prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií

Wielkość: px
Rozpocząć pokaz od strony:

Download "prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií"

Transkrypt

1 Základní pojmy pravděpodobnosti prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký, 2011 Pravděpodobnost a statistika BI-PST, LS 2010/11, Přednáška 1 Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti Roman Kotecký, Rudolf Blažek (FIT ČVUT) Základní pojmy pravděpodobnosti BI-PST, LS 2010/11, Přednáška 1 1 / 18

2 Organizace Organizace předmětu Pravděpodobnost a statistika Cíle: základní pojmy teorie pravděpodobnosti podmíněná pravděpodobnost, náhodná veličina, základní pravděpodobnostní rozdělení, atd. základy teorie markovských řetězců aplikace ve statistice: náhodný výběr, odhady parametrů, testování hypotéz atd. Cvičení: seminární, u tabule, 10 písemek po 2b = 20b, domácí úkoly 20b, zápočet: min 20b (z možných 40), povinnost absolvovat aspoň 8 písemek. Zkouška: Písemná (povinná), 60b, min 30b. Body dosažené ze cvičení a ze zkoušky se sčítají. Nebudete-li spokojeni s celkovým hodnocením, můžete si polepšit až o 5b u nepovinné ústní zkoušky. Roman Kotecký, Rudolf Blažek (FIT ČVUT) Základní pojmy pravděpodobnosti BI-PST, LS 2010/11, Přednáška 1 2 / 18

3 Organizace Literatura pro první polovinu semestru Používám (často sleduji tyto zdroje dosti věrně i když velmi selektivně) tři základní knihy: Bertsekas, Tsitsiklis: Introduction to Probability, Athena Scientific (MIT) Grimmett, Stirzaker: Probability and Random Processes, Oxford University Press (Oxbridge) Grinstead, Snell: Introduction to Probability, AMS 1997 Poslední citovaná kniha je asi nejlépe dostupná. Je volně ke stažení (plus další materiály jako prográmky v Mathematice, řešení ke všem lichým cvičením, atd) na stránce articles/probability_book/book.html Roman Kotecký, Rudolf Blažek (FIT ČVUT) Základní pojmy pravděpodobnosti BI-PST, LS 2010/11, Přednáška 1 3 / 18

4 Prostor elementárních jevů a pravděpodobnost Prostor elementárních jevů Prostor elementárních jevů Jde nám o matematický popis nejisté situace ve které hraje roli náhoda. Při náhodném procesu, experimentu, testu, či sérii testů dostáváme náhodné výsledky. Množinu všech možných náhodných výsledků nazýváme prostor elementárních jevů Ω ω Ω: náhodný výsledek, elementární jev. Příklady Házení mincí, Ω m = {O, P} (orel, panna) Vrh hrací kostkou, Ω k = {1, 2, 3, 4, 5, 6} Série n vrhů kostkou, Ω = {1, 2, 3, 4, 5, 6} n Série n vrhů kostkou, při které nás zajímá jen to, kolikrát padne ta která strana, Ω = {(k 1, k 2, k 3, k 4, k 5, k 6 ) Z 6 + : 6 l=1 k l = n} Hod šipkou do terče T R 2. Zde Ω = T { }, kde { } je jednobodová množina reprezentující výsledek šipka netrefila terč. Pokud je terč rozdělen, dejme tomu, na 5 pásem a jde nám jen o to do kterého pásma se šipka zabodla, je Ω = {1, 2, 3, 4, 5, }. Roman Kotecký, Rudolf Blažek (FIT ČVUT) Základní pojmy pravděpodobnosti BI-PST, LS 2010/11, Přednáška 1 4 / 18

5 Prostor elementárních jevů a pravděpodobnost Prostor elementárních jevů První krok tedy vždy je: analýza možných výsledků vedoucí k volbě prostoru elementárních jevů Ω. Elementární jevy v Ω by měly být vzájemně exklusivní a ve svém souhrnu vyčerpávající. Vzájemně exklusivní: elementární jevy: na kostce padlo 1 nebo 2, 1 nebo 3,...? Když padne 1, není jasné o který z nich jde! Ve svém souhrnu vyčerpávající: každý výsledek experimentu je možno interpretovat jako některý elementární jev. Při házení micí bychom vlastně měli mít Ω = {P, O, H}, kde H označuje výsledek, při kterém mince zůstala na hraně: Prostor elementárních jevů by měl být dostatečně detailní aby rozlišil výsledky, které vnímáme jako odlišné, měl by však pominout nepodstatné detaily. Příklady Házení mincí dokud nepadne první orel: spočetný prostor Ω = {ω 1, ω 2, ω 3,... }, ω i : výsledek kdy prvních i 1 hodů padla panna a i-tý hod je orel. Házení mincí nekonečně mnoho krát nespočetný prostor Ω = {P, O} N Roman Kotecký, Rudolf Blažek (FIT ČVUT) Základní pojmy pravděpodobnosti BI-PST, LS 2010/11, Přednáška 1 5 / 18

6 Prostor elementárních jevů a pravděpodobnost Prostor elementárních jevů Znázornění elementárních jevů pro sérii experimentů Např. pro 2 hody kostkou: souřadnicový popis a znázornění ve formě stromu kde každá posloupnost výsledků jednotlivých hodů odpovídá jednomu listu je jednoznačně určena cestou od kořene stromu k tomuto listu (na obr. jsou explicite označeny jen 3 listy). druhý hod první hod ,5 5,4 6,6 Roman Kotecký, Rudolf Blažek (FIT ČVUT) Základní pojmy pravděpodobnosti BI-PST, LS 2010/11, Přednáška 1 6 / 18

7 Prostor elementárních jevů a pravděpodobnost Náhodné jevy Náhodné jevy Zajímají nás pravděpodobnosti různých náhodných jevů Příklad Série tří vrhů kostkou, Ω = {1, 2, 3, 4, 5, 6} 3. Náhodný jev A: šestka padla aspoň jednou. Tento jev se dá ztotožnit s jistou podmnožinou výsledků: A = {ω = (ω 1, ω 2, ω 3 ) Ω : 3 l=1 δ ω l,6 1} Náhodné jevy jsou podmnožiny Ω, A Ω. Pro nejvýše spočetné Ω, má smysl uvažovat každou podmnožinu A Ω. Pro nespočetné Ω je potřeba opatrnosti: musí se uvažovat jen jevy z jisté podmnožiny F P(Ω) (P(Ω) je soubor všech podmnožin Ω). Je potřeba vyloučit neměřitelné množiny. Roman Kotecký, Rudolf Blažek (FIT ČVUT) Základní pojmy pravděpodobnosti BI-PST, LS 2010/11, Přednáška 1 7 / 18

8 Prostor elementárních jevů a pravděpodobnost Pravděpodobnost Pravděpodobnostní zákon Každému náhodnému jevu A přiřadíme jeho pravděpodobnost P(A). Ta musí splňovat přirozené axiomy: Definice (Axiomy pravděpodobnosti) Nezápornost. P(A) 0 pro každý jev A. Normalizace. Pravděpodobnost souboru všech elementárních jevů je 1, P(Ω) = 1. (Množina Ω je ve svém souhrnu vyčerpávající.) Aditivita. Jsou-li A a B dva disjunktní jevy (jinými slovy vzájemně exklusivní), je pravděpodobnost jejich sjednocení součtem jejich pravděpodobností, P(A B) = P(A) + P(B). Obecněji, je-li A 1, A 2,... posloupnost disjunktních jevů (A i A j = pro i j), pak P( i 1 A i ) = i 1 P(A i ). Roman Kotecký, Rudolf Blažek (FIT ČVUT) Základní pojmy pravděpodobnosti BI-PST, LS 2010/11, Přednáška 1 8 / 18

9 Prostor elementárních jevů a pravděpodobnost Pravděpodobnost Příklad Pro nejvýše spočetnou Ω stačí zadat funkci (hustota pravděpodobnosti, pravděpodobnostní hmota) p : Ω [0, 1] tak, že ω Ω p(ω) = 1. Pravděpodobnost P je pak dána jako P(A) = ω A p(ω) pro každé A Ω. Intermezzo: Pro nespočetnou Ω však není možné definovat P(A) pro každé A Ω. Věta (Vitali, 1905) Budiž Ω = {0, 1} N. Neexistuje funkce P : P(Ω) [0, 1] splňující základní axiomy (Nezápornost, Normalizace, Aditivita), a navíc i podmínku Invariance. Pro každé A Ω a n 1 je P(T n A) = P(A). Zde T n : ω = (ω 1, ω 2,... ) (ω 1,..., ω n 1, ω n, ω n+1,... ), kde 0 = 1, 1 = 0, a Tn (A) = {T n (ω) : ω A}. Roman Kotecký, Rudolf Blažek (FIT ČVUT) Základní pojmy pravděpodobnosti BI-PST, LS 2010/11, Přednáška 1 9 / 18

10 Prostor elementárních jevů a pravděpodobnost Pravděpodobnost Důkaz. (Hlavní myšlenka) Uvažujme relaci ekvivalence na Ω: ω ω pokud se liší jen na konečné mnoha souřadnicích. Uvažujme A obsahující po jednom ω z každé třídy ekvivalence (axiom výběru). Nechť S = {S N : S je konečná } a T S je pro S = {n 1,..., n k } definováno vztahem T S = T n1 T nk. Pak: Ω = S S T S (A) T S (A) and T S (A) jsou disjunktní pro S S. Odsud, 1 = P(Ω) = S S P(T S (A)) = S S P(A), což je spor (nekonečná suma stejného čísla je buď 0 nebo ). Roman Kotecký, Rudolf Blažek (FIT ČVUT) Základní pojmy pravděpodobnosti BI-PST, LS 2010/11, Přednáška 1 10 / 18

11 Volba pravděpodobnostního zákona Hustota pravděpodobnosti P(A) je obvykle specifikována pomocí hustoty pravděpodobnosti. Diskrétní případ: (nejvýše spočetná Ω). Zadáno p : Ω [0, 1] tak, že ω Ω p(ω) = 1. Pak P(A) = p(ω) ω A pro každé A Ω. Spojitý případ: (Ω R n, třeba při házení šipkou, Ω = T R 2 ). Uvažujme funkci ϱ : Ω [0, ] takovou, že Ω ϱ(x)dx = 1 (zde jde o n-rozměrný integrál přes množinu Ω). Pak P(A) = pro každou rozumnou množinu A R n. ϱ(x)dx A Roman Kotecký, Rudolf Blažek (FIT ČVUT) Základní pojmy pravděpodobnosti BI-PST, LS 2010/11, Přednáška 1 11 / 18

12 Volba pravděpodobnostního zákona Rovnoměrné rozdělení Rovnoměrné rozdělení pravděpodobnosti Diskrétní případ: Předpokládejme, že Ω je konečné a rozdělení pravděpodobnosti je rovnoměrné (jako při házení mincí, vrhání kostkou, atd). Pak p(ω) = 1 Ω pro každé ω Ω, a P(A) = A Ω = # příznivých případů # všech možných případů pro každou A Ω. Spojitý případ: Na Ω R n konečného objemu, 0 < λ n (Ω) = Ω dx < uvažujeme stejnoměrné rozdělením ϱ(x) = 1/λ n (Ω) (tak, že Ω ϱ(x)dx = 1). Pak P(A) = A 1/λ n (Ω)dx = λn (A) λ n (Ω) pro každou množinu A Ω. Roman Kotecký, Rudolf Blažek (FIT ČVUT) Základní pojmy pravděpodobnosti BI-PST, LS 2010/11, Přednáška 1 12 / 18

13 Volba pravděpodobnostního zákona Rovnoměrné rozdělení Příklad (Romeo a Julie) R. a J. se mají setkat u Staroměstského Orloje mezi polednem a 1 hod. po poledni. Každý dorazí v náhodném okamžiku v tomto rozmezí, ale počká jen 15 minut a pokud ten druhý nedorazí, odejde. Jaká je pravděpodobnost, že se setkají? 1 Romeo S 1/4 0 1/4 Julie 1 Ω = [0, 1] 2, S = {(x, y) : x y 1/4, 0 x 1, 0 y 1} P(S) = λ2 (S) 1 (3/4) (3/4) = = 7/16. λ 2 (Ω) 1 Roman Kotecký, Rudolf Blažek (FIT ČVUT) Základní pojmy pravděpodobnosti BI-PST, LS 2010/11, Přednáška 1 13 / 18

14 Volba pravděpodobnostního zákona Bertrandův paradox Přesné zadání pravděpodobnostního zákona závisí na detailech experimentu. Vágní zadání o jakou pravděpodobnost nám jde může vést k nejednoznačnostnem: Příklad (Bertrandův paradox) Náhodná tětiva χ na jednotkové kružnici. Jaká je pravděpodobnost P(A), kde A = { χ > l} a l strana vepsaného rovnostranného trojúhelníka? To záleží na tom, co přesně míníme slovem náhodná : 1. Vyberme rovnoměrně náhodně střed χ: Ω 1 = {x R 2 : x < 1}, A 1 = {x Ω 1 : x < 1/2}, P 1 (A 1 ) = π(1/2)2 π1 2 = Vyberme rovnoměrně náhodně úhlovou velikost a směr (irrelevantní díky symmetrii) tětivy χ viděné ze středu: Ω 2 = (0, π], A 2 = (2π/3, π], P 2 (A 2 ) = π/3 π = Vyberme rovnoměrně náhodně vzdálenost tětivy χ od středu a (opět irrelevantní) směr: Ω 3 = [0, 1), A 3 = [0, 1/2), P 3 (A 3 ) = 1 2. Roman Kotecký, Rudolf Blažek (FIT ČVUT) Základní pojmy pravděpodobnosti BI-PST, LS 2010/11, Přednáška 1 14 / 18

15 Základní vlastnosti pravděpodobnosti Důsledky axiomů Věta Uvažujme pravděpodobnost P na Ω a nechť A, B a C jsou náhodné jevy. Pak, (i) P( ) = 0. (ii) Monotonicita. Jestliže A B, pak P(A) P(B). (iii) Disjunktní jevy. P(A B) = P(A) + P(B) (a tedy taky P(A c ) = 1 P(A)). (iv) Obecný případ. P(A B) + P(A B) = P(A) + P(B) (tj. P(A B) = P(A) + P(B) P(A B)) (v) Princip inkluse-exkluse. P(A B C) = P(A) + P(B) + P(C) P(A B) P(B C) P(A C) + P(A B C). Důkaz. (i) P( ) = 0: Ω a jsou disjunktní (Ω = ). Tudíž, P(Ω) = P(Ω ) = P(Ω) + P( ) což je možné pouze když P( ) = 0. (ii) B A, pak P(B) = P(A) + P(B \ A) P(A). Roman Kotecký, Rudolf Blažek (FIT ČVUT) Základní pojmy pravděpodobnosti BI-PST, LS 2010/11, Přednáška 1 15 / 18

16 Základní vlastnosti pravděpodobnosti Důsledky axiomů Důkaz. (pokračování) (iii) Aditivita disjunktních je axiom. Množiny A a A c jsou disjunktní a A A c = Ω. Tudíž P(A) + P(A c ) = P(Ω) = 1. (iv) Pokud A B (a podobně A B), máme A B = A a A B = B. Tudíž, P(A B) + P(A B) = P(A) + P(B). Jinak, označíme-li, disjunktní sjednocení, je A = (A \ (A B)) (A B) (a podobně pro B) a A B = (A \ (A B)) (B \ (A B)) (A B) a tudíž P(A B) = P(A) P(A B) + P(B) P(A B) + P(A B) = P(A) + P(B) P(A B). A\(A B) A B B\(A B) Roman Kotecký, Rudolf Blažek (FIT ČVUT) Základní pojmy pravděpodobnosti BI-PST, LS 2010/11, Přednáška 1 16 / 18

17 Základní vlastnosti pravděpodobnosti Důsledky axiomů Důkaz. (pokračování) (v) Podobně, využitím disjunktního rozložení množiny A B C podle následujícího Vénova diagramu, kde dosadíme (se zkratkou D = A B C) vztah P((A C) \ D) = P(A C) P(D) plynoucí z A C = ((A C) \ D) D a P((A \ (B C)) = P(A) + P(D) P(A C) P(A B) plynoucí z A = (A \ (B C) ((A C) \ D) ((A B) \ D) D (a podobně pro B a C), dostáváme pro P(A B C) tvrzení (v). C\(A B) (A C)\D (B C)\D A\(B C) D (A B)\D B\(A C) Roman Kotecký, Rudolf Blažek (FIT ČVUT) Základní pojmy pravděpodobnosti BI-PST, LS 2010/11, Přednáška 1 17 / 18

18 Základní vlastnosti pravděpodobnosti Důsledky axiomů Věta Uvažujme pravděpodobnost P na Ω a náhodné jevy A 1, A 2,.... Pak (i) σ-subadditivita. P( n 1 A n ) n 1 P(A n). (ii) σ-spojitost. Pokud buď A n A (tj., A 1 A 2... and A = n 1 A n ) nebo A n A (A 1 A 2... a A = n 1 A n ), pak lim n P(A n ) = P(A). Důkaz. (i) P( n 1 A n ) = P( n 1 (A n \ m<n A m )) = n 1 P(A n \ m<n A m ) n 1 P(A n). (ii) A n A: P(A) = P( n 1 (A n \ A n 1 )) = n 1 P(A n \ A n 1 ) = lim N N n=1 P(A n \ A n 1 ) = lim N P(A N ). Roman Kotecký, Rudolf Blažek (FIT ČVUT) Základní pojmy pravděpodobnosti BI-PST, LS 2010/11, Přednáška 1 18 / 18

prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií

prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií Náhodné vektory prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký,

Bardziej szczegółowo

Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Bardziej szczegółowo

Edita Pelantová, katedra matematiky / 16

Edita Pelantová, katedra matematiky / 16 Edita Pelantová, katedra matematiky seminář současné matematiky, září 2010 Axiomy reálných čísel Axiomy tělesa Axiom 1. x + y = y + x a xy = yx (komutativní zákon). Axiom 2. x + (y + z) = (x + y) + z a

Bardziej szczegółowo

Kristýna Kuncová. Matematika B2 18/19

Kristýna Kuncová. Matematika B2 18/19 (6) Určitý integrál Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (6) Určitý integrál 1 / 28 Newtonův integrál Zdroj: https://kwcalculus.wikispaces.com/integral+applications Kristýna Kuncová (6)

Bardziej szczegółowo

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Komplexní analýza Mocninné řady Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Posloupnosti komplexních čísel opakování

Bardziej szczegółowo

MATEMATIKA 3. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

MATEMATIKA 3.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci MATEMATIKA 3 Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Osnova: Komplexní funkce - definice, posloupnosti, řady Vybrané komplexní funkce

Bardziej szczegółowo

Kristýna Kuncová. Matematika B3

Kristýna Kuncová. Matematika B3 (10) Vícerozměrný integrál II Kristýna Kuncová Matematika B3 Kristýna Kuncová (10) Vícerozměrný integrál II 1 / 30 Transformace Otázka Jaký obrázek znázorňuje čtverec vpravo po transformaci u = x + y a

Bardziej szczegółowo

Linea rnı (ne)za vislost

Linea rnı (ne)za vislost [1] Lineární (ne)závislost Skupiny, resp. množiny, vektorů mohou být lineárně závislé nebo lineárně nezávislé... a) zavislost, 3, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010,

Bardziej szczegółowo

Kristýna Kuncová. Matematika B2

Kristýna Kuncová. Matematika B2 (3) Průběh funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (3) Průběh funkce 1 / 26 Monotonie (x 2 ) = 2x (sin x) = cos x Jak souvisí derivace funkce a fakt, zda je funkce rostoucí nebo klesající?

Bardziej szczegółowo

Funkce zadané implicitně. 4. března 2019

Funkce zadané implicitně. 4. března 2019 Funkce zadané implicitně 4. března 2019 Parciální derivace druhého řádu Parciální derivace druhého řádu funkce z = f (x, y) jsou definovány: Parciální derivace 2 f 2 = ( ) f 2 f 2 = ( ) f 2 f a 2 f 2 f

Bardziej szczegółowo

Numerické metody minimalizace

Numerické metody minimalizace Numerické metody minimalizace Než vám klesnou víčka - Stříbrnice 2011 12.2. 16.2.2011 Emu (Brkos 2011) Numerické metody minimalizace 12.2. 16.2.2011 1 / 19 Obsah 1 Úvod 2 Základní pojmy 3 Princip minimalizace

Bardziej szczegółowo

Paradoxy geometrické pravděpodobnosti

Paradoxy geometrické pravděpodobnosti Katedra aplikované matematiky 1. června 2009 Úvod Cíle práce : Analýza Bertrandova paradoxu. Tvorba simulačního softwaru. Osnova 1 2 3 4 Osnova 1 2 3 4 Osnova 1 2 3 4 Osnova 1 2 3 4 V rovině je zadán kruh

Bardziej szczegółowo

Kombinatorika a grafy I

Kombinatorika a grafy I Kombinatorika a grafy I Martin Balko 1. přednáška 19. února 2019 Základní informace Základní informace úvodní kurs, kde jsou probrány základy kombinatoriky a teorie grafů ( pokračování diskrétní matematiky

Bardziej szczegółowo

5. a 12. prosince 2018

5. a 12. prosince 2018 Integrální počet Neurčitý integrál Seminář 9, 0 5. a. prosince 08 Neurčitý integrál Definice. Necht funkce f (x) je definovaná na intervalu I. Funkce F (x) se nazývá primitivní k funkci f (x) na I, jestliže

Bardziej szczegółowo

Statistika (KMI/PSTAT)

Statistika (KMI/PSTAT) Statistika (KMI/PSTAT) Cvičení deváté aneb Důležitá rozdělení pravděpodobnosti spojité náhodné veličiny Statistika (KMI/PSTAT) 1 / 15 Spojitá náhodná veličina Spojitá náhodná veličina Spojitá náhodná veličina

Bardziej szczegółowo

Úvodní informace. 18. února 2019

Úvodní informace. 18. února 2019 Úvodní informace Funkce více proměnných Cvičení první 18. února 2019 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Úvodní informace. Komunikace: e-mail: olga@majling.eu nebo olga.majlingova@fs.cvut.cz

Bardziej szczegółowo

(13) Fourierovy řady

(13) Fourierovy řady (13) Fourierovy řady Kristýna Kuncová Matematika B3 Kristýna Kuncová (13) Fourierovy řady 1 / 22 O sinech a kosinech Lemma (O sinech a kosinech) Pro m, n N 0 : 2π 0 2π 0 2π 0 sin nx dx = sin nx cos mx

Bardziej szczegółowo

Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky

Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky Monotónie a extrémy funkce Diferenciální počet - průběh funkce Věta o střední hodnotě (Lagrange) Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f (ξ)

Bardziej szczegółowo

Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.

Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou. Příklad Známe následující hodnoty funkce Φ: u Φ(u) 1,00 0,841 1,10 0,864 1,20 0,885 Odhadněte přibližně hodnoty Φ(1,02) a Φ(1,16). Možnosti: Vezmeme hodnotu v nejbližším bodě. Body proložíme lomenou čarou.

Bardziej szczegółowo

Co nám prozradí derivace? 21. listopadu 2018

Co nám prozradí derivace? 21. listopadu 2018 Co nám prozradí derivace? Seminář sedmý 21. listopadu 2018 Derivace základních funkcí Tečna a normála Tečna ke grafu funkce f v bodě dotyku T = [x 0, f (x 0 )]: y f (x 0 ) = f (x 0 )(x x 0 ) Normála: y

Bardziej szczegółowo

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text

Bardziej szczegółowo

(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25

(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25 (2) Funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (2) Funkce 1 / 25 Sudá a lichá funkce Určete, které funkce jsou sudé a které liché: liché: A, D, E sudé: B Kristýna Kuncová (2) Funkce 2 / 25

Bardziej szczegółowo

(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35

(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35 (1) Derivace Kristýna Kuncová Matematika B2 17/18 Kristýna Kuncová (1) Derivace 1 / 35 Růst populací Zdroj : https://www.tes.com/lessons/ yjzt-cmnwtvsq/noah-s-ark Kristýna Kuncová (1) Derivace 2 / 35 Růst

Bardziej szczegółowo

1 Soustava lineárních rovnic

1 Soustava lineárních rovnic Soustavy lineárních rovnic Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Soustava lineárních rovnic 2 Řešitelnost soustavy lineárních rovnic 3 Gaussova eliminační metoda 4 Jordanova eliminační

Bardziej szczegółowo

podle přednášky doc. Eduarda Fuchse 16. prosince 2010

podle přednášky doc. Eduarda Fuchse 16. prosince 2010 Jak souvisí plochá dráha a konečná geometrie? L ubomíra Balková podle přednášky doc. Eduarda Fuchse Trendy současné matematiky 16. prosince 2010 (FJFI ČVUT v Praze) Konečná geometrie 16. prosince 2010

Bardziej szczegółowo

Vybrané kapitoly z matematiky

Vybrané kapitoly z matematiky Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 11 Křivkový integrál Vybrané kapitoly z matematiky 2018-2019 2 / 11 Parametricky zadaná křivka v R 3 :

Bardziej szczegółowo

Numerické metody 8. května FJFI ČVUT v Praze

Numerické metody 8. května FJFI ČVUT v Praze Obyčejné diferenciální rovnice Numerické metody 8. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Základní metody Pokročilejší metody Soustava Vyšší řád Program 1 Úvod Úvod - Úloha Základní úloha, kterou řešíme

Bardziej szczegółowo

Obsah. Limita posloupnosti a funkce. Petr Hasil. Limita posloupnosti. Pro a R definujeme: Je-li a < 0, pak a =, a ( ) =. vlastní body.

Obsah. Limita posloupnosti a funkce. Petr Hasil. Limita posloupnosti. Pro a R definujeme: Je-li a < 0, pak a =, a ( ) =. vlastní body. Obsah a funkce Petr Hasil Přednáška z Matematické analýzy I Úvod 2 c Petr Hasil (MUNI) a funkce Matematická analýza / 90 c Petr Hasil (MUNI) a funkce Matematická analýza 2 / 90 Úvod Úvod Pro a R definujeme:

Bardziej szczegółowo

Martin Pergel. 26. února Martin Pergel

Martin Pergel. 26. února Martin Pergel 26. února 2017 Užitečné informace Navážeme na Programování I, změníme jazyk na C#, podrobnosti o C# budou v navazujícím kurzu, soustředíme se na totéž, co v zimě, tedy: technické programování, návrh a

Bardziej szczegółowo

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32 Komplexní analýza Úvod Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Úvod 1 / 32 Základní informace Stránky předmětu: http://math.feld.cvut.cz/bohata/kan.html

Bardziej szczegółowo

Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS

Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS Whitův pro heteroskedasticitě pro heteroskedasticitě Stochastické modelování v ekonomii a financích 7. 12. 2009 Obsah Whitův pro heteroskedasticitě pro heteroskedasticitě 1 Whitův 2 pro 3 heteroskedasticitě

Bardziej szczegółowo

Inverzní Z-transformace

Inverzní Z-transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 9. přednáška 11MSP úterý 16. dubna 2019 verze: 2019-04-15 12:25

Bardziej szczegółowo

Zadání: Vypočítejte hlavní momenty setrvačnosti a vykreslete elipsu setrvačnosti na zadaných

Zadání: Vypočítejte hlavní momenty setrvačnosti a vykreslete elipsu setrvačnosti na zadaných Příklad k procvičení : Průřeové charakteristik Zadání: Vpočítejte hlavní moment setrvačnosti a vkreslete elipsu setrvačnosti na adaných obracích. Příklad. Zadání: Rokreslení na jednoduché obrace: 500 T

Bardziej szczegółowo

Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Vzorové otázky 1 / 36

Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Vzorové otázky 1 / 36 (1) Vzorové otázky Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (1) Vzorové otázky 1 / 36 Limity - úlohy Otázka Určete lim x 0 f (x) A -3 B 0 C 5 D 7 E D Zdroj: Calculus: Single and Multivariable,

Bardziej szczegółowo

DFT. verze:

DFT. verze: Výpočet spektra signálu pomocí DFT kacmarp@fel.cvut.cz verze: 009093 Úvod Signály můžeme rozdělit na signály spojité v čase nebo diskrétní v čase. Další možné dělení je na signály periodické nebo signály

Bardziej szczegółowo

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187 Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými

Bardziej szczegółowo

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Matematika (KMI/PMATE) Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam (smysl) koeficientů lineární

Bardziej szczegółowo

Úvod do pravděpodobnosti a statistiky

Úvod do pravděpodobnosti a statistiky KMA/MAT1 Přednáška č. 3, Úvod do pravděpodobnosti a statistiky 3. října 2016 1 Pravděpodobnost [Otipka, Šmajstrla] 1.1 Náhodný pokus, náhodný jev Teorie pravděpodobnosti vychází ze studia náhodných pokusů.

Bardziej szczegółowo

Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vytěžování dat Filip Železný Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Filip Železný (ČVUT) Vytěžování dat 1 / 26

Bardziej szczegółowo

Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze

Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze Elementární funkce Edita Pelantová FJFI, ČVUT v Praze Seminář současné matematiky katedra matematiky, FJFI, ČVUT v Praze únor 2013 c Edita Pelantová (FJFI) Elementární funkce únor 2013 1 / 19 Polynomiální

Bardziej szczegółowo

Statistika (KMI/PSTAT)

Statistika (KMI/PSTAT) Cvičení sedmé (a asi i osmé a doufám, že ne deváté) aneb Náhodná veličina, rozdělení pravděpodobnosti náhodné veličiny Náhodná veličina Náhodná veličina Studenti skládají písemku sestávající ze tří úloh.

Bardziej szczegółowo

Pojem množiny nedefinujeme, pouze připomínáme, že množina je. Nejprve shrneme pojmy a fakta, které znáte ze střední školy.

Pojem množiny nedefinujeme, pouze připomínáme, že množina je. Nejprve shrneme pojmy a fakta, které znáte ze střední školy. 1 Kapitola 1 Množiny 1.1 Základní množinové pojmy Pojem množiny nedefinujeme, pouze připomínáme, že množina je souhrn, nebo soubor navzájem rozlišitelných objektů, kterým říkáme prvky. Pro známé množiny

Bardziej szczegółowo

Univerzita Palackého v Olomouci

Univerzita Palackého v Olomouci Počítačová grafika - 5. cvičení Radek Janoštík Univerzita Palackého v Olomouci 22.10.2018 Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení 22.10.2018 1 / 10 Reakce na úkoly

Bardziej szczegółowo

Petr Křemen FEL ČVUT. Petr Křemen (FEL ČVUT) Vysvětlování modelovacích chyb 133 / 156

Petr Křemen FEL ČVUT. Petr Křemen (FEL ČVUT) Vysvětlování modelovacích chyb 133 / 156 Vysvětlování modelovacích chyb Petr Křemen FEL ČVUT Petr Křemen (FEL ČVUT) Vysvětlování modelovacích chyb 133 / 156 Co nás čeká 1 Konjunktivní dotazy 2 Vyhodnocování konjunktivních dotazů v jazyce ALC

Bardziej szczegółowo

Matematika 2, vzorová písemka 1

Matematika 2, vzorová písemka 1 Matematika 2, vzorová písemka Pavel Kreml 9.5.20 Přesun mezi obrazovkami Další snímek: nebo Enter. Zpět: nebo Shift + Enter 2 3 4 Doporučení Pokuste se vyřešit zadané úlohy samostatně. Pokud nebudete vědět

Bardziej szczegółowo

Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018

Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018 Určitý (Riemnnův) integrál plikce. Nevlstní integrál Seminář 9. prosince 28 Určitý integrál Existence: Necht funkce f (x) je definovná n uzvřeném intervlu, b. Necht je splněn n tomto intervlu kterákoliv

Bardziej szczegółowo

Geometrická nelinearita: úvod

Geometrická nelinearita: úvod Geometrická nelinearita: úvod Opakování: stabilita prutů Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace průhyby,

Bardziej szczegółowo

1 Definice. A B A B vlastní podmnožina. 4. Relace R mezi množinami A a B libovolná R A B. Je-li A = B relace na A

1 Definice. A B A B vlastní podmnožina. 4. Relace R mezi množinami A a B libovolná R A B. Je-li A = B relace na A 1 Definice 1. Množiny: podmnožina: A B x(x A x B) průnik: A B = {x A x B} sjednocení: A B = {x x A x B} rozdíl: A B = {x A x B} A B A B vlastní podmnožina 2. uspořádaná dvojice: (x, y) = {{x}, {x, y}}

Bardziej szczegółowo

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU

Bardziej szczegółowo

Kapitola 4: Soustavy diferenciálních rovnic 1. řádu

Kapitola 4: Soustavy diferenciálních rovnic 1. řádu Sbírka příkladů Matematika II pro strukturované studium Kapitola 4: Soustavy diferenciálních rovnic 1 řádu Chcete-li ukončit prohlížení stiskněte klávesu Esc Chcete-li pokračovat stiskněte klávesu Enter

Bardziej szczegółowo

Definice Řekneme, že PDA M = (Q,Σ,Γ,δ,q 0,Z 0,F) je. 1. pro všechna q Q a Z Γ platí: kdykoliv δ(q,ε,z), pak δ(q,a,z) = pro všechna a Σ;

Definice Řekneme, že PDA M = (Q,Σ,Γ,δ,q 0,Z 0,F) je. 1. pro všechna q Q a Z Γ platí: kdykoliv δ(q,ε,z), pak δ(q,a,z) = pro všechna a Σ; Deterministické zásobníkové automaty Definice 3.72. Řekneme, že PDA M = (Q,Σ,Γ,δ,q 0,Z 0,F) je deterministický (DPDA), jestliže jsou splněny tyto podmínky: 1. pro všechna q Q a Z Γ platí: kdykoliv δ(q,ε,z),

Bardziej szczegółowo

Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 3. listopadu Filip Železný (ČVUT) Vytěžování dat 3. listopadu / 1

Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 3. listopadu Filip Železný (ČVUT) Vytěžování dat 3. listopadu / 1 Vytěžování dat Filip Železný Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 3. listopadu 2014 Filip Železný (ČVUT) Vytěžování dat 3. listopadu 2014 1 / 1 Metafora pro tuto přednášku Filip

Bardziej szczegółowo

Univerzita Karlova v Praze Matematicko-fyzikální fakulta

Univerzita Karlova v Praze Matematicko-fyzikální fakulta Univerzita arlova v Praze Matematicko-fyzikální fakulta BAALÁŘSÁ PRÁCE Matěj Novotný Operátory skládání na prostorech funkcí atedra matematické analýzy Vedoucí bakalářské práce: doc. RNDr. Jiří Spurný

Bardziej szczegółowo

Powyższe reguły to tylko jedna z wersji gry. Istnieje wiele innych wariantów, można też ustalać własne zasady. Miłej zabawy!

Powyższe reguły to tylko jedna z wersji gry. Istnieje wiele innych wariantów, można też ustalać własne zasady. Miłej zabawy! Krykiet W krykieta może grać od 2 do 4 osób, którzy albo grają każdy przeciw każdemu, albo dzielą się na dwie drużyny. Bramki oraz palik startowy i powrotne umieszcza się tak, jak pokazano na rysunku.

Bardziej szczegółowo

Matematika pro ekonomiku

Matematika pro ekonomiku Statistika, regresní analýza, náhodné procesy 7.10.2011 1 I. STATISTIKA Úlohy statistiky 2 1 Sestavit model 2 Odhadnout parametr(y) 1 Bodově 2 Intervalově 3 Testovat hypotézy Častá rozdělení ve statistice:

Bardziej szczegółowo

Automatové modely. Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Automatové modely. Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Automatové modely Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Stefan

Bardziej szczegółowo

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011. Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid

Bardziej szczegółowo

Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006

Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006 Modelování systémů a procesů (K611MSAP) Přednáška 4 Katedra aplikované matematiky Fakulta dopravní ČVUT Pravidelná přednáška K611MSAP čtvrtek 20. dubna 2006 Obsah 1 Laplaceova transformace Přenosová funkce

Bardziej szczegółowo

Matematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D. pf.jcu.cz

Matematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D.   pf.jcu.cz Učební texty ke konzultacím předmětu Matematická analýza II pro kombinované studium Konzultace první a druhá RNDr. Libuše Samková, Ph.D. e-mail: lsamkova@ pf.jcu.cz webová stránka: home.pf.jcu.cz/ lsamkova/

Bardziej szczegółowo

Operace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument)

Operace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument) KAPITOLA : Funkce - úvod [MA-8:P.] reálná funkce (jedné) reálné proměnné... f : A R...... zobrazení množin A R do množin reálných čísel R funkční hodnota... = f() ( argument) ( tj. reálná funkce f : A

Bardziej szczegółowo

1 Dedekindovy řezy (30 bodů)

1 Dedekindovy řezy (30 bodů) Pokročilá matematická analýza úlohy pro zimní semestr Dedekindovy řezy ( bodů) V této úloze se pokusíme seznámit s Dedekindovými řezy, pomocí nichž zavedeme reálná čísla. Tuto konstrukci vymyslel a publikoval

Bardziej szczegółowo

kontaktní modely (Winklerův, Pasternakův)

kontaktní modely (Winklerův, Pasternakův) TÉMA 7: Pružný poloprostor, modely podloží pružný poloprostor základní předpoklady pružný poloprostor Boussinesqueovo řešení kontaktní modely (Winklerův, Pasternakův) 1 Pružný poloprostor (1) vychází z

Bardziej szczegółowo

NDMI002 Diskrétní matematika

NDMI002 Diskrétní matematika NDMI002 Diskrétní matematika prof. RNDr. Martin Loebl, CSc. ZS 2016/17 Obsah 1 Množiny 2 1.1 Relace....................................... 2 1.2 Ekvivalence.................................... 3 1.3 Částečné

Bardziej szczegółowo

(a). Pak f. (a) pro i j a 2 f

(a). Pak f. (a) pro i j a 2 f Připomeň: 1. Necht K R n. Pak 1. Funkce více proměnných II 1.1. Parciální derivace vyšších řádů K je kompaktní K je omezená a uzavřená. 2. Necht K R n je kompaktní a f : K R je spojitá. Pak f nabývá na

Bardziej szczegółowo

Funkce více proměnných: limita, spojitost, derivace

Funkce více proměnných: limita, spojitost, derivace Matematika III 2. přednáška Funkce více proměnných: limita, spojitost, derivace Michal Bulant Masarykova univerzita Fakulta informatiky 22. 9. 2014 Obsah přednášky 1 Literatura 2 Zobrazení a funkce více

Bardziej szczegółowo

Obsah. Zobrazení na osmistěn. 1 Zobrazení sféry po částech - obecné vlastnosti 2 Zobrazení na pravidelný konvexní mnohostěn

Obsah. Zobrazení na osmistěn. 1 Zobrazení sféry po částech - obecné vlastnosti 2 Zobrazení na pravidelný konvexní mnohostěn Obsah 1 2 3 Použití Zobrazení rozsáhlého území, ale hodnoty zkreslení nesmí přesáhnout určitou hodnotu Rozdělením území na menší části a ty pak zobrazíme zvlášť Nevýhodou jsou však samostatné souřadnicové

Bardziej szczegółowo

Obsah. Petr Hasil. (konjunkce) (disjunkce) A B (implikace) A je dostačující podmínka pro B; B je nutná podmínka pro A A B: (A B) (B A) A (negace)

Obsah. Petr Hasil. (konjunkce) (disjunkce) A B (implikace) A je dostačující podmínka pro B; B je nutná podmínka pro A A B: (A B) (B A) A (negace) Množiny, číselné obory, funkce Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) Množiny, číselné obory, funkce Matematická analýza / 5 Obsah Množinové operace Operace s funkcemi Definice

Bardziej szczegółowo

Odpřednesenou látku naleznete v kapitolách skript Abstraktní a konkrétní lineární algebra.

Odpřednesenou látku naleznete v kapitolách skript Abstraktní a konkrétní lineární algebra. Lineární prostor Lineární kombinace Lineární prostory nad R Odpřednesenou látku naleznete v kapitolách 1.1 1.4 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: Lineární algebra 01A-2018: Lineární

Bardziej szczegółowo

Zobecněné metriky Různé poznámky 12. METRIZACE. Miroslav Hušek, Pavel Pyrih KMA MFF UK. 12. Poznámky

Zobecněné metriky Různé poznámky 12. METRIZACE. Miroslav Hušek, Pavel Pyrih KMA MFF UK. 12. Poznámky 12. METRIZACE Poznámky Miroslav Hušek, Pavel Pyrih KMA MFF UK 2009 Jak bylo zmíněno v úvodních kapitolách tohoto textu, axiómy metrik (nebo pseudometrik) se často oslabují, aby bylo možné popsat další

Bardziej szczegółowo

TGH01 - Algoritmizace

TGH01 - Algoritmizace TGH01 - Algoritmizace Jan Březina Technical University of Liberec 31. března 2015 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms) SPOX: tgh.spox.spoj.pl

Bardziej szczegółowo

Internet a zdroje. (Zdroje na Internetu) Mgr. Petr Jakubec. Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17.

Internet a zdroje. (Zdroje na Internetu) Mgr. Petr Jakubec. Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17. Internet a zdroje (Zdroje na Internetu) Mgr. Petr Jakubec Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17. listopadu 12 26. listopadu 2010 (KFC-INTZ) Databáze, citování 26. listopadu 2010

Bardziej szczegółowo

Nekomutativní Gröbnerovy báze

Nekomutativní Gröbnerovy báze Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Bc. Zuzana Požárková Nekomutativní Gröbnerovy báze Katedra algebry Vedoucí diplomové práce: RNDr. Jan Št ovíček, Ph.D. Studijní

Bardziej szczegółowo

Biosignál I. Lékařská fakulta Masarykovy univerzity Brno

Biosignál I. Lékařská fakulta Masarykovy univerzity Brno Biofyzikální ústav Lékařská fakulta Masarykovy univerzity Brno 2010 Biosignál O co jde? Signál signál je fyzikální děj nesoucí informaci o systému užitečnou informaci Biosignál signál nese informaci o

Bardziej szczegółowo

GEM a soustavy lineárních rovnic, část 2

GEM a soustavy lineárních rovnic, část 2 GEM a soustavy lineárních rovnic, část Odpřednesenou látku naleznete v kapitole 6 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: B6B0LAG 8.3.09: GEM a soustavy, část / Minulá přednáška Gaussova

Bardziej szczegółowo

Matematika 1 Jiˇr ı Fiˇser 24. z aˇr ı 2013 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 24. z aˇr ı / 52

Matematika 1 Jiˇr ı Fiˇser 24. z aˇr ı 2013 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 24. z aˇr ı / 52 í150doc-start í251doc-start Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 24. září 2013 1 / 52 Matematika 1 Jiří Fišer 24. září 2013 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 24. září 2013 1 / 52 Zimní semestr

Bardziej szczegółowo

6 Dedekindovy řezy (30 bodů)

6 Dedekindovy řezy (30 bodů) Pokročilá lineární algebra 3. série 6 Dedekindovy řezy (3 bodů) V této úloze se pokusíme seznámit s Dedekindovými řezy, pomocí nichž zavedeme reálná čísla. Tuto konstrukci vymyslel a publikoval Dedekind

Bardziej szczegółowo

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava Lineární algebra 8. přednáška: Kvadratické formy Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen

Bardziej szczegółowo

Lineární algebra - iterační metody

Lineární algebra - iterační metody Lineární algebra - iterační metody Numerické metody 7. dubna 2018 FJFI ČVUT v Praze 1 Úvod Úvod Rozdělení Metody Zastavení SOR Programy 1 Úvod Úvod - LAR Mějme základní úlohu A x = b, (1) kde A R n,n je

Bardziej szczegółowo

Rovnice proudění Slapový model

Rovnice proudění Slapový model do oceánského proudění Obsah 1 2 3 Co způsobuje proudění v oceánech? vyrovnávání rozdílů v teplotě, salinitě, tlaku, ρ = ρ(p, T, S) vítr - wind stress F wind = ρ air C D AU 2 10 slapy produkují silné proudy,

Bardziej szczegółowo

Teorie. kuncova/ Definice 1. Necht f je reálná funkce a a R. Jestliže existuje.

Teorie.   kuncova/ Definice 1. Necht f je reálná funkce a a R. Jestliže existuje. 8. cvičení http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Teorie Definice. Necht f je reálná funkce a a R. Jestliže eistuje h 0 fa + h) fa), h pak tuto itu nazýváme derivací funkce f v bodě

Bardziej szczegółowo

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011. Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid

Bardziej szczegółowo

Register and win! www.kaercher.com

Register and win! www.kaercher.com Register and win! www.kaercher.com A B A, B A B 2 6 A régi készülékek értékes újrahasznosítható anyagokat tartalmaznak, amelyeket tanácsos újra felhasználni. Szárazelemek, olaj és hasonló anyagok ne kerüljenek

Bardziej szczegółowo

Minimalizace automatů. Z. Sawa (VŠB-TUO) Teoretická informatika 2. října / 53

Minimalizace automatů. Z. Sawa (VŠB-TUO) Teoretická informatika 2. října / 53 Minimlizce utomtů Z. Sw (VŠB-TUO) Teoretická informtik 2. říjn 2018 1/ 53 Minimlizce konečného utomtu Předpokládejme deterministický konečný utomt A = (Q,Σ,δ,q 0,F). Definice Stvy q,q Q nzýváme ekvivlentní,

Bardziej szczegółowo

Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Stručné poznámky z MA4 LS 2011/2012 Proseminář z matematické analýzy Zapisovatelé: Zúčastnění posluchači Přednášející: Mgr. Robert Šámal, Ph.D.

Bardziej szczegółowo

MATEMATIKA 3 NUMERICKÉ METODY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

MATEMATIKA 3 NUMERICKÉ METODY.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci MATEMATIKA 3 NUMERICKÉ METODY Dana Černá http://kmd.fp.tul.cz Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci INFORMACE O PŘEDMĚTU Konzultační hodiny: ÚT 11:00-12:00, budova G,

Bardziej szczegółowo

Kompaktnost v neklasických logikách

Kompaktnost v neklasických logikách Univerzita Karlova v Praze Filozofická fakulta Katedra logiky Diplomová práce Petra Ivaničová Kompaktnost v neklasických logikách Compactness in non-classical logics Praha, 2010 Vedoucí práce: Prof. RNDr.

Bardziej szczegółowo

Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vytěžování dat Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Filip Železný (ČVUT) Vytěžování dat 1 / 27

Bardziej szczegółowo

Design of Experiment (DOE) Petr Misák. Brno 2016

Design of Experiment (DOE) Petr Misák. Brno 2016 Design of Experiment (DOE) Petr Misák Vysoké učení technické v Brně, Fakulta stavební, Ústav stavebního zkušebnictví Brno 2016 Úvod - Experiment jako nástroj hledání slavné vynálezy - žárovka, antibiotika

Bardziej szczegółowo

Ústav teorie informace a automatizace. Tato prezentace je k dispozici na:

Ústav teorie informace a automatizace. Tato prezentace je k dispozici na: Aplikace bayesovských sítí Jiří Vomlel Ústav teorie informace a automatizace Akademie věd České republiky Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/ Obsah přednášky Podmíněná pravděpodobnost,

Bardziej szczegółowo

Reprezentace dat. BI-PA1 Programování a Algoritmizace I. Ladislav Vagner

Reprezentace dat. BI-PA1 Programování a Algoritmizace I. Ladislav Vagner Reprezentace dat BI-PA1 Programování a Algoritmizace I. Ladislav Vagner Katedra teoretické informatiky Fakulta informačních technologíı ČVUT v Praze xvagner@fit.cvut.cz 9., 11. a 12. října 2017 Obsah Dvojková

Bardziej szczegółowo

Matematika III Stechiometrie stručný

Matematika III Stechiometrie stručný Matematika III Stechiometrie stručný matematický úvod Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík Ústav matematiky Přednášky LS 2015-2016 Obsah 1 Zápis chemické reakce 2 umožňuje jednotný přístup

Bardziej szczegółowo

ROBUST January 19, Zdeněk Fabián Ústav informatiky AVČR Praha

ROBUST January 19, Zdeněk Fabián Ústav informatiky AVČR Praha ROBUST 2014 Zdeněk Fabián Ústav informatiky AVČR Praha January 19, 2014 Starověk x 1,..., x n data průměry Starověk x 1,..., x n data průměry aritm., geom., harm. Novověk Model F a skórová funkce Ψ F inferenční

Bardziej szczegółowo

LBF/ZUB22 Programové vybavení ordinace zubního lékaře. Mgr. Markéta Trnečková, Ph.D. Palacký University, Olomouc

LBF/ZUB22 Programové vybavení ordinace zubního lékaře. Mgr. Markéta Trnečková, Ph.D.   Palacký University, Olomouc Databáze LBF/ZUB22 Programové vybavení ordinace zubního lékaře Mgr. Markéta Trnečková, Ph.D. www.marketa-trneckova.cz Palacký University, Olomouc Databáze databáze = uložiště dat dříve členěny hierarchicky,

Bardziej szczegółowo

Algebra I Cvičení. Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se

Algebra I Cvičení. Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se Algebra I Cvičení Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se kterými jsem při přípravě cvičení spolupracoval. Sbírka vznikla modifikací některých

Bardziej szczegółowo

Co to znamená pro vztah mezi simultánní a marginální hustotou pravděpodobnosti f (x) (pravděpodobnostní funkci p(x))?

Co to znamená pro vztah mezi simultánní a marginální hustotou pravděpodobnosti f (x) (pravděpodobnostní funkci p(x))? Ondřej Pokora M5120 Lineární statistické modely I poznámky do cvičení podzim 2011 1 / 36 12.12.2011 Maximálně věrohodné odhady Náhodný výběr X 1,..., X n rosahu n z rozdělení pravděpodobnosti P: X i P

Bardziej szczegółowo

Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vytěžování dat: klasifikace Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Filip Železný (ČVUT) Vytěžování

Bardziej szczegółowo

Numerické metody a statistika

Numerické metody a statistika Numerické metody a statistika Radek Kučera VŠB-TU Ostrava 2016-2017 ( ) Numerické metody a statistika 2016-2017 1 / 17 Číslo předmětu: 714-0781/02 Rozsah: 2+2 Hodnocení: 6 kreditů Přednáší: Radek Kučera

Bardziej szczegółowo

Anna Kratochvílová Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu / 17

Anna Kratochvílová Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu / 17 Parciální diferenciální rovnice ve zpracování obrazu Anna Kratochvílová FJFI ČVUT 10. 6. 2009 Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu 10. 6. 2009 1 / 17 Obsah 1 Motivace 2 Vyšetření pomocí

Bardziej szczegółowo

Příručka k rychlé instalaci: NWD2105. Základní informace. 1. Instalace softwaru

Příručka k rychlé instalaci: NWD2105. Základní informace. 1. Instalace softwaru Příručka k rychlé instalaci: NWD2105 Základní informace NWD2105 je bezdrátový USB adaptér určený pro použití s počítačem. NWD2105 je kompatibilní s technologií WPS (Wi-Fi Protected Setup). A: LED kontrolka

Bardziej szczegółowo

Expresivní deskripční logiky

Expresivní deskripční logiky Expresivní deskripční logiky Petr Křemen FEL ČVUT Petr Křemen (FEL ČVUT) Expresivní deskripční logiky 79 / 156 Co nás čeká 1 Inference v deskripčních logikách 2 Inferenční algoritmy Tablový algoritmus

Bardziej szczegółowo