c Marcin Sydow Grafy i Zastosowania BFS DFS 4: Przeszukiwanie Grafów (BFS, DFS i zastosowania) DFS nieskierowane DFS skierowane Podsumowanie
|
|
- Klaudia Kosińska
- 8 lat temu
- Przeglądów:
Transkrypt
1 4: Przeszukiwanie Grafów (, i zastosowania)
2 Spis zagadnie«przeszukiwanie grafów (rola, schemat ogólny, zastosowania) realizacje (kolejka, stos, rekurencja) przeszukiwanie wszerz zastosowania przeszukiwanie w gª b (wersja stosowa i rekurencyjna) klasykacja kraw dzi zastosowania: skªadowe spójne testowanie acykliczno±ci znajdowanie mostów znajdowanie punktów artykulacji sortowanie topologiczne (podej±cie naiwne i ) skªadowe silnie spójne
3 Przeszukiwanie grafu Wiele zada«lub algorytmów na grafach sprowadza si do systematycznego odwiedzenia wszystkich elementów grafu (wierzchoªków i/lub kraw dzi). Przez przeszukiwanie grafu rozumiemy taki systematyczny sposób, w którym: zaczynamy odwiedzanie z pewnego wierzchoªka startowego dozwolonym ruchem jest przej±cie po kraw dzi (od wierzchoªka odwiedzonego) ka»dy wierzchoªek i kraw d¹ grafu odwiedzone s dokªadnie raz Przeszukiwanie mo»na wykonywa zarówno na grafach nieskierowanych jak i skierowanych. W wierzchoªkach lub kraw dziach wykonujemy pewne operacje, zale»nie od zadania (np. wypisywanie na wyj±cie, ustawianie warto±ci pewnych atrybutów, etc.)
4 Ogólny schemat przeszukiwania grafu (pocz tkowo wszystkie wierzchoªki s nieodwiedzone) umie± startowy wierzchoªek w strukturze danych X dopóki struktura X jest niepusta: 1 wyjmij kolejny wierzchoªek v ze struktury X i odwied¹ go 2 wªó» do X kolejno wszystkich nieodwiedzonych s siadów v Konkretne warianty przeszukiwania zale» od: wyboru struktury danych X (np. kolejka lub stos) wyboru kolejno±ci s siadów (np. etykiety alfabetycznie)
5 Las przeszukiwania i klasykacja kraw dzi Pojedyncze wykonanie caªej procedury generuje tzw. drzewo przeszukiwania (jest to drzewo ukorzenione). Procedura mo»e by wykonywana wielokrotnie, a» nie ma nieodwiedzonych wierzchoªków w grae. Rezultatem caªego przeszukiwania jest wi c zbiór (rozª cznych wierzchoªkowo) drzew przeszukiwania zwany lasem przeszukiwania.
6 Umowne kolory wierzchoªków W przedstawianych pseudokodach b dziemy nadawa wierzchoªkom umowne kolory: biaªy (nieodwiedzony) szary (odwiedzony i przetwarzany; w strukturze danych) czarny (odwiedzony i zako«czony) Uwaga: do prawidªowej implementacji wystarcza rozró»nienie mi dzy nieodwiedzonym a odwiedzonym, szary zostaª dodany dla rozja±nienia prezentacji.
7 Klasykacja kraw dzi w wyniku przeszukiwania grafu Ze wzgl du na struktur lasu przeszukiwania, w wyniku przeszukiwania ka»da kraw d¹ (u, v) jest zaklasykowana do dokªadnie jednej z poni»szych kategorii: drzewowa (T): v jest odwiedzony z u w wyniku przej±cia (u, v) w przód (F): nie jest drzewowa i v jest potomkiem u w drzewie w tyª (B): nie jest drzewowa i v jest przodkiem u w drzewie poprzeczna (C): w pozostaªych przypadkach (pomi dzy gaª ziami lub drzewami)
8 Przeszukiwanie wszerz ( - breadth-rst search) Jest równowa»ne u»yciu kolejki w ogólnym schemacie przeszukiwania. Efekt polega na odwiedzaniu wierzchoªków równomiernie we wszystkich kierunkach zgodnie z rosn c odlegªo±ci od startowego. przykªad Zastosowania przeszukiwania wszerz (przykªady): obliczanie skªadowych spójnych (ka»de drzewo j stanowi) obliczanie odlegªo±ci od wierzchoªka startowego obliczanie domkni cia przechodniego relacji (n )
9 Przykªad implementacji for-each node in V: node.color = white; node.d = infinity; node.p = null s.color = gray; s.d = 0; queue.in(s) while(!queue.empty()){ currnode = queue.out() process(currnode) for-each node in currnode.adjlist: if (node.color == white): queue.in(node) node.color = gray node.d = currnode.d + 1 node.p = currnode currnode.color = black } W powy»szym pseudokodzie : obliczamy odlegªo±ci od startowego (atrybut d) zapami tujemy struktur drzewa (atrybut p) za process(currnode) mo»na podstawi dowoln operacj na wierzchoªku
10 Obserwacje dotycz ce przeszukiwania wszerz () Zªo»ono± czasowa : O( V + E ) (liniowa) Zauwa»my,»e w dla grafów nieskierowanych: nie wyst puj kraw dzie w przód ani wstecz dla kraw dzi drzewowej (u, v) zachodzi: v.d = u.d + 1 dla kraw dzi poprzecznej: v.d = u.d lub v.d = u.d + 1 Natomiast w dla grafów skierowanych: nie wyst puj kraw dzie w przód dla kraw dzi drzewowej (u, v) zachodzi: v.d = u.d + 1 dla kraw dzi poprzecznej: v.d u.d + 1 dla kraw dzi wstecznej: 0 v.d u.d
11 Przeszukiwanie w gª b ( - depth-rst seach) Jest równowa»ne u»yciu stosu w ogólnym schemacie przeszukiwania. Efekt polega na docieraniu stopniowo do mo»liwie najdalszego wierzchoªka a nast pnie minimalnym cofni ciu si, aby kontynuowa przeszukiwanie. przykªad W przeszukiwaniu w gª b ka»demu wierzchoªkowi v przypisywane s dwa wa»ne atrybuty: czas odwiedzenia: v.d (gdy staje si szary) czas zako«czenia: v.f (gdy staje si czarny) Atrybuty te maj zastosowanie do rozwi zywania konkretnych problemów grafowych.
12 Przeszukiwanie w gª b (wersja rekurencyjna) Uwaga: Implementacje z u»yciem stosu czy rekurencji s równowa»ne co do idei algorytmu, ale mog dawa inny porz dek odwiedzanych wierzchoªków. (){ time = 0 for-each v in V: v.color = white; v.parent = null for-each v in V: if (v.color == white): recursive(v) } recursive(graphnode v){ v.color = gray process(v) v.d = time++ for-each u in v.adjlist: if (u.color == white): u.parent = v recursive(u) u.color = black u.f = time++ }
13 Wªasno±ci przeszukiwania w gª b () Zªo»ono± czasowa: O( V + E ) (liniowa) Dla dowolnych 2 wierzchoªków u, v, ich przedziaªy czasów przetwarzania [u.d, u.f ] i [v.d, v.f ] s albo rozª czne albo jeden z nich zawiera si w drugim (tzw. struktura nawiasowa) Zachodzi nast puj cy warunek (twierdzenie o biaªej ±cie»ce): W drzewie v jest potomkiem u w momencie u.d, istnieje ±cie»ka z u do v skªadaj ca si tylko z biaªych wierzchoªków.
14 Rodzaje kraw dzi w grafach W dla grafów nieskierowanych nie wyst puj kraw dzie w przód ani poprzeczne. W dla grafów skierowanych mog wyst powa wszystkie 4 rodzaje kraw dzi. Dokªadniej, kiedy przechodzi kraw d¹ (u, v), kraw d¹ ta jest: drzewowa, je±li v jest biaªy wstecz, je±li v jest szary w przód lub poprzeczna, je±li v jest czarny
15 Kategoryzacja kraw dzi za pomoc czasów d i f Kraw d¹ (v, w) w przeszukiwaniu jest: drzewowa lub w przód v.d < w.d < w.f < v.f w tyª w.d < v.d < v.f < w.f poprzeczna w.d < w.f < v.d < v.f
16 Zastosowania przeszukiwania w gª b Schemat przeszukiwania w gª b ma rozliczne zastosowania dla rozwi zywania konkretnych problemów grafowych, np: testowanie acykliczno±ci (nieistnienie kraw dzi wstecz) sortowanie topologiczne skªadowe silnie spójne znajdowanie punktów artykulacji znajdowanie mostów rozkªad grafu na bloki
17 Stopie«a cykliczno± cie»ka : fragment drzewa przeszukiwania zbudowany do momentu, gdy jaki± wierzchoªek staje si czarny. Fakt: Je±li P jest ±cie»k ko«cz c si na wierzchoªku t, to wszyscy s siedzi t le» na ±cie»ce P. Ponadto, je±li deg(t) > 1 to wszyscy s siedzi t le» na pewnym cyklu Wniosek: Je±li w grae prostym G minimalny stopie«wierzchoªka to δ > 1, to graf zawiera cykl o dªugo±ci conajmniej δ + 1
18 Znajdowanie mostów Fakty: Kraw d¹ jest mostem nie le»y na»adnym cyklu Dowolny graf spójny, po odj ciu mostów skªada si ze skªadowych 2-spójnych (kraw dziowo) (tzw. bloków) Wszystkie wierzchoªki le» ce na pewnym cyklu s w tym samym bloku. Kontrakcja podgrafu H: uczynienie z H pojedynczego wierzchoªka przykªad Fakt: Przez kontrakcj ka»dej skªadowej spójnej grafu G otrzymujemy drzewo H, którego kraw dzie odpowiadaj mostom grafu G.
19 Algorytm znajdowania mostów Wej±cie: spójny graf nieskierowany G Wyj±cie: graf H skªadaj cy si jedynie z mostów grafu G H = G while V(H) >1 utwórz ±cie»k do wierzchoªka t, który staje si czarny if deg(t) = 1 zaznacz kraw d¹ incydentn z t jako most H = H - t else // t i jego s siedzi le» na cyklu C H jest wynikiem kontrakcji cyklu C (algorytm stopniowo dokonuje kontrakcji wszystkich wykrytych cykli a» zostan same mosty)
20 Korze«jako punkt artykulacji (punkt artykulacji: po jego usuni ciu jest wi cej skªadowych) Fakt: wierzchoªek v jest punktem artykulacji istniej wierzchoªki u,w (ró»ne od v), takie»e ka»da droga z u do w przechodzi przez v. Twierdzenie: Je±li T jest drzewem dla pewnego grafu, to jego korze«r jest punktem artykulacji r ma wi cej ni» jednego syna w tym drzewie.
21 Nie-korze«jako punkt artykulacji Twierdzenie A: Je±li T jest drzewem, to jego wierzchoªek v (nie b dacy korzeniem) jest punktem artykulacji v ma syna w, takiego»e»aden potomek wierzchoªka w ani on sam nie jest poª czony kraw dzi nie-drzewow z wªa±ciwym przodkiem wierzchoªka v. przykªad Niech low(w) oznacza mniejsz z liczb: w.d lub najmniejsza z liczb u.d po±ród wszystkich wierzchoªków u poª czonych nie-drzewow kraw dzi z w lub pewnym jego potomkiem. przykªad Twierdzenie B: Je±li T jest drzewem, to wierzchoªek v (nie b d cy korzeniem T ) jest punktem artykulacji v ma syna w, dla którego low(w) v.d
22 Schemat znajdowania punktów artykulacji Wej±cie: spójny graf G Wyj±cie: zbiór K punktów artykulacji grafu G 1 K = pusty 2 T = drzewo z dowolnego wierzchoªka r 3 je±li r ma wi cej ni» 1 syna to K = K + r 4 oblicz warto±ci low(w) dla wszystkich wierzchoªków 5 dla ka»dego wierzchoªka v nie b d cego korzeniem, dodaj v do zbioru K, je±li ma syna w, takiego»e low(w) v.d Uwaga: warto±ci low(w) jak i caªy powy»szy algorytm mog by obliczone podczas wykonania pojedynczego przeszukiwania na grae G : low(w) = min(v.d, z.d, low(y)), gdzie z to dowolny wierzchoªek poª czony kraw dzi niedrzewow z v, a y to dowolny syn wierzchoªka v.
23 Przykªad znajdowania punktów artykulacji w(0,0) v(1,0) u(2,0) x(3,3) z(4,3) t(5,3) y(6,3) Rysunek: Drzewo (kraw dzie drzewowe zaznaczono lini ci gª ). W ka»dym wierzchoªku a umieszczono par liczb (a.d, low(a)). Zaznaczono punkty artykulacji, czyli wierzchoªki, które maj syna s takiego,»e low(s) jest niemniejszy od ich czasu odkrycia.
24 Sortowanie topologiczne (tylko grafy ) Polega na takim ustawieniu wierzchoªków grafu w ci g,»e je±li w grae jest kraw d¹ (u, v), to u musi by przed v (ustawienie zgodne z kraw dziami). Graf da si posortowa topologicznie nie zawiera cykli (skierowanych). Rozwi zanie: zastosowa ustawi wierzchoªki od najwi kszego czasu zako«czenia do najmniejszego przykªad 1 1 istnieje te» rozwi zanie przez iteracyjne usuwanie wierzchoªków o stopniu wej±ciowym 0, te» mo»na zaimplementowa w czasie liniowym
25 Znajdowanie skªadowych silnie spójnych 1 oblicz za pomoc czasy zako«czenia (v.f ) 2 odwró kierunki kraw dzi (tzw. transpozycja grafu) 3 wykonaj na transponowanym grae, ale wywoªuj gªówn procedur zgodnie z malej cym czasem zako«czenia z kroku 1 4 wynik: poszczególne drzewa otrzymane w kroku 3 to poszczególne skªadowe silnie spójne przykªad
26 przeszukiwanie i wªasno±ci przeszukiwanie i wªasno±ci sprawdzanie acykliczno±ci znajdowanie punktów artykulacji znajdowanie mostów sortowanie topologiczne obliczanie skªadowych silnie spójnych
27 Przykªadowe wiczenia wypisz kolejno± odwiedzanych wierzchoªków, odlegªo±ci(), czasy odwiedzenia i zako«czenia(), las przeszukiwania danego grafu i klasykacj kraw dzi za pomoc i. wykonaj algorytm sprawdzania czy dany graf jest acykliczny wykonaj algorytm znajdowania mostów wykonaj algorytm znajdowania punktów artykulacji wykonaj sortowanie topologiczne danego grafu (2 metody) wykonaj algorytm obliczania skªadowych silnie spójnych danego grafu
28 Przykªadowe zadania zaproponuj liniowy algorytm znajdowania w nieskierowanym grae ±cie»ki, która przechodzi przez ka»d kraw d¹ dokªadnie raz w ka»d stron. zaproponuj algorytm (i oszacuj zªo»ono± czasow ) znajdowania wyj±cia z labiryntu gdy masz do dyspozycji (3 warianty) (Wskazówka: który schemat: czy b dzie lepszy i dlaczego? (oba maj t sam zªo»ono± ): kª bek nici (metoda Ariadny) kred do pisania na ±cianach labiryntu k operatorów (ka»dy z kred ) mog cych dziaªa niezale»nie zaproponuj algorytm sprawdzania, czy dany graf nieskierowany jest dwudzielny planowany jest mecz po±ród n szachistów, gdzie ustalone r par szachistów planuje rozegra partie. W caªym meczu ka»dy z graczy chciaªby rozegra wszystkie partie jednym kolorem. Zaproponuj algorytm, który sprawdzi, czy to jest mo»liwe. Czy da si to zrobi w czasie liniowym?
29 Dzi kuj za uwag
c Marcin Sydow Spójno± Grafy i Zastosowania Grafy Eulerowskie 2: Drogi i Cykle Grafy Hamiltonowskie Podsumowanie
2: Drogi i Cykle Spis Zagadnie«drogi i cykle spójno± w tym sªaba i silna k-spójno± (wierzchoªkowa i kraw dziowa) dekompozycja grafu na bloki odlegªo±ci w grae i poj cia pochodne grafy Eulera i Hamiltona
Podstawowe algorytmy grafowe i ich zastosowania
Podstawowe algorytmy grafowe i ich zastosowania Autor projektu: dr Andrzej Mróz (UMK) Projekt pn. Wzmocnienie potencjaªu dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany
Podstawowe algorytmy grafowe i ich zastosowania
Podstawowe algorytmy grafowe i ich zastosowania dr Andrzej Mróz (UMK w Toruniu) 2013 Projekt wspóªnansowany ze ±rodków Unii Europejskiej w ramach Europejskiego Funduszu Spoªecznego Projekt pn. Wzmocnienie
Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II.
Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II. Poni»sze zadania s wyborem zada«z kolokwiów ze Wst pu do Informatyki jakie przeprowadziªem w ci gu ostatnich lat. Marek Zawadowski Zadanie 1 Napisz
12: Znajdowanie najkrótszych ±cie»ek w grafach
12: Znajdowanie najkrótszych ±cie»ek w grafach Spis zagadnie«problem najkrótszych ±cie»ek z jednym ¹ródªem Rozwi zanie sznurkowe kraw dzi Wariant 1: Wariant 2: nieujemne kraw dzie (Dijkstra) Wariant 3:
Minimalne drzewa rozpinaj ce
y i y i drzewa Spis zagadnie«y i drzewa i lasy cykle fundamentalne i rozci cia fundamentalne wªasno±ci cykli i rozci minimalne drzewa algorytm algorytm Drzewo y i spójnego, nieskierowanego grafu prostego
c Marcin Sydow Przepªywy Grafy i Zastosowania Podsumowanie 12: Przepªywy w sieciach
12: w sieciach Spis zagadnie«sieci przepªywowe przepªywy w sieciach ±cie»ka powi kszaj ca tw. Forda-Fulkersona Znajdowanie maksymalnego przepªywu Zastosowania przepªywów Sieci przepªywowe Sie przepªywowa
10a: Wprowadzenie do grafów
10a: Wprowadzenie do grafów Spis zagadnie«zastosowania grafów denicja grafu (i skierowanego), prostego, multigrafu drogi i cykle, spójno± w tym sªaba i silna drzewo i las: denicja, charakteryzacje, wªasno±ci
Teoria grafów i jej zastosowania. 1 / 126
Teoria grafów i jej zastosowania. 1 / 126 Mosty królewieckie W Królewcu, na rzece Pregole znajduj si dwie wyspy poª czone ze sob, a tak»e z brzegami za pomoc siedmiu mostów, tak jak pokazuje rysunek 2
Algorytmy grafowe 2. Andrzej Jastrz bski. Akademia ETI. Politechnika Gda«ska Algorytmy grafowe 2
Algorytmy grafowe 2 Andrzej Jastrz bski Akademia ETI Minimalne drzewo spinaj ce Drzewem nazywamy spójny graf nie posiadaj cy cyklu. Liczba wierzchoªków drzewa jest o jeden wi ksza od liczby jego kraw dzi.
Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na.
Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zadanko 1 (12p.) Na imprezie w Noc Kupaªy s 44 dziewczyny. Nosz one 11 ró»nych imion, a dla ka»dego imienia s dokªadnie 4 dziewczyny o tym imieniu przy czym ka»da
c Marcin Sydow Wst p Grafy i Zastosowania Wierzchoªki 8: Kolorowanie Grafów Mapy Kraw dzie Zliczanie Podsumowanie
8: Kolorowanie Grafów Spis zagadnie«kolorowanie wierzchoªków Kolorowanie map Kolorowanie kraw dzi Wielomian chromatyczny Zastosowania Problem kolorowania grafów ma wiele odmian (np. kolorowanie wierzchoªków,
Grafy i Zastosowania. 9: Digrafy (grafy skierowane) c Marcin Sydow. Digrafy. Porz dki cz ±ciowe * Euler i Hamilton. Turnieje
9: (grafy skierowane) Spis zagadnie«cz ±ciowe Przykªady: gªosowanie wi kszo±ciowe, Digraf (graf skierowany) Digraf to równowa»ny termin z terminem graf skierowany (od ang. directed graph). W grafach skierowanych
c Marcin Sydow Podstawy Grafy i Zastosowania Kod Prüfera 3: Drzewa Drzewa ukorzenione * Drzewa binarne Zastosowania Podsumowanie
Grafy i Grafy i 3: Spis zagadnie«grafy i drzewo i las: denicja, charakteryzacje, wªasno±ci kodowanie Prüfera i zliczanie drzew etykietowanych (tw. Cayleya) drzewa drzewa zliczanie drzew binarnych (tw.
Grafy. Andrzej Jastrz bski. Akademia ET I. Politechnika Gda«ska
Andrzej Jastrz bski Akademia ET I Graf Grafem nazywamy par G = (V, E), gdzie V to zbiór wierzchoªków, E zbiór kraw dzi taki,»e E {{u, v} : u, v V u v}. Wierzchoªki v, u V s s siaduj ce je±li s poª czone
Grafy i Zastosowania. 6: Najkrótsze ±cie»ki. c Marcin Sydow. Najkrótsze cie»ki. Warianty. Relaksacja DAG. Algorytm Dijkstry.
6: ±cie»ki Spis zagadnie«problem najkrótszych ±cie»ek z jednym ¹ródªem Rozwi zanie sznurkowe kraw dzi Wariant 1: Wariant 2: nieujemne kraw dzie (Dijkstra) Wariant 3: dowolny graf () ±cie»ki dla wszystkich
c Marcin Sydow Planarno± Grafy i Zastosowania Tw. Eulera 7: Planarno± Inne powierzchnie Dualno± Podsumowanie
7: Spis zagadnie«twierdzenie Kuratowskiego Wªasno±ci planarno±ci Twierdzenie Eulera Grafy na innych powierzchniach Poj cie dualno±ci geometrycznej i abstrakcyjnej Graf Planarny Graf planarny to taki graf,
XVII Warmi«sko-Mazurskie Zawody Matematyczne
1 XVII Warmi«sko-Mazurskie Zawody Matematyczne Kategoria: klasa VIII szkoªy podstawowej i III gimnazjum Olsztyn, 16 maja 2019r. Zad. 1. Udowodnij,»e dla dowolnych liczb rzeczywistych x, y, z speªniaj cych
Algorytmy i struktury danych
Algorytmy i struktury danych Cz ± druga Prowadz cy: dr Andrzej Mróz, Wydziaª Matematyki i Informatyki, Uniwersytet Mikoªaja Kopernika 1 / 82 Rekurencja Procedura (funkcja) rekurencyjna wywoªuje sam siebie.
Mosty królewieckie, chi«ski listonosz i... kojarzenie maª»e«stw
Mosty królewieckie, chi«ski listonosz i... kojarzenie maª»e«stw 3 kwietnia 2014 roku 1 / 106 Mosty królewieckie W Królewcu, na rzece Pregole znajduj si dwie wyspy poª czone ze sob, a tak»e z brzegami za
Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.
Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór
Grafy i Zastosowania. 5: Drzewa Rozpinaj ce. c Marcin Sydow. Drzewa rozpinaj ce. Cykle i rozci cia fundamentalne. Zastosowania
Grafy i Grafy i 5: Rozpinaj ce Spis zagadnie«grafy i i lasy cykle fundamentalne i wªasno±ci cykli i rozci przestrzenie cykli i rozci * : zastosowanie w sieciach elektrycznych minimalne * algorytm Kruskala*
Drzewa Gomory-Hu Wprowadzenie. Drzewa Gomory-Hu. Jakub Š cki. 14 pa¹dziernika 2009
Wprowadzenie Drzewa Gomory-Hu Jakub Š cki 14 pa¹dziernika 2009 Wprowadzenie 1 Wprowadzenie Podstawowe poj cia i fakty 2 Istnienie drzew Gomory-Hu 3 Algorytm budowy drzew 4 Problemy otwarte Wprowadzenie
Lab. 02: Algorytm Schrage
Lab. 02: Algorytm Schrage Andrzej Gnatowski 5 kwietnia 2015 1 Opis zadania Celem zadania laboratoryjnego jest zapoznanie si z jednym z przybli»onych algorytmów sªu» cych do szukania rozwi za«znanego z
Wykªad 1. Wprowadzenie do teorii grafów
Wykªad 1. Wprowadzenie do teorii grafów 1 / 112 Literatura 1 W. Lipski; Kombinatoryka dla programistów. 2 T. Cormen, Ch. E. Leiserson, R. L. Rivest; Wprowadzenie do algorytmów. 3 K. A. Ross, Ch. R. B.
Grafy i Zastosowania. 1: Wprowadzenie i poj cia podstawowe. c Marcin Sydow. Wprowadzenie. Podstawowe poj cia. Operacje na grafach.
1: i podstawowe Spis Zagadnie«zastosowania grafów denicja grafu (i skierowanego), prostego, multigrafu s siedztwo i incydencja izomorzm grafów stopnie wierzchoªków (w tym wej±ciowy i wyj±ciowy), lemat
Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy
Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane:
Wykład 4 grafy Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, E zbiór krawędzi, Grafy dzielimy na grafy skierowane i nieskierowane: Formalnie, w grafach skierowanych E jest podzbiorem
Grafy i Zastosowania. 11: Twierdzenia Minimaksowe. c Marcin Sydow. Wst p: Tw. Halla. Dualno± Zbiory niezale»ne. Skojarzenia c.d.
11: Twierdzenia Minimaksowe Spis zagadnie«wst p: Kojarzenie Maª»e«stw i i twierdzenia minimaksowe i pokrycia (Tw. Gallai) w grafach (tw. Berge'a) w grafach dwudzielnych (tw. Königa, ) Pokrycia macierzy
Uczenie Wielowarstwowych Sieci Neuronów o
Plan uczenie neuronu o ci gªej funkcji aktywacji uczenie jednowarstwowej sieci neuronów o ci gªej funkcji aktywacji uczenie sieci wielowarstwowej - metoda propagacji wstecznej neuronu o ci gªej funkcji
Algorytmy grafowe. Wykład 2 Przeszukiwanie grafów. Tomasz Tyksiński CDV
Algorytmy grafowe Wykład 2 Przeszukiwanie grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów 3. Spójność grafu,
Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe.
Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe. Oznaczenia G = V, E - graf bez wag, gdzie V - zbiór wierzchołków, E- zbiór krawdzi V = n - liczba wierzchołków grafu G E = m
Programowanie wspóªbie»ne
1 Zadanie 1: Bar Programowanie wspóªbie»ne wiczenia 6 monitory cz. 2 Napisz monitor Bar synchronizuj cy prac barmana obsªuguj cego klientów przy kolistym barze z N stoªkami. Ka»dy klient realizuje nast
Teoria grafów i sieci 1 / 58
Teoria grafów i sieci 1 / 58 Literatura 1 B.Korte, J.Vygen, Combinatorial optimization 2 D.Jungnickel, Graphs, Networks and Algorithms 3 M.Sysªo, N.Deo Metody optymalizacji dyskretnej z przykªadami w Turbo
Metodydowodzenia twierdzeń
1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych
Podziaª pracy. Cz ± II. 1 Tablica sortuj ca. Rozwi zanie
Cz ± II Podziaª pracy 1 Tablica sortuj ca Kolejka priorytetowa to struktura danych udost pniaj ca operacje wstawienia warto±ci i pobrania warto±ci minimalnej. Z kolejki liczb caªkowitych, za po±rednictwem
Elementy teorii grafów, sposoby reprezentacji grafów w komputerze
Elementy teorii grafów, sposoby reprezentacji grafów w komputerze Autor projektu: dr Andrzej Mróz (UMK) Projekt pn. Wzmocnienie potencjaªu dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych
Programowanie wspóªbie»ne
1 Programowanie wspóªbie»ne wiczenia 5 monitory cz. 1 Zadanie 1: Stolik dwuosobowy raz jeszcze W systemie dziaªa N par procesów. Procesy z pary s nierozró»nialne. Ka»dy proces cyklicznie wykonuje wªasnesprawy,
Notatki z AiSD. Nr 2. 4 marca 2010 Algorytmy Zachªanne.
Notatki z AiSD. Nr 2. 4 marca 2010 Algorytmy Zachªanne. IIUWr. II rok informatyki. Przygotowaª: Krzysztof Lory± 1 Schemat ogólny. Typowe zadanie rozwi zywane metod zachªann ma charakter optymalizacyjny.
JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1
J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)
Teoria grafów i sieci 1 / 188
Teoria grafów i sieci / Drzewa z wagami Drzewem z wagami nazywamy drzewo z korzeniem, w którym do ka»dego li±cia przyporz dkowana jest liczba nieujemna, nazywana wag tego li±cia. / Drzewa z wagami Drzewem
Elementy teorii grafów, sposoby reprezentacji grafów w komputerze
Elementy teorii grafów, sposoby reprezentacji grafów w komputerze dr Andrzej Mróz (UMK w Toruniu) 2013 Projekt wspóªnansowany ze ±rodków Unii Europejskiej w ramach Europejskiego Funduszu Spoªecznego Projekt
Wst p teoretyczny do wiczenia nr 3 - Elementy kombinatoryki
Wst p teoretyczny do wiczenia nr 3 - Elementy kombinatoryki 1 Zadania na wiczenia nr 3 - Elementy kombinatoryki Zad. 1. Ile istnieje ró»nych liczb czterocyfrowych zakªadaj c,»e cyfry nie powtarzaj si a
Podstawowepojęciateorii grafów
7 Podstawowepojęciateorii grafów Wiele sytuacji z»ycia codziennego mo»e by w wygodny sposób opisanych gracznie za pomoc rysunków skªadaj cych si ze zbioru punktów i linii ª cz cych pewne pary tych punktów.
Wybrane poj cia i twierdzenia z wykªadu z teorii liczb
Wybrane poj cia i twierdzenia z wykªadu z teorii liczb 1. Podzielno± Przedmiotem bada«teorii liczb s wªasno±ci liczb caªkowitych. Zbiór liczb caªkowitych oznacza b dziemy symbolem Z. Zbiór liczb naturalnych
Biedronka. Wej±cie. Wyj±cie. Przykªady. VI OIG Zawody dru»ynowe, Finaª. 19 V 2012 Dost pna pami : 64 MB.
Biedronka Pªot ma D cm dªugo±ci i zbudowany jest z desek zako«czonych trójk tami równoramiennymi, poª czonych ze sob w jedn caªo±. Dªugo± ramienia ka»dego z trójk tów stanowi P % dªugo±ci podstawy. Po
TEORIA GRAFÓW. Graf skierowany dla ka»dej kraw dzi (oznaczanej tutaj jako ªuk) para wierzchoªków incydentnych jest par uporz dkowan {u, v}.
Podstawowe denicje: TEORIA GRAFÓW Graf (nieskierowany) G = (V, E) struktura skªadaj ca si ze: zbioru wierzchoªków V = {,,..., v n } oraz zbioru kraw dzi E = {e 1, e 2,..., e m }. Z ka»d kraw dzi e skojarzona
1 Metody iteracyjne rozwi zywania równania f(x)=0
1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0
Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting.
Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting.. Oznaczenia i załoenia Oznaczenia G = - graf skierowany z funkcj wagi s wierzchołek ródłowy t wierzchołek
Wykªad 4. Droga i cykl Eulera i Hamiltona
Wykªad 4. Droga i cykl Eulera i Hamiltona 1 / 92 Grafy Eulera Droga i cykl Eulera Niech G b dzie grafem spójnym. Denicja Je»eli w grae G istnieje zamkni ta droga prosta zawieraj ca wszystkie kraw dzie
Minimalne drzewo rozpinaj ce
Minimalne drzewo rozpinaj ce Autor projektu: dr Andrzej Mróz (UMK) Projekt pn. Wzmocnienie potencjaªu dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziaªania
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Egzaminy i inne zadania. Semestr II.
Egzaminy i inne zadania. Semestr II. Poni»sze zadania s wyborem zada«ze Wst pu do Informatyki z egzaminów jakie przeprowadziªem w ci gu ostatnich lat. Ponadto doª czyªem szereg zada«, które pojawiaªy si
1 Bª dy i arytmetyka zmiennopozycyjna
1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy
Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja
Ogólne wiadomości o grafach
Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,
Jednowarstwowe Sieci Neuronowe jako. klasykatory do wielu klas. (c) Marcin Sydow
Plan dyskretny perceptron i jego ograniczenia inne funkcje aktywacji wielo-klasykacja przy pomocy jedno-warstwowe sieci neuronowej ograniczenia jedno-warstwowej sieci neuronowej miary ewaluacyjne dla klasykacji
Egzaminy i inne zadania. Semestr II.
Egzaminy i inne zadania. Semestr II. Poni»sze zadania s wyborem zada«ze Wst pu do Informatyki z egzaminów jakie przeprowadziªem w ci gu ostatnich lat. Ponadto doª czyªem szereg zada«, które pojawiaªy si
Metoda tablic semantycznych. 1 Metoda tablic semantycznych
1 Zarówno metoda tablic semantycznych, jak i rezolucji, to dosy sprawny algorytm do badania speªnialni±ci formuª, a wi c i tautologii. Chodzi w niej o wskazanie, je±li istnieje, modelu dla formuªy. Opiera
Algorytmy zwiazane z gramatykami bezkontekstowymi
Algorytmy zwiazane z gramatykami bezkontekstowymi Rozpoznawanie j zyków bezkontekstowych Problem rozpoznawania j zyka L polega na sprawdzaniu przynale»no±ci sªowa wej±ciowego x do L. Zakªadamy,»e j zyk
Minimalne drzewo rozpinaj ce
Minimalne drzewo rozpinaj ce dr Andrzej Mróz (UMK w Toruniu) 013 Projekt wspóªnansowany ze ±rodków Unii Europejskiej w ramach Europejskiego Funduszu Spoªecznego Projekt pn. Wzmocnienie potencjaªu dydaktycznego
Listy i operacje pytania
Listy i operacje pytania Iwona Polak iwona.polak@us.edu.pl Uniwersytet l ski Instytut Informatyki pa¹dziernika 07 Który atrybut NIE wyst puje jako atrybut elementów listy? klucz elementu (key) wska¹nik
Najkrótsze drogi w grafach z wagami
Najkrótsze drogi w grafach z wagami Autor projektu: dr Andrzej Mróz (UMK) Projekt pn. Wzmocnienie potencjaªu dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziaªania
Zadania z PM II A. Strojnowski str. 1. Zadania przygotowawcze z Podstaw Matematyki seria 2
Zadania z PM II 010-011 A. Strojnowski str. 1 Zadania przygotowawcze z Podstaw Matematyki seria Zadanie 1 Niech A = {1,, 3, 4} za± T A A b dzie relacj okre±lon wzorem: (a, b) T, gdy n N a n = b. a) Ile
Algorytmiczna teoria grafów
18 maja 2013 Twierdzenie Halla o maª»e«stwach Problem Wyobra¹my sobie,»e mamy m dziewczyn i pewn liczb chªopców. Ka»da dziewczyna chce wyj± za m», przy czym ka»da z nich godzi si po±lubi tylko pewnych
WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14
WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 203/4 Spis tre±ci Kodowanie i dekodowanie 4. Kodowanie a szyfrowanie..................... 4.2 Podstawowe poj cia........................
Informacje pomocnicze
Funkcje wymierne. Równania i nierówno±ci wymierne Denicja. (uªamki proste) Wyra»enia postaci Informacje pomocnicze A gdzie A d e R n N (dx e) n nazywamy uªamkami prostymi pierwszego rodzaju. Wyra»enia
Metody dowodzenia twierdze«
Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku
Algorytmy i Struktury Danych
Lista zada«. Nr 4. 9 kwietnia 2016 IIUWr. II rok informatyki. Algorytmy i Struktury Danych 1. (0pkt) Rozwi» wszystkie zadania dodatkowe. 2. (1pkt) Uªó» algorytm znajduj cy najta«sz drog przej±cia przez
Programowanie i struktury danych 1 / 44
Programowanie i struktury danych 1 / 44 Lista dwukierunkowa Lista dwukierunkowa to liniowa struktura danych skªadaj ca si z ci gu elementów, z których ka»dy pami ta swojego nast pnika i poprzednika. Operacje
Bash i algorytmy. Elwira Wachowicz. 20 lutego
Bash i algorytmy Elwira Wachowicz elwira@ifd.uni.wroc.pl 20 lutego 2012 Elwira Wachowicz (elwira@ifd.uni.wroc.pl) Bash i algorytmy 20 lutego 2012 1 / 16 Inne przydatne polecenia Polecenie Dziaªanie Przykªad
Algorytmiczna teoria grafów
Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Ukªady równa«liniowych
dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast
Wstp. Warto przepływu to
177 Maksymalny przepływ Załoenia: sie przepływow (np. przepływ cieczy, prdu, danych w sieci itp.) bdziemy modelowa za pomoc grafów skierowanych łuki grafu odpowiadaj kanałom wierzchołki to miejsca połcze
Stereometria (geometria przestrzenna)
Stereometria (geometria przestrzenna) Wzajemne poªo»enie prostych w przestrzeni Stereometria jest dziaªem geometrii, którego przedmiotem bada«s bryªy przestrzenne oraz ich wªa±ciwo±ci. Na pocz tek omówimy
Chess. Joanna Iwaniuk. 9 marca 2010
9 marca 2010 Plan prezentacji 1. Co to jest? 2. Jak u»ywa? 3. Prezentacja dziaªania 4. kontrola przeplotów model checking odtwarzanie wadliwego wykonania 5. Ogólna idea Wynik dziaªania Co to jest? program
Maszyny Turinga i problemy nierozstrzygalne. Maszyny Turinga i problemy nierozstrzygalne
Maszyny Turinga Maszyna Turinga jest automatem ta±mowym, skª da si z ta±my (tablicy symboli) potencjalnie niesko«czonej w prawo, zakªadamy,»e w prawie wszystkich (tzn. wszystkich poza sko«czon liczb )
Szybkie mno»enie wielomianów i macierzy
Szybkie mno»enie wielomianów i macierzy Šukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski Šukasz Kowalik (UW) FFT & FMM 1 / 30 Szybka Transformata Fouriera Šukasz Kowalik (UW) FFT & FMM 2 / 30
Lekcja 8 - ANIMACJA. 1 Polecenia. 2 Typy animacji. 3 Pierwsza animacja - Mrugaj ca twarz
Lekcja 8 - ANIMACJA 1 Polecenia Za pomoc Baltiego mo»emy tworzy animacj, tzn. sprawia by obraz na ekranie wygl daª jakby si poruszaª. Do animowania przedmiotów i tworzenia animacji posªu» nam polecenia
1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza
165 1) Grafy eulerowskie własnoci algorytmy 2) Problem chiskiego listonosza 166 Grafy eulerowskie Def. Graf (multigraf, niekoniecznie spójny) jest grafem eulerowskim, jeli zawiera cykl zawierajcy wszystkie
Równania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010
WFTiMS 23 marca 2010 Spis tre±ci 1 Denicja 1 (równanie ró»niczkowe pierwszego rz du) Równanie y = f (t, y) (1) nazywamy równaniem ró»niczkowym zwyczajnym pierwszego rz du w postaci normalnej. Uwaga 1 Ogólna
Model obiektu w JavaScript
16 marca 2009 E4X Paradygmat klasowy Klasa Deniuje wszystkie wªa±ciwo±ci charakterystyczne dla wybranego zbioru obiektów. Klasa jest poj ciem abstrakcyjnym odnosz cym si do zbioru, a nie do pojedynczego
Szukanie najkrótszych dróg z jednym ródłem
Szukanie najkrótszych dróg z jednym ródłem Algorytm Dijkstry Załoenia: dany jest spójny graf prosty G z wagami na krawdziach waga w(e) dla kadej krawdzi e jest nieujemna dany jest wyróniony wierzchołek
Wyra»enia logicznie równowa»ne
Wyra»enia logicznie równowa»ne Denicja. Wyra»enia rachunku zda«nazywamy logicznie równowa»nymi, gdy maj równe warto±ci logiczne dla dowolnych warto±ci logicznych zmiennych zdaniowych. 1 Przykªady: Wyra»enia
Najkrótsze drogi w grafach z wagami
Najkrótsze drogi w grafach z wagami dr Andrzej Mróz (UMK w Toruniu) 013 Projekt wspóªnansowany ze ±rodków Unii Europejskiej w ramach Europejskiego Funduszu Spoªecznego Projekt pn. Wzmocnienie potencjaªu
Ekonometria. wiczenia 13 Metoda ±cie»ki krytycznej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
wiczenia 13 Metoda ±cie»ki krytycznej Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Plan wicze«1 Przykªad: ubieranie choinki 2 3 Programowanie liniowe w analizie czasowej i czasowo-kosztowej projektu
Wykªad 4. Funkcje wielu zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.
det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32
Wyznacznik Def Wyznacznikiem macierzy kwadratowej nazywamy funkcj, która ka»dej macierzy A = (a ij ) przyporz dkowuje liczb det A zgodnie z nast puj cym schematem indukcyjnym: Dla macierzy A = (a ) stopnia
Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski
Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej
Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja
Macierze 1 Podstawowe denicje Macierz wymiaru m n, gdzie m, n N nazywamy tablic liczb rzeczywistych (lub zespolonych) postaci a 11 a 1j a 1n A = A m n = [a ij ] m n = a i1 a ij a in a m1 a mj a mn W macierzy
Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki.
Wydziaª Matematyki, Fizyki i Informatyki 10 marca 2008 Spis tre±ci Listy 1 Listy 2 3 Co to jest lista? Listy List w Mathematice jest wyra»enie oddzielone przecinkami i zamkni te w { klamrach }. Elementy
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1
Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem
Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne
Arkusz maturalny Šukasz Dawidowski Powtórki maturalne 25 kwietnia 2016r. Odwrotno±ci liczby rzeczywistej 1. 9 8 2. 0, (1) 3. 8 9 4. 0, (8) 3 4 4 4 1 jest liczba Odwrotno±ci liczby rzeczywistej 3 4 4 4
Programowanie i struktury danych
Programowanie i struktury danych Wykªad 3 1 / 37 tekstowe binarne Wyró»niamy dwa rodzaje plików: pliki binarne pliki tekstowe 2 / 37 binarne tekstowe binarne Plik binarny to ci g bajtów zapami tanych w
KLASYCZNE ZDANIA KATEGORYCZNE. ogólne - orzekaj co± o wszystkich desygnatach podmiotu szczegóªowe - orzekaj co± o niektórych desygnatach podmiotu
➏ Filozoa z elementami logiki Na podstawie wykªadów dra Mariusza Urba«skiego Sylogistyka Przypomnij sobie: stosunki mi dzy zakresami nazw KLASYCZNE ZDANIA KATEGORYCZNE Trzy znaczenia sªowa jest trzy rodzaje
Rekurencyjne struktury danych
Andrzej Jastrz bski Akademia ETI Dynamiczny przydziaª pami ci Pami, która jest przydzielana na pocz tku dziaªania procesu to: pami programu czyli instrukcje programu pami statyczna zwi zana ze zmiennymi
Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.
Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf
Omówienie zada«potyczki Algorytmiczne 2015
Omówienie zada« Biznes Najszybsze rozwi zanie: Jarosªaw Kwiecie«(0:24) Na pocz tku mamy kapitaª P (megabajtalarów) i dochody 0 (megabajtalary/rok). W dowolnym momencie mo»emy kupi maszyn typu i, co kosztuje