRZ: u (t)=f(t,u) Jednokrokowy schemat różnicowy u(t+dt)=u(t)+f(t,u(t),dt) klasyczna formuła RK4: u(t) k 1 u k 2 k 3 k 4 4 wywołania f na krok, błąd lokalny O(Dt 5 ) gdy f tylko funkcja czasu

Bardziej szczegółowo

Wstęp do metod numerycznych Zagadnienia wstępne Uwarunkowanie. P. F. Góra

Wstęp do metod numerycznych Zagadnienia wstępne Uwarunkowanie. P. F. Góra Wstęp do metod numerycznych Zagadnienia wstępne Uwarunkowanie P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2014 Sposoby reprezentacji liczb całkowitych i rzeczywistych patrz wykład z Teoretycznych Podstaw

Bardziej szczegółowo

Wykład 15. Matematyka 3, semestr zimowy 2011/ listopada 2011

Wykład 15. Matematyka 3, semestr zimowy 2011/ listopada 2011 Wykład 5 Matematyka 3, semestr zimowy / 9 listopada W trakcie tego i następnych kilku wykładów zajmować się będziemy analizą zespoloną, czyli różniczkowaniem i całkowaniem funkcji argumentu zespolonego

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

Aproksymacja. j<k. L 2 p[a, b] l 2 p,n X = Lemat 1. Wielomiany ortogonalne P 0,P 1,...,P n tworza przestrzeni liniowej Π n. Dowód.

Aproksymacja. j<k. L 2 p[a, b] l 2 p,n X = Lemat 1. Wielomiany ortogonalne P 0,P 1,...,P n tworza przestrzeni liniowej Π n. Dowód. Metody numeryczne Paweł Zieliński p. 1/19 Lemat 1. Wielomiany ortogonalne P 0,P 1,...,P n tworza bazę przestrzeni liniowej Π n. Dowód. Lemat 2. Dowolny wielomian Q j stopnia j niższego od k jest prostopadły

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do rachunku błędów pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją symbolami:

Bardziej szczegółowo

P. F. Góra semestr letni 2006/07

P. F. Góra   semestr letni 2006/07 Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 9. Równania algebraiczno-różniczkowe zarys problematyki Równania różniczkowe z niezmiennikami P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/

Bardziej szczegółowo

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

13 Równanie struny drgającej. Równanie przewodnictwa ciepła. Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu

Bardziej szczegółowo

3. Interpolacja. Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która

3. Interpolacja. Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która 3. Interpolacja Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która przyjmuje wartości y 1, y 2,, y n, dla skończonego zbioru argumentów x 1, x

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego

Bardziej szczegółowo

Laboratorium Techniki Obliczeniowej i Symulacyjnej

Laboratorium Techniki Obliczeniowej i Symulacyjnej Laboratorium Techniki Obliczeniowej i Symulacyjnej Ćwiczenie 6. Rozwiązywanie równań różniczkowych w środowisku MATLAB. Opracował: dr inż. Sebastian Dudzik 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie

Bardziej szczegółowo

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie Wykład 14 i 15 Równania różniczkowe Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (x, y, y, y,..., y (n) ) = 0 (1) gdzie: y = y(x) niewiadoma funkcja zmiennej rzeczywistej

Bardziej szczegółowo

Rozkłady wielu zmiennych

Rozkłady wielu zmiennych Rozkłady wielu zmiennych Uogólnienie pojęć na rozkład wielu zmiennych Dystrybuanta, gęstość prawdopodobieństwa, rozkład brzegowy, wartości średnie i odchylenia standardowe, momenty Notacja macierzowa Macierz

Bardziej szczegółowo

5. Całka nieoznaczona

5. Całka nieoznaczona 5. Całka nieoznaczona Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Całka nieoznaczona zima 2017/2018 1 / 31 Całka nieoznaczona

Bardziej szczegółowo

METODY KOMPUTEROWE W MECHANICE

METODY KOMPUTEROWE W MECHANICE METODY KOMPUTEROWE W MECHANICE wykład dr inż. Paweł Stąpór laboratorium 15 g, projekt 15 g. dr inż. Paweł Stąpór dr inż. Sławomir Koczubiej Politechnika Świętokrzyska Wydział Zarządzania i Modelowania

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

Wstęp do metod numerycznych 11. Minimalizacja: funkcje jednej zmiennej. P. F. Góra

Wstęp do metod numerycznych 11. Minimalizacja: funkcje jednej zmiennej. P. F. Góra Wstęp do metod numerycznych 11. Minimalizacja: funkcje jednej zmiennej P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Lokalna minimalizacja ciagła Minimalizacja funkcji jest jedna z najważniejszych

Bardziej szczegółowo

Metoda Różnic Skończonych (MRS)

Metoda Różnic Skończonych (MRS) Metoda Różnic Skończonych (MRS) METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek () Równania różniczkowe zwyczajne

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo