prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií
|
|
- Tomasz Tomczyk
- 6 lat temu
- Przeglądów:
Transkrypt
1 Náhodné vektory prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký, 2011 Pravděpodobnost a statistika BI-PST, LS 2010/11, Přednáška 6 Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti Roman Kotecký, Rudolf Blažek (FIT ČVUT) Náhodné vektory BI-PST, LS 2010/11, Přednáška 6 1 / 17
2 Rekapitulace Rekapitulace (spojité náhodné veličiny) Hustota náhodné veličiny X : funkce f X : R [0, ) tak, že P(a X b) = Distribuční funkce náhodné veličiny X : F X (x) = P(X x) = x f X (u)du. Střední hodnota náhodné veličiny X : EX = x f X (x) dx a její variance (rozptyl) : varx = E[(X EX) 2 ] = b (x EX) 2 f X (x) dx. a f X (x)dx. Roman Kotecký, Rudolf Blažek (FIT ČVUT) Náhodné vektory BI-PST, LS 2010/11, Přednáška 6 2 / 17
3 Rekapitulace Hustota f X (x) Rovnoměrné rozdělení X Unif(a, b) : f X (x) = 1 b a Exponenciální rozdělení X Exp(λ) : a + b pro a x b, EX =, varx = λ=2 λ= a λ=1/2 b (b a)2. 12 f X (x) = λe λx pro x 0, EX = 1 λ, varx = 1 λ. 2 Normální (Gaussovo) rozdělení X N(µ, σ 2 ) : Μ3Σ Μ2Σ ΜΣ Μ ΜΣ Μ2Σ Μ3Σ f X (x) = 1 e (x µ)2 /2σ 2, EX = µ, varx = σ 2. 2πσ Standardní normální (Gaussovo) rozdělení Z N(0, 1) : ϕ(x) = f Z (x) = 1 2π e x 2 /2, Φ(x) = 1 2π x e u2 /2 du. Roman Kotecký, Rudolf Blažek (FIT ČVUT) Náhodné vektory BI-PST, LS 2010/11, Přednáška 6 3 / 17
4 Charakteristiky náhodných veličin Mimo střední hodotu E(X) se jako charakteristika polohy používá i medián : číslo m (nejednoznačné), které splňuje rovnost P(X m) 1/2 a P(X m) 1/2. Např. pro X {1, 2, 2, 3, 3, 13}, každá hodnota se stejnou pravděpodobností, je m(x) [2, 3]. Přitom E(X) = 4. Medián ignoruje extrémy. Charakteristikou variability je rozptyl (variance) σ 2 = var(x) = E(X 2 ) E(X) 2, nebo též střední odchylka E( X E(X) ). Charakteristikou šikmosti (skewness) je koeficient šikmosti γ 1 = µ 3 σ 3 = E((X E(X))3 ) (E(X 2 ) E(X) 2 ) 3/2. Míra asymetrie: koeficient γ 1 je kladný nebo záporný podle toho, na kterou stranu se hustota pravděpodobnosti víc odchyluje od střední hodnoty: γ 1 = 1.26 γ 1 = 1.14 Roman Kotecký, Rudolf Blažek (FIT ČVUT) Náhodné vektory BI-PST, LS 2010/11, Přednáška 6 4 / 17
5 Charakteristiky náhodných veličin Koeficient špičatosti (excess kurtosis) κυρτός =opuchat; je charakteristika, která porovnává hustotu pravděpodobnosti náhodné veličiny s normálním rozdělením: γ 2 = µ 4 σ 4 3 = E((X E(X))4 ) (E(X 2 ) E(X) 2 ) 2 3. γ 2 = 0.5 γ 2 = 0 γ 2 = 0.85 Roman Kotecký, Rudolf Blažek (FIT ČVUT) Náhodné vektory BI-PST, LS 2010/11, Přednáška 6 5 / 17
6 Soubory náhodných veličin Společná pravděpodobostní funkce Definice Máme-li dvě diskrétní náhodné veličiny X a Y na stejném pravděpodobnostním prostoru Ω, můžeme definovat jejich společnou pravděpodobnostní funkci p X,Y : R [0, 1] danou vztahem p X,Y (x, y) = P(X = x, Y = y). Zde, P(X = x, Y = y) je zkratkou za podrobnější P({X = x} {Y = y}). Příklad (Minimum a maximum ze dvou hodů čtyřstranné kostky) X(ω) = min{ω(1), ω(2)}, Y(ω) = max{ω(1), ω(2)}: Společná pravděpodobostní funkce : P(X = 2, Y = 3) = P({ω : min{ω(1), ω(2)} = 2, max{ω(1), ω(2)} = 3}) = = P({ω {(2, 3), (3, 2)}) = 2 16 = 1 8. Roman Kotecký, Rudolf Blažek (FIT ČVUT) Náhodné vektory BI-PST, LS 2010/11, Přednáška 6 6 / 17
7 Soubory náhodných veličin Marginál Příklad (pokračování) Obecně tedy, 1 pokud k < l, 8 1 p X,Y (k, l) = P(X = k, Y = l) = pokud k = l, 16 0 pokud k > l. Všimněte si, že pro každé k platí l p X,Y (k, l) = 2(4 k)+1 16 = p X (k). Podobně, pro každé l platí k p X,Y (k, l) = 2(l 1)+1 16 = p Y (l). To platí i v obecněm případě, p X,Y (x, y) = y y P(X = x, Y = y) = P(X = x) = p X (x) V tomto kontextu se p X a p Y nazývají marginály pravděpodobnostní funkce p X,Y : E(f(X)) = x,y p X,Y (x, y)f(x) = x f(x) y p X,Y (x, y) = x f(x)p X (x). Roman Kotecký, Rudolf Blažek (FIT ČVUT) Náhodné vektory BI-PST, LS 2010/11, Přednáška 6 7 / 17
8 Soubory náhodných veličin Funkce několika náhodných veličin Pro g : R 2 R, uvažujme náhodnou veličinu Z = g(x, Y) (tj. funkci Z : Ω R danou pro každé ω Ω vztahem Z(ω) = g(x(ω), Y(ω))). Pak p Z (z) = p X,Y (x, y) {(x,y):g(x,y)=z} a E(Z) = E(g(X, Y)) = z zp Z (z) = z z {(x,y):g(x,y)=z} p X,Y (x, y) = = z {(x,y):g(x,y)=z} g(x, y)p X,Y (x, y) = x,y g(x, y)p X,Y (x, y). Speciálně, E(αX + βy) = x,y (αx + βy)p X,Y (x, y) = = αx p X,Y (x, y)+ βy p X,Y (x, y) = α x y y x x xp X (x)+β y yp Y (y) = = αe(x) + βe(y). Roman Kotecký, Rudolf Blažek (FIT ČVUT) Náhodné vektory BI-PST, LS 2010/11, Přednáška 6 8 / 17
9 Soubory náhodných veličin Funkce několika náhodných veličin Podobně definujeme i společnou pravděpodobostní funkci více náhodných veličin. Třeba pro tři náhodné veličiny X, Y, Z, máme p X,Y,Z (x, y, z) = P(X = x, Y = y, Z = z), p X,Y,Z (x, y, z) = p X (x) y,z a podobně p X,Y,Z (x, y, z) = p Y (y) a p X,Y,Z (x, y, z) = p Z (z), x,z x,y E(g(X, Y, Z)) = x,y,z g(x, y, z)p X,Y,Z (x, y, z) a E(αX + βy + γz) = αe(x) + βe(y) + γe(z). Roman Kotecký, Rudolf Blažek (FIT ČVUT) Náhodné vektory BI-PST, LS 2010/11, Přednáška 6 9 / 17
10 Podmíněná pravděpodobnostní funkce Podmínění náhodným jevem Definice (Podmínění náhodné veličiny X jevem A) Podmíněná pravděpodobnostní funkce p X A náhodné veličiny X podmíněná jevem A s P(A) > 0, je definována vztahem p X A (x) = P(X = x A) = P({X = x} A). P(A) Všimněme si, že jevy {X = x} A jsou disjunktní pro různá x a proto P(A) = x P({X = x} A), což implikuje p X A (x) = 1. Funkce p X A je tedy skutečně legitimní pravděpodobnostní funkce. x Roman Kotecký, Rudolf Blažek (FIT ČVUT) Náhodné vektory BI-PST, LS 2010/11, Přednáška 6 10 / 17
11 Podmíněná pravděpodobnostní funkce Podmínění náhodným jevem Příklad Student opakuje zkoušku nejvýše n-krát, pokaždé se stejnou pravděpodobností p úspěchu (nezávisle na počtu předešlých pokusů!) Jaká je pravděpodobnostní funkce počtu pokusů o zkoušku podmíněná tím, že student u zkoušky uspěl? Nechť A je náhodný jev, že student u zkoušky uspěl (po nejvýše n pokusech) a X je počet pokusů až k prvnímu úspěchu za předpokladu, že je umožněn neohraničený počet pokusů. X je geometrická náhodná veličina s parametrem p a A = {X n}. Platí a P(A) = n (1 p) m 1 1 (1 p)n p = p 1 (1 p) m=1 p X A (k) = { (1 p) k 1 p 1 (1 p) n pokud k = 1,..., n, 0 jindy. = 1 (1 p)n Roman Kotecký, Rudolf Blažek (FIT ČVUT) Náhodné vektory BI-PST, LS 2010/11, Přednáška 6 11 / 17
12 Podmíněná pravděpodobnostní funkce Podmínění náhodnou veličinou Definice (Podmínění náhodné veličiny X náhodnou veličinou Y ) X a Y jsou dvě náhodné veličiny asociované se stejným experimentem. Víme-li, že Y = y (s p Y (y) > 0), máme částečnou informaci o X. Ta je zachycená v podmíněné pravděpodobnostní funkci p X Y veličinou Y a definované vztahem p X Y (x y) = P(X = x Y = y) = náhodné veličiny X podmíněné P(X = x, Y = y). P(Y = y) Opět, p X Y (x y) = 1. y Roman Kotecký, Rudolf Blažek (FIT ČVUT) Náhodné vektory BI-PST, LS 2010/11, Přednáška 6 12 / 17
13 Podmíněná pravděpodobnostní funkce Podmínění náhodnou veličinou Ilustrace podmíněné pravděpodobnostní funkce p X Y : p X Y (x 3) px,y (x, y) y y = 3 p X Y (x 2) y = 2 y = 1 x = 1 x = 2 x = 3 x p X Y (x 1) Roman Kotecký, Rudolf Blažek (FIT ČVUT) Náhodné vektory BI-PST, LS 2010/11, Přednáška 6 13 / 17
14 Podmíněná pravděpodobnostní funkce Podmínění náhodnou veličinou Časté použití k výpočtu společné pravděpodobnostní funkce z té podmíněné: p X,Y (x, y) = p Y (y)p X Y (x y) = p X (x)p Y X (y x). A dále pak k výpočtu marginálních funkcí: p X (x) = y p X,Y (x, y) = y p Y (y)p X Y (x y). Příklad (Popletený profesor) Profesor M. Popleta odpovídá na otázky studentů s pravděpodobností 1/4 špatně (nezávisle na ostatních otázkách). V každé přednášce jsou mu položeny 0, 1 nebo 2 otázky, každá možnost s pravděpodobností 1/3. X je počet otázek, které dostane při dané přednášce, Y je počet špatně zodpovězených. Chceme vypočítat společnou pravděpodobnostní funkci p X,Y (x, y) = P(X = x, Y = y) pro všechny dvojice (x, y). Např. p X,Y (1, 1) = p X (1)p Y X (1 1) = = 1 12, atd Roman Kotecký, Rudolf Blažek (FIT ČVUT) Náhodné vektory BI-PST, LS 2010/11, Přednáška 6 14 / 17
15 Podmíněná pravděpodobnostní funkce Podmínění náhodnou veličinou Příklad (pokračování) 1/ /16 0 9/16 p X,Y (2, 2) = 1/48 p X,Y (2, 1) = 6/48 1/3 p X,Y (2, 0) = 9/ / /4 0 3/4 p X,Y (1, 1) = 4/48 1/3 p X,Y (1, 0) = 12/48 p X,Y (0, 0) = 16/48 X: # otázek Y : # špatných odpovědí Roman Kotecký, Rudolf Blažek (FIT ČVUT) Náhodné vektory BI-PST, LS 2010/11, Přednáška 6 15 / 17
16 Podmíněná pravděpodobnostní funkce Podmínění náhodnou veličinou Příklad (pokračování) y p X,Y (x, y) / /48 6/ /48 12/48 9/ x Odsud například: P(aspoň jedna špatná odpověď) = součet prvních dvou řádků = = p X,Y (1, 1) + p X,Y (2, 1) + p X,Y (2, 2) = Roman Kotecký, Rudolf Blažek (FIT ČVUT) Náhodné vektory BI-PST, LS 2010/11, Přednáška 6 16 / 17
17 Podmíněná pravděpodobnostní funkce Podmínění náhodnou veličinou Tento výpočet může probíhat ve více stupňích: p X,Y,Z (x, y, z) = p X (x)p Y X (y x)p Z X,Y (z x, y). O pravdivosti této formule se přesvědčíme, dosadíme-li z definice do pravé strany, dostaneme p X (x)p Y X (y x)p Z X,Y (z x, y) = p X (x) p X,Y (x, y) p X,Y,Z (x, y, z) = p X,Y,Z (x, y, z). p X (x) p X,Y (x, y) Roman Kotecký, Rudolf Blažek (FIT ČVUT) Náhodné vektory BI-PST, LS 2010/11, Přednáška 6 17 / 17
Statistika (KMI/PSTAT)
Statistika (KMI/PSTAT) Cvičení deváté aneb Důležitá rozdělení pravděpodobnosti spojité náhodné veličiny Statistika (KMI/PSTAT) 1 / 15 Spojitá náhodná veličina Spojitá náhodná veličina Spojitá náhodná veličina
Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
Funkce zadané implicitně. 4. března 2019
Funkce zadané implicitně 4. března 2019 Parciální derivace druhého řádu Parciální derivace druhého řádu funkce z = f (x, y) jsou definovány: Parciální derivace 2 f 2 = ( ) f 2 f 2 = ( ) f 2 f a 2 f 2 f
Kristýna Kuncová. Matematika B2 18/19
(6) Určitý integrál Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (6) Určitý integrál 1 / 28 Newtonův integrál Zdroj: https://kwcalculus.wikispaces.com/integral+applications Kristýna Kuncová (6)
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií
Základní pojmy pravděpodobnosti prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek,
Kristýna Kuncová. Matematika B3
(10) Vícerozměrný integrál II Kristýna Kuncová Matematika B3 Kristýna Kuncová (10) Vícerozměrný integrál II 1 / 30 Transformace Otázka Jaký obrázek znázorňuje čtverec vpravo po transformaci u = x + y a
Inverzní Z-transformace
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 9. přednáška 11MSP úterý 16. dubna 2019 verze: 2019-04-15 12:25
(13) Fourierovy řady
(13) Fourierovy řady Kristýna Kuncová Matematika B3 Kristýna Kuncová (13) Fourierovy řady 1 / 22 O sinech a kosinech Lemma (O sinech a kosinech) Pro m, n N 0 : 2π 0 2π 0 2π 0 sin nx dx = sin nx cos mx
Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018
Určitý (Riemnnův) integrál plikce. Nevlstní integrál Seminář 9. prosince 28 Určitý integrál Existence: Necht funkce f (x) je definovná n uzvřeném intervlu, b. Necht je splněn n tomto intervlu kterákoliv
Statistika (KMI/PSTAT)
Cvičení sedmé (a asi i osmé a doufám, že ne deváté) aneb Náhodná veličina, rozdělení pravděpodobnosti náhodné veličiny Náhodná veličina Náhodná veličina Studenti skládají písemku sestávající ze tří úloh.
(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25
(2) Funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (2) Funkce 1 / 25 Sudá a lichá funkce Určete, které funkce jsou sudé a které liché: liché: A, D, E sudé: B Kristýna Kuncová (2) Funkce 2 / 25
Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky
Monotónie a extrémy funkce Diferenciální počet - průběh funkce Věta o střední hodnotě (Lagrange) Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f (ξ)
Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více
5 Diferenciální počet funkcí více proměnných Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více proměnných, především budeme pracovat s funkcemi dvou proměnných Ukážeme
5. a 12. prosince 2018
Integrální počet Neurčitý integrál Seminář 9, 0 5. a. prosince 08 Neurčitý integrál Definice. Necht funkce f (x) je definovaná na intervalu I. Funkce F (x) se nazývá primitivní k funkci f (x) na I, jestliže
Matematika 2, vzorová písemka 1
Matematika 2, vzorová písemka Pavel Kreml 9.5.20 Přesun mezi obrazovkami Další snímek: nebo Enter. Zpět: nebo Shift + Enter 2 3 4 Doporučení Pokuste se vyřešit zadané úlohy samostatně. Pokud nebudete vědět
MATEMATIKA 3. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATIKA 3 Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Osnova: Komplexní funkce - definice, posloupnosti, řady Vybrané komplexní funkce
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18
Komplexní analýza Mocninné řady Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Posloupnosti komplexních čísel opakování
Linea rnı (ne)za vislost
[1] Lineární (ne)závislost Skupiny, resp. množiny, vektorů mohou být lineárně závislé nebo lineárně nezávislé... a) zavislost, 3, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010,
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 11 Křivkový integrál Vybrané kapitoly z matematiky 2018-2019 2 / 11 Parametricky zadaná křivka v R 3 :
Kapitola 4: Soustavy diferenciálních rovnic 1. řádu
Sbírka příkladů Matematika II pro strukturované studium Kapitola 4: Soustavy diferenciálních rovnic 1 řádu Chcete-li ukončit prohlížení stiskněte klávesu Esc Chcete-li pokračovat stiskněte klávesu Enter
Edita Pelantová, katedra matematiky / 16
Edita Pelantová, katedra matematiky seminář současné matematiky, září 2010 Axiomy reálných čísel Axiomy tělesa Axiom 1. x + y = y + x a xy = yx (komutativní zákon). Axiom 2. x + (y + z) = (x + y) + z a
Matematika (KMI/PMATE)
Matematika (KMI/PMATE) Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam (smysl) koeficientů lineární
1 Soustava lineárních rovnic
Soustavy lineárních rovnic Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Soustava lineárních rovnic 2 Řešitelnost soustavy lineárních rovnic 3 Gaussova eliminační metoda 4 Jordanova eliminační
Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování dat Filip Železný Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Filip Železný (ČVUT) Vytěžování dat 1 / 26
Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006
Modelování systémů a procesů (K611MSAP) Přednáška 4 Katedra aplikované matematiky Fakulta dopravní ČVUT Pravidelná přednáška K611MSAP čtvrtek 20. dubna 2006 Obsah 1 Laplaceova transformace Přenosová funkce
Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS
Whitův pro heteroskedasticitě pro heteroskedasticitě Stochastické modelování v ekonomii a financích 7. 12. 2009 Obsah Whitův pro heteroskedasticitě pro heteroskedasticitě 1 Whitův 2 pro 3 heteroskedasticitě
Prawdopodobieństwo i statystyka
Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej
Numerické metody minimalizace
Numerické metody minimalizace Než vám klesnou víčka - Stříbrnice 2011 12.2. 16.2.2011 Emu (Brkos 2011) Numerické metody minimalizace 12.2. 16.2.2011 1 / 19 Obsah 1 Úvod 2 Základní pojmy 3 Princip minimalizace
Prawdopodobieństwo i statystyka
Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja
Matematika pro ekonomiku
Statistika, regresní analýza, náhodné procesy 7.10.2011 1 I. STATISTIKA Úlohy statistiky 2 1 Sestavit model 2 Odhadnout parametr(y) 1 Bodově 2 Intervalově 3 Testovat hypotézy Častá rozdělení ve statistice:
Co nám prozradí derivace? 21. listopadu 2018
Co nám prozradí derivace? Seminář sedmý 21. listopadu 2018 Derivace základních funkcí Tečna a normála Tečna ke grafu funkce f v bodě dotyku T = [x 0, f (x 0 )]: y f (x 0 ) = f (x 0 )(x x 0 ) Normála: y
Poslední úprava dokumentu: 7. května 2019
Poslední úprava dokumentu: 7. května 2019 Budu velmi vděčný za upozornění na případné chyby a překlepy. 1 Podmíněné hustoty, podmíněné momenty Z teorie pravděpodobnosti (NMSA 333 víme, že podmíněná střední
Kombinatorika a grafy I
Kombinatorika a grafy I Martin Balko 1. přednáška 19. února 2019 Základní informace Základní informace úvodní kurs, kde jsou probrány základy kombinatoriky a teorie grafů ( pokračování diskrétní matematiky
DFT. verze:
Výpočet spektra signálu pomocí DFT kacmarp@fel.cvut.cz verze: 009093 Úvod Signály můžeme rozdělit na signály spojité v čase nebo diskrétní v čase. Další možné dělení je na signály periodické nebo signály
(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35
(1) Derivace Kristýna Kuncová Matematika B2 17/18 Kristýna Kuncová (1) Derivace 1 / 35 Růst populací Zdroj : https://www.tes.com/lessons/ yjzt-cmnwtvsq/noah-s-ark Kristýna Kuncová (1) Derivace 2 / 35 Růst
Prawdopodobieństwo i statystyka
Wykład V: Zmienne losowe i ich wartości oczekiwane 25 października 2017 Definicja zmiennej losowej Definicja Zmienne losowa to charakterystyka liczbowa wyniku eksperymentu losowego. Zmienne losowa na przestrzeni
Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 3. listopadu Filip Železný (ČVUT) Vytěžování dat 3. listopadu / 1
Vytěžování dat Filip Železný Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 3. listopadu 2014 Filip Železný (ČVUT) Vytěžování dat 3. listopadu 2014 1 / 1 Metafora pro tuto přednášku Filip
Numerické metody 8. května FJFI ČVUT v Praze
Obyčejné diferenciální rovnice Numerické metody 8. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Základní metody Pokročilejší metody Soustava Vyšší řád Program 1 Úvod Úvod - Úloha Základní úloha, kterou řešíme
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F
Kristýna Kuncová. Matematika B2
(3) Průběh funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (3) Průběh funkce 1 / 26 Monotonie (x 2 ) = 2x (sin x) = cos x Jak souvisí derivace funkce a fakt, zda je funkce rostoucí nebo klesající?
Co to znamená pro vztah mezi simultánní a marginální hustotou pravděpodobnosti f (x) (pravděpodobnostní funkci p(x))?
Ondřej Pokora M5120 Lineární statistické modely I poznámky do cvičení podzim 2011 1 / 36 12.12.2011 Maximálně věrohodné odhady Náhodný výběr X 1,..., X n rosahu n z rozdělení pravděpodobnosti P: X i P
WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki
WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności
Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.
Příklad Známe následující hodnoty funkce Φ: u Φ(u) 1,00 0,841 1,10 0,864 1,20 0,885 Odhadněte přibližně hodnoty Φ(1,02) a Φ(1,16). Možnosti: Vezmeme hodnotu v nejbližším bodě. Body proložíme lomenou čarou.
Univerzita Palackého v Olomouci
Počítačová grafika - 5. cvičení Radek Janoštík Univerzita Palackého v Olomouci 22.10.2018 Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení 22.10.2018 1 / 10 Reakce na úkoly
Matematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D. pf.jcu.cz
Učební texty ke konzultacím předmětu Matematická analýza II pro kombinované studium Konzultace první a druhá RNDr. Libuše Samková, Ph.D. e-mail: lsamkova@ pf.jcu.cz webová stránka: home.pf.jcu.cz/ lsamkova/
Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování dat: klasifikace Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Filip Železný (ČVUT) Vytěžování
Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Vzorové otázky 1 / 36
(1) Vzorové otázky Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (1) Vzorové otázky 1 / 36 Limity - úlohy Otázka Určete lim x 0 f (x) A -3 B 0 C 5 D 7 E D Zdroj: Calculus: Single and Multivariable,
Úvod do pravděpodobnosti a statistiky
KMA/MAT1 Přednáška č. 3, Úvod do pravděpodobnosti a statistiky 3. října 2016 1 Pravděpodobnost [Otipka, Šmajstrla] 1.1 Náhodný pokus, náhodný jev Teorie pravděpodobnosti vychází ze studia náhodných pokusů.
Zadání: Vypočítejte hlavní momenty setrvačnosti a vykreslete elipsu setrvačnosti na zadaných
Příklad k procvičení : Průřeové charakteristik Zadání: Vpočítejte hlavní moment setrvačnosti a vkreslete elipsu setrvačnosti na adaných obracích. Příklad. Zadání: Rokreslení na jednoduché obrace: 500 T
Univerzita Karlova v Praze Matematicko-fyzikální fakulta. bankovnictví. Katedra pravděpodobnosti a matematické statistiky
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Barbora Janečková Aplikace 2-dimenzionálních rozdělení v bankovnictví Katedra pravděpodobnosti a matematické statistiky Vedoucí
Úvodní informace. 18. února 2019
Úvodní informace Funkce více proměnných Cvičení první 18. února 2019 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Úvodní informace. Komunikace: e-mail: olga@majling.eu nebo olga.majlingova@fs.cvut.cz
PROGRAMECH JOSEF TVRDÍK ČÍSLO OBLASTI PODPORY: STUDIJNÍCH PROGRAMECH OSTRAVSKÉ UNIVERZITY REGISTRAČNÍ ČÍSLO PROJEKTU: CZ.1.07/2.2.00/28.
ANALÝZA VÍCEROZMĚRNÝCH DAT URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH JOSEF TVRDÍK ČÍSLO OPERAČNÍHO PROGRAMU: CZ.1.07 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST OPATŘENÍ:
Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze
Elementární funkce Edita Pelantová FJFI, ČVUT v Praze Seminář současné matematiky katedra matematiky, FJFI, ČVUT v Praze únor 2013 c Edita Pelantová (FJFI) Elementární funkce únor 2013 1 / 19 Polynomiální
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text
Vybrané partie z kvantitativního řízení rizik - kreditní riziko
Vybrané partie z kvantitativního řízení rizik - kreditní riziko 1 Úvod Kreditní riziko je riziko vyplývající z neschopnosti nebo neochoty protistrany splatit své závazky. Basilejský rámec pro kapitálovou
Szkice do zajęć z Przedmiotu Wyrównawczego
Szkice do zajęć z Przedmiotu Wyrównawczego Matematyka Finansowa sem. letni 2011/2012 Spis treści Zajęcia 1 3 1.1 Przestrzeń probabilistyczna................................. 3 1.2 Prawdopodobieństwo warunkowe..............................
Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Bc. Hana Tritová. Katedra pravděpodobnosti a matematické statistiky
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Bc. Hana Tritová Metody MCMC pro finanční časové řady Katedra pravděpodobnosti a matematické statistiky Vedoucí diplomové práce:
Komplexní analýza. Příklad Body. Nepište obyčejnou tužkou ani červeně, jinak písemka nebude přijata. Soupis vybraných vzorců. 4a.
Komplexí aalýa Písemá část koušky (XX.XX.XXXX) Jméo a příjmeí:... Podpis:... Příklad.. 3.. 5. Body Před ahájeím práce Vyplňte čitelě rubriku Jméo a příjmeí a podepište se. Během písemé koušky smíte mít
Wykład 3 Momenty zmiennych losowych.
Wykład 3 Momenty zmiennych losowych. Wrocław, 18 października 2017r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną
Wykład 3 Momenty zmiennych losowych.
Wykład 3 Momenty zmiennych losowych. Wrocław, 19 października 2016r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną
ROBUST January 19, Zdeněk Fabián Ústav informatiky AVČR Praha
ROBUST 2014 Zdeněk Fabián Ústav informatiky AVČR Praha January 19, 2014 Starověk x 1,..., x n data průměry Starověk x 1,..., x n data průměry aritm., geom., harm. Novověk Model F a skórová funkce Ψ F inferenční
Operace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument)
KAPITOLA : Funkce - úvod [MA-8:P.] reálná funkce (jedné) reálné proměnné... f : A R...... zobrazení množin A R do množin reálných čísel R funkční hodnota... = f() ( argument) ( tj. reálná funkce f : A
Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid
Podstawowe rozkłady zmiennych losowych typu dyskretnego
Podstawowe rozkłady zmieych losowych typu dyskretego. Zmiea losowa X ma rozkład jedopuktowy, skocetroway w pukcie x 0 (ozaczay przez δ(x 0 )), jeżeli P (X = x 0 ) =. EX = x 0, V arx = 0. e itx0.. Zmiea
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 8. přednáška: Kvadratické formy Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen
Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187
Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe
Univerzita Karlova v Praze Matematicko-fyzikální fakulta. rizik. Katedra pravděpodobnosti a matematické statistiky
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Bc. Milena Benešová Aktuárský přístup k modelování kreditních rizik Katedra pravděpodobnosti a matematické statistiky Vedoucí diplomové
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 2 i 3 1 / 19 Zmienna losowa Definicja Dana jest przestrzeń probabilistyczna
Matematyka dla biologów Zajęcia nr 13.
Matematyka dla biologów Zajęcia nr 13. Dariusz Wrzosek 16 stycznia 2019 Matematyka dla biologów Zajęcia 13. 16 stycznia 2019 1 / 34 Plan: 1 Rachunek prawdopodobienstwa-zmienne losowe o rozkładzie ciagłym
Rovnice proudění Slapový model
do oceánského proudění Obsah 1 2 3 Co způsobuje proudění v oceánech? vyrovnávání rozdílů v teplotě, salinitě, tlaku, ρ = ρ(p, T, S) vítr - wind stress F wind = ρ air C D AU 2 10 slapy produkují silné proudy,
Ústav teorie informace a automatizace. Tato prezentace je k dispozici na:
Aplikace bayesovských sítí Jiří Vomlel Ústav teorie informace a automatizace Akademie věd České republiky Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/ Obsah přednášky Podmíněná pravděpodobnost,
Cauchyova úloha pro obyčejnou diferenciální rovnici
Řešení ODR v MATLABu Přednáška 3 15. října 2018 Cauchyova úloha pro obyčejnou diferenciální rovnici y = f (x, y), y(x 0 ) = y 0 Víme, že v intervalu a, b existuje jediné řešení. (f (x, y) a f y jsou spojité
5 Przegląd najważniejszych rozkładów
5 Przegląd najważniejszych rozkładów 5. Rozkład Bernoulliego W niezmieniających się warunkach wykonujemy n razy pewne doświadczenie. W wyniku każdego doświadczenia może nastąpić zdarzenie A lub A. Zakładamy,
Statystyka i eksploracja danych
Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,
Statystyka matematyczna
Statystyka matematyczna Wykład 6 Magdalena Alama-Bućko 8 kwietnia 019 Magdalena Alama-Bućko Statystyka matematyczna 8 kwietnia 019 1 / 1 Rozkłady ciagłe Magdalena Alama-Bućko Statystyka matematyczna 8
Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego
Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Podstawowe rozkłady zmiennych losowych Rozkłady zmiennych skokowych Rozkład zero-jedynkowy Rozpatrujemy doświadczenie, którego rezultatem może
kontaktní modely (Winklerův, Pasternakův)
TÉMA 7: Pružný poloprostor, modely podloží pružný poloprostor základní předpoklady pružný poloprostor Boussinesqueovo řešení kontaktní modely (Winklerův, Pasternakův) 1 Pružný poloprostor (1) vychází z
Design of Experiment (DOE) Petr Misák. Brno 2016
Design of Experiment (DOE) Petr Misák Vysoké učení technické v Brně, Fakulta stavební, Ústav stavebního zkušebnictví Brno 2016 Úvod - Experiment jako nástroj hledání slavné vynálezy - žárovka, antibiotika
NDMI002 Diskrétní matematika
NDMI002 Diskrétní matematika prof. RNDr. Martin Loebl, CSc. ZS 2016/17 Obsah 1 Množiny 2 1.1 Relace....................................... 2 1.2 Ekvivalence.................................... 3 1.3 Částečné
Wykład 11: Martyngały: definicja, twierdzenia o zbieżności
RAP 412 14.01.2009 Wykład 11: Martyngały: definicja, twierdzenia o zbieżności Wykładowca: Andrzej Ruciński Pisarz:Mirosława Jańczak 1 Wstęp Do tej pory zajmowaliśmy się ciągami zmiennych losowych (X n
Biosignál I. Lékařská fakulta Masarykovy univerzity Brno
Biofyzikální ústav Lékařská fakulta Masarykovy univerzity Brno 2010 Biosignál O co jde? Signál signál je fyzikální děj nesoucí informaci o systému užitečnou informaci Biosignál signál nese informaci o
WSTĘP. Tematy: Regresja liniowa: model regresji liniowej, estymacja nieznanych parametrów. Wykład:30godz., ćwiczenia:15godz., laboratorium:30godz.
Tematy: WSTĘP 1. Wprowadzenie do przedmiotu. Próbkowe odpowiedniki wielkości populacyjnych. Modele statystyczne i przykładowe zadania wnioskowania statystycznego. Statystyki i ich rozkłady. 2. Estymacja
GEM a soustavy lineárních rovnic, část 2
GEM a soustavy lineárních rovnic, část Odpřednesenou látku naleznete v kapitole 6 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: B6B0LAG 8.3.09: GEM a soustavy, část / Minulá přednáška Gaussova
Martin Dlask (KSI FJFI) 3. března 2016
Využití zlomkových stochastických procesů pro analýzu signálu a časových řad Seminář strojového učení a modelování Martin Dlask (KSI FJFI) http://people.fjfi.cvut.cz/dlaskma1/ 3. března 2016 Martin Dlask
Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.
Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną
Obsah. Limita posloupnosti a funkce. Petr Hasil. Limita posloupnosti. Pro a R definujeme: Je-li a < 0, pak a =, a ( ) =. vlastní body.
Obsah a funkce Petr Hasil Přednáška z Matematické analýzy I Úvod 2 c Petr Hasil (MUNI) a funkce Matematická analýza / 90 c Petr Hasil (MUNI) a funkce Matematická analýza 2 / 90 Úvod Úvod Pro a R definujeme:
Reprezentace dat. BI-PA1 Programování a Algoritmizace I. Ladislav Vagner
Reprezentace dat BI-PA1 Programování a Algoritmizace I. Ladislav Vagner Katedra teoretické informatiky Fakulta informačních technologíı ČVUT v Praze xvagner@fit.cvut.cz 9., 11. a 12. října 2017 Obsah Dvojková
Diferenciální rovnice základní pojmy. Rovnice se
Diferenciální rovnice základní pojmy. Rovnice se separovanými proměnnými. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské
Geometrická nelinearita: úvod
Geometrická nelinearita: úvod Opakování: stabilita prutů Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace průhyby,
podle přednášky doc. Eduarda Fuchse 16. prosince 2010
Jak souvisí plochá dráha a konečná geometrie? L ubomíra Balková podle přednášky doc. Eduarda Fuchse Trendy současné matematiky 16. prosince 2010 (FJFI ČVUT v Praze) Konečná geometrie 16. prosince 2010
Metoda hlavních komponent a faktorová analýza
Metoda hlavních komponent a faktorová analýza David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5.
Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid
v = v i e i v 1 ] T v =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq
N(0, 1) ) = φ( 0, 3) = 1 φ(0, 3) = 1 0, 6179 = 0, 3821 < t α 1 e t dt α > 0. f g = fg. f = e t f = e t. U nas: g = t α 1 g = (α 1)t α 2
Zdnie X,..., X 5 N(6, 5 ) Y,..., Y 6 N(7, 5 ) X N(6, 5 6 ) Ȳ N(7, 5 6 ) Przy złożeniu niezleżności zmiennych mmy: X Ȳ N(, ) po stndryzcji otrzymmy: Ȳ X N(, ) Pr(Ȳ X < ) = Pr(Ȳ X < ) = φ(, 3) = φ(, 3) =,
Rachunek Prawdopodobieństwa i Statystyka
Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne