TGH08 - Optimální kostry
|
|
- Michalina Majewska
- 6 lat temu
- Przeglądów:
Transkrypt
1 TGH08 - Optimální kostry Jan Březina Technical University of Liberec 11. dubna 2017
2 Problém profesora Borůvky elektrifikace Moravy Jak propojit N obcí vedením s minimální celkovou délkou? Zjednodušující předpoklad: Vedení se může větvit jen v obcích článek: O jistém problému minimálním První publikovaný algoritmus na hlednání minimální kostry
3 Grafová formulace problému Kostra (spanning tree) neorientovaného souvislého grafu G je podgraf, který je strom a obsahuje všechny jeho vrcholy. Cena podgrafu F G, kde G má ohodnocené hrany, je součet hodnot hran v F. Minimální kostra (minimal spannig tree - MST) je kostra s minimální cenou. Jelikož minimalita ceny vylučuje existenci cyklů v MST, lze MST definovat také jako: Minimální souvislý indukovaný podgraf. Problém: Najdi minimální kostru grafu. hladové algoritmy - v každém kroku výpočtu voĺı aktuálně nejlepší možnost, časově efektivní. Pro obecné minimalizační problémy tato strategie vede k nalezení pouze lokálního, ne globálního minima.
4 Primův-Jarníkův algoritmus Vstup: graf G(V, E). Výstup: kostra S. Inicializuj strom kostry S jedním vrcholem. while S neobsahuje V do Najdi minimální hranu e z S do V \ S.; Přidej e ke stromu S. Implementační detaily: Kĺıčová je realizace hledání minimální hrany. Použijeme prioritní frontu hran založenou na binární haldě. Fronta obsahuje všechny vrcholy z V \ S sousedící s S. Podobně jako v Dijkstrovi udržujeme předky π[:]. ODEBER MIN se složitostí O(log E) = O(log V ) Přidání e : INSERT O(log E), pro každou hranu max. jednou. Celkem O((E + V ) log V ), jelikož každou hranu musíme projít alespoň jednou.
5 Minima lnı kostra grafu Pr ı buznı pr ı klad
6 Minima lnı kostra grafu Pr ı buznı pr ı klad
7 Primův-Jarníkův algoritmus detailně for u V do d[u] = d[s] = 0; π[s] = s Naplň prioritní frontu Q vrcholy V s prioritami d[ ]. while u = OdeberMin(Q) do d[u] = 0 for e = (u, v) Adj[u] do alt = w(e) if d[v] 0 and alt < d[v] then π[v] = u; d[v] = alt ZmenšiKĺıč(Q,v) modifikace Dijkstrova algoritmu (relaxace, test přítomnosti v ve frontě d[v] 0). d je minimální vzdálenost vrcholu od kostry S.
8 Kruskalův algoritmus Vstup: graf G(V, E). Výstup: kostra L. vytvoř les L z vrcholů V ; naplň S hranami E; while S a L není strom do odeber z S hranu e s nejmenší váhou; if e spojuje vrcholy různých stromů v lese L then spoj stromy; Implementační detaily: S bude setříděné pole hran. O(E log E) L je strom pokud obsahuje V 1 hran. O(1) volba nejkratší hrany O(1) Test hrany: datová struktura pro disjunktní rozklad množiny. O(α(V )) a lepší Kruskal: O((V + E)α(V )) Celkem O(E log E) = O(E log V )
9 Kruskalův algoritmus detailně Vstup: graf jako pole hran E. Výstup: seznam L hran kostry. n = počet vrcholů setřid pole hran E while size(l) < n 1 do odeber z E hranu e s nejmenší váhou (u,v) = e if Find(u) Find(v) then Union(Find(u), Find(v)) přidej e do L
10 Borůvkův algoritmus - obecně vytvoř les L z vrcholů V while L není strom do for komponenty L i lesu L do Najdi minimální hranu e i z L i ven. Přidej hrany {e i } do L. V každém kroku se počet komponent zmenší alespoň na polovinu. složitost (redukční implemenace...) min(o(e log V ), O(V 2 )) vhodný pro paralelizaci
11 Borůvkův algoritmus - detailně vytvoř les L z vrcholů V while L není strom do for u V do add minimal edge e = (u, v) into L, set π[u] = v for u V do π[u] = F indroot(u, π), add to V for e = (u, v) E do add (π[u], π[v]) into E set (V, E) = (V, E ) FindRoot(u, π) kořen komponenty s vrcholem u v lese s hranami π while π[π[u]] u do u = π[u] ; ; return min{u, π[u]}
12 Meta algoritmus Řez δ(a) je množina hran mezi A a V \ A. Pokud pro množinu hran M existuje minimální kostra T, M T, řekneme, že M je rozšiřitelná do minimální kostry. Lemma (o existenci řezu) M je rozšiřitelná, ale ještě není kostrou, pak existuje neprázdný řez δa disjunktní s M. (Existuje netriviální řez s hranami mimo M.) 1. Zvoĺıme x M. 2. A bude množina vrcholů dosažitelných z x po hranách z M 3. δ(a) neobsahuje žádnou hranu z M, jinak bychom množinu A mohli zvětšit 4. pokud y / A, existuje cesta x y, která obsahuje hranu z řezu 5. řez je tedy neprázdný
13 Lemma (o nejlevnější hraně) Pokud M je rozšiřitelná a e je nejlevnější hrana řezu δa disjunktního s M, pak je i množina M {e} rozšiřitelná do minimální kostry.
14 meta-algoritmus: Postupně rozšiřujeme M s prázdné množiny až do T. V každém kroku najdeme vhodný řez
15 Shrnutí Kruskal - Začíná pokrývajícím nesouvislým lesem a ten postupně propojuje. Disjunktní rozklad vrcholů. O(E log E). Prim - Začíná souvislým nepokrývajícím stromem a rozšiřuje ho na celý graf. Binární halda. O((E + V ) log E). Borůvka - Začíná jako Kruskal, ale spojuje komponenty vyváženě. Paralelismus. O(E log V ) vylepšení až O(Eα(V )).
16 Reálné problémy Elektrická sít. Pro N měst najít propojení elektrickou sítí s minimální délkou (problém prof. Borůvky). Návrh obvodů. Pro N el. vývodů najít propojení ( se stejným potenciálem ) s minimální délkou drátu. Segmentace obrazu. Strom taxonomie. N pojmů (Wikipedie) s definovanou obsahovou podobností. Clustering. Rozdělení velké množiny objektů do tříd podobných objektů. Musí být kvantifikována podobnost. Approximace problému obchodního cestujícího.
17 Kostra s minimální cenou hrdla. Hrdlem kostry nazveme hranu s maximální váhou. Minimum bottleneck spanning tree (MBST) je kostra s minimální cenou hrdla. Řez je rozdělení vrcholů V = S T na disjunktní množiny Theorem Každá minimální kostra grafu G je zároveň kostrou s minimálním hrdlem. Důkaz: 1. Vlastnost řezu. Pro každý řez S, T grafu G platí, že nejmenší hrana e přes řez (u S, v T ) patří do MST. Alespoň jedna hrana f řezu musí náležet do MST. Sporem e f a w(e) w(f). Použitím e najdu menší kostru. 2. Uvažuju řez S, T procházející hrdlem - maximální hranou a z K MST a libovolnou hranou b z G MBST. Pokud má G levnější hrdlo, je w(b) < w(a), a pak podle vlastnosti řezu b K. Tj. K obsahuje minimálně V hran. Spor K nemůže být strom.
18 clustering I Člověk to dělá běžně... dělá si škatulky, aby uchopil složitou realitu. Úloha: Je dáno n objektů a jejich vzájemné vzdálenosti d(i, j). Najdi jejich rozdělení do k skupin A i tak, aby separace s byla maximální. s := min i,j d(a i, A j ), d(a i, A j ) := min x A i,y A j d(x, y), MSBT po odstranění hrdla dává 2-clustering. Podobně dále. Přímočarý algoritmus: Provádět Kruskala, dokud počet komponent není k.
19 Problém obchodního cestujícího Úloha: Jak si má naplánovat cestu po N městech, aby strávil na cestách nejméně času. Grafově: Najdi nejkratší Hamiltonovská kružnice v (úplném) ohodnoceném grafu. (NP-hard) Praktický předpoklad. Platí trojúhelníková nerovnost: d(i, j) d(i, k) + d(k, j)... stále NP-úplný problém. Aproximace.
20 Aproximace pomocí MST 1. Zvol počáteční vrchol v. Najdi z něj MST pomocí Primova algoritmu. 2. Z kořene v procházej kostru pomocí DF S algoritmu. Urči pořadí uzlů podle previzit. Tato aproximace dává kružnici po všech uzlech, která je max. dvakrát delší než optimální řešení.
Edita Pelantová, katedra matematiky / 16
Edita Pelantová, katedra matematiky seminář současné matematiky, září 2010 Axiomy reálných čísel Axiomy tělesa Axiom 1. x + y = y + x a xy = yx (komutativní zákon). Axiom 2. x + (y + z) = (x + y) + z a
Kristýna Kuncová. Matematika B3
(10) Vícerozměrný integrál II Kristýna Kuncová Matematika B3 Kristýna Kuncová (10) Vícerozměrný integrál II 1 / 30 Transformace Otázka Jaký obrázek znázorňuje čtverec vpravo po transformaci u = x + y a
TGH01 - Algoritmizace
TGH01 - Algoritmizace Jan Březina Technical University of Liberec 31. března 2015 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms) SPOX: tgh.spox.spoj.pl
Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování dat Filip Železný Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Filip Železný (ČVUT) Vytěžování dat 1 / 26
TGH01 - Algoritmizace
TGH01 - Algoritmizace Jan Březina Technical University of Liberec 28. února 2017 Co je to algoritmus? Porovnávání algoritmů Porovnávání algoritmů Co je to algoritmus? Který algoritmus je lepší? Záleží
Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze
Elementární funkce Edita Pelantová FJFI, ČVUT v Praze Seminář současné matematiky katedra matematiky, FJFI, ČVUT v Praze únor 2013 c Edita Pelantová (FJFI) Elementární funkce únor 2013 1 / 19 Polynomiální
(13) Fourierovy řady
(13) Fourierovy řady Kristýna Kuncová Matematika B3 Kristýna Kuncová (13) Fourierovy řady 1 / 22 O sinech a kosinech Lemma (O sinech a kosinech) Pro m, n N 0 : 2π 0 2π 0 2π 0 sin nx dx = sin nx cos mx
Numerické metody minimalizace
Numerické metody minimalizace Než vám klesnou víčka - Stříbrnice 2011 12.2. 16.2.2011 Emu (Brkos 2011) Numerické metody minimalizace 12.2. 16.2.2011 1 / 19 Obsah 1 Úvod 2 Základní pojmy 3 Princip minimalizace
Numerické metody 8. května FJFI ČVUT v Praze
Obyčejné diferenciální rovnice Numerické metody 8. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Základní metody Pokročilejší metody Soustava Vyšší řád Program 1 Úvod Úvod - Úloha Základní úloha, kterou řešíme
MATEMATIKA 3. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATIKA 3 Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Osnova: Komplexní funkce - definice, posloupnosti, řady Vybrané komplexní funkce
Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky
Monotónie a extrémy funkce Diferenciální počet - průběh funkce Věta o střední hodnotě (Lagrange) Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f (ξ)
Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.
Příklad Známe následující hodnoty funkce Φ: u Φ(u) 1,00 0,841 1,10 0,864 1,20 0,885 Odhadněte přibližně hodnoty Φ(1,02) a Φ(1,16). Možnosti: Vezmeme hodnotu v nejbližším bodě. Body proložíme lomenou čarou.
Úvod do umělé inteligence Prohledávání stavového prostoru -mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ bsah: Problém osmi dam Prohledávání stavového prostoru Prohledávání do hloubky Prohledávání
Kristýna Kuncová. Matematika B2 18/19
(6) Určitý integrál Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (6) Určitý integrál 1 / 28 Newtonův integrál Zdroj: https://kwcalculus.wikispaces.com/integral+applications Kristýna Kuncová (6)
Úvodní informace. 18. února 2019
Úvodní informace Funkce více proměnných Cvičení první 18. února 2019 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Úvodní informace. Komunikace: e-mail: olga@majling.eu nebo olga.majlingova@fs.cvut.cz
5. a 12. prosince 2018
Integrální počet Neurčitý integrál Seminář 9, 0 5. a. prosince 08 Neurčitý integrál Definice. Necht funkce f (x) je definovaná na intervalu I. Funkce F (x) se nazývá primitivní k funkci f (x) na I, jestliže
Co nám prozradí derivace? 21. listopadu 2018
Co nám prozradí derivace? Seminář sedmý 21. listopadu 2018 Derivace základních funkcí Tečna a normála Tečna ke grafu funkce f v bodě dotyku T = [x 0, f (x 0 )]: y f (x 0 ) = f (x 0 )(x x 0 ) Normála: y
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18
Komplexní analýza Mocninné řady Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Posloupnosti komplexních čísel opakování
Inverzní Z-transformace
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 9. přednáška 11MSP úterý 16. dubna 2019 verze: 2019-04-15 12:25
1 Soustava lineárních rovnic
Soustavy lineárních rovnic Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Soustava lineárních rovnic 2 Řešitelnost soustavy lineárních rovnic 3 Gaussova eliminační metoda 4 Jordanova eliminační
Obsah. Zobrazení na osmistěn. 1 Zobrazení sféry po částech - obecné vlastnosti 2 Zobrazení na pravidelný konvexní mnohostěn
Obsah 1 2 3 Použití Zobrazení rozsáhlého území, ale hodnoty zkreslení nesmí přesáhnout určitou hodnotu Rozdělením území na menší části a ty pak zobrazíme zvlášť Nevýhodou jsou však samostatné souřadnicové
Ústav teorie informace a automatizace RESEARCH REPORT. Pavel Boček, Karel Vrbenský: Implementace algoritmu MIDIA v prostředí Google Spreadsheets
Akademie věd České republiky Ústav teorie informace a automatizace Academy of Sciences of the Czech Republic Institute of Information Theory and Automation RESEARCH REPORT Pavel Boček, Karel Vrbenský:
Funkce zadané implicitně. 4. března 2019
Funkce zadané implicitně 4. března 2019 Parciální derivace druhého řádu Parciální derivace druhého řádu funkce z = f (x, y) jsou definovány: Parciální derivace 2 f 2 = ( ) f 2 f 2 = ( ) f 2 f a 2 f 2 f
Petr Křemen FEL ČVUT. Petr Křemen (FEL ČVUT) Vysvětlování modelovacích chyb 133 / 156
Vysvětlování modelovacích chyb Petr Křemen FEL ČVUT Petr Křemen (FEL ČVUT) Vysvětlování modelovacích chyb 133 / 156 Co nás čeká 1 Konjunktivní dotazy 2 Vyhodnocování konjunktivních dotazů v jazyce ALC
podle přednášky doc. Eduarda Fuchse 16. prosince 2010
Jak souvisí plochá dráha a konečná geometrie? L ubomíra Balková podle přednášky doc. Eduarda Fuchse Trendy současné matematiky 16. prosince 2010 (FJFI ČVUT v Praze) Konečná geometrie 16. prosince 2010
Tabulky, součin tabulek
Výpočet marginálních podmíněných pravděpodobností v bayesovské síti Úmluva: Zajímáme se pouze o bayesovské sítě, jejichž graf je spojitý. Jinak uvažujeme každou komponentu zvlášť. Tabulky, součin tabulek
Geometrická nelinearita: úvod
Geometrická nelinearita: úvod Opakování: stabilita prutů Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace průhyby,
x2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2.
Příklady k 1 zápočtové písemce Definiční obor funkce Určete definiční obor funkce: x + x 15 1 f(x x + x 1 ( x + x 1 f(x log x + x 15 x + x 1 3 f(x x 3 + 3x 10x ( x 3 + 3x 10x f(x log x + x 1 x3 + 5x 5
Kristýna Kuncová. Matematika B2
(3) Průběh funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (3) Průběh funkce 1 / 26 Monotonie (x 2 ) = 2x (sin x) = cos x Jak souvisí derivace funkce a fakt, zda je funkce rostoucí nebo klesající?
(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25
(2) Funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (2) Funkce 1 / 25 Sudá a lichá funkce Určete, které funkce jsou sudé a které liché: liché: A, D, E sudé: B Kristýna Kuncová (2) Funkce 2 / 25
Linea rnı (ne)za vislost
[1] Lineární (ne)závislost Skupiny, resp. množiny, vektorů mohou být lineárně závislé nebo lineárně nezávislé... a) zavislost, 3, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010,
NDMI002 Diskrétní matematika
NDMI002 Diskrétní matematika prof. RNDr. Martin Loebl, CSc. ZS 2016/17 Obsah 1 Množiny 2 1.1 Relace....................................... 2 1.2 Ekvivalence.................................... 3 1.3 Částečné
Tvarová optimalizace pro 3D kontaktní problém
Tvarová optimalizace pro 3D kontaktní problém s Coulombovým třením Petr Beremlijski, Jaroslav Haslinger, Michal Kočvara, Radek Kučera a Jiří V. Outrata Katedra aplikované matematik Fakulta elektrotechnik
Operace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument)
KAPITOLA : Funkce - úvod [MA-8:P.] reálná funkce (jedné) reálné proměnné... f : A R...... zobrazení množin A R do množin reálných čísel R funkční hodnota... = f() ( argument) ( tj. reálná funkce f : A
Wykład 8. Drzewo rozpinające (minimum spanning tree)
Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,
Paralelní implementace a optimalizace metody BDDC
Paralelní implementace a optimalizace metody BDDC J. Šístek, M. Čertíková, P. Burda, S. Pták, J. Novotný, A. Damašek, FS ČVUT, ÚT AVČR 22.1.2007 / SNA 2007 Osnova Metoda BDDC (Balancing Domain Decomposition
Univerzita Palackého v Olomouci
Počítačová grafika - 5. cvičení Radek Janoštík Univerzita Palackého v Olomouci 22.10.2018 Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení 22.10.2018 1 / 10 Reakce na úkoly
(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35
(1) Derivace Kristýna Kuncová Matematika B2 17/18 Kristýna Kuncová (1) Derivace 1 / 35 Růst populací Zdroj : https://www.tes.com/lessons/ yjzt-cmnwtvsq/noah-s-ark Kristýna Kuncová (1) Derivace 2 / 35 Růst
Powyższe reguły to tylko jedna z wersji gry. Istnieje wiele innych wariantów, można też ustalać własne zasady. Miłej zabawy!
Krykiet W krykieta może grać od 2 do 4 osób, którzy albo grają każdy przeciw każdemu, albo dzielą się na dwie drużyny. Bramki oraz palik startowy i powrotne umieszcza się tak, jak pokazano na rysunku.
Anna Kratochvílová Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu / 17
Parciální diferenciální rovnice ve zpracování obrazu Anna Kratochvílová FJFI ČVUT 10. 6. 2009 Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu 10. 6. 2009 1 / 17 Obsah 1 Motivace 2 Vyšetření pomocí
Univerzita Karlova v Praze Matematicko-fyzikální fakulta. algoritmu. Katedra algebry
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Jiří Lechner Dekodér konvolučního kódu pomocí Viterbiho algoritmu Katedra algebry Vedoucí bakalářské práce: doc. RNDr. Jiří Tůma,
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 11 Křivkový integrál Vybrané kapitoly z matematiky 2018-2019 2 / 11 Parametricky zadaná křivka v R 3 :
3. Problémy s omezujícími podmínkami (CSP Constraint Satisfaction Problems)
Základy umělé inteligence 3. Problémy s omezujícími podmínkami (CSP Constraint Satisfaction Problems) Jiří Kubaĺık Katedra kybernetiky, ČVUT-FEL http://cw.felk.cvut.cz/doku.php/courses/y33zui/start pproblémy
Definice Řekneme, že PDA M = (Q,Σ,Γ,δ,q 0,Z 0,F) je. 1. pro všechna q Q a Z Γ platí: kdykoliv δ(q,ε,z), pak δ(q,a,z) = pro všechna a Σ;
Deterministické zásobníkové automaty Definice 3.72. Řekneme, že PDA M = (Q,Σ,Γ,δ,q 0,Z 0,F) je deterministický (DPDA), jestliže jsou splněny tyto podmínky: 1. pro všechna q Q a Z Γ platí: kdykoliv δ(q,ε,z),
1 Dedekindovy řezy (30 bodů)
Pokročilá matematická analýza úlohy pro zimní semestr Dedekindovy řezy ( bodů) V této úloze se pokusíme seznámit s Dedekindovými řezy, pomocí nichž zavedeme reálná čísla. Tuto konstrukci vymyslel a publikoval
Kapitola 4: Soustavy diferenciálních rovnic 1. řádu
Sbírka příkladů Matematika II pro strukturované studium Kapitola 4: Soustavy diferenciálních rovnic 1 řádu Chcete-li ukončit prohlížení stiskněte klávesu Esc Chcete-li pokračovat stiskněte klávesu Enter
Algoritmy a datové struktury 2. Sylabus: Vyhledávání vzorků v textu: alg. Aho-Corasicková
Algoritmy a datové struktury 2. Sylabus: Vyhledávání vzorků v textu: alg. Aho-Corasicková Toky v sítích Hradlové sítě: aritmetické, třídící Geometrické algoritmy Rychlá (diskrétní) Fourierova transformace
Matematika 2, vzorová písemka 1
Matematika 2, vzorová písemka Pavel Kreml 9.5.20 Přesun mezi obrazovkami Další snímek: nebo Enter. Zpět: nebo Shift + Enter 2 3 4 Doporučení Pokuste se vyřešit zadané úlohy samostatně. Pokud nebudete vědět
Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II
Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem
Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018
Určitý (Riemnnův) integrál plikce. Nevlstní integrál Seminář 9. prosince 28 Určitý integrál Existence: Necht funkce f (x) je definovná n uzvřeném intervlu, b. Necht je splněn n tomto intervlu kterákoliv
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU
Západočeská univerzita v Plzni Fakulta aplikovaných věd. Katedra matematiky. Semestrální práce - matematika a byznys
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Obor: Matematické inženýrství Optimální výrobní program Semestrální práce - matematika a byznys Vypracovala: Radka Zahradníková
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA PEDAGOGICKÁ Katedra matematiky. Dudek Martin. obor Matematická studia
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA PEDAGOGICKÁ Katedra matematiky BAKALÁŘSKÁ PRÁCE Některé řadící algoritmy Dudek Martin obor Matematická studia Vedoucí práce: PhDr. Lukáš HONZÍK, Ph.D. Plzeň 2018
DFT. verze:
Výpočet spektra signálu pomocí DFT kacmarp@fel.cvut.cz verze: 009093 Úvod Signály můžeme rozdělit na signály spojité v čase nebo diskrétní v čase. Další možné dělení je na signály periodické nebo signály
Shrnutí. Vladimír Brablec
Řešení problému SAT s využitím lokálního prohledávání Vladimír Brablec Seminář z umělé inteligence II, 2010 Motivace Obsah referátů Články, podle nichž je prezentace vytvořena 1 Selman B., Kautz H., Cohen
Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid
Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování dat Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Filip Železný (ČVUT) Vytěžování dat 1 / 27
Statistika (KMI/PSTAT)
Statistika (KMI/PSTAT) Cvičení deváté aneb Důležitá rozdělení pravděpodobnosti spojité náhodné veličiny Statistika (KMI/PSTAT) 1 / 15 Spojitá náhodná veličina Spojitá náhodná veličina Spojitá náhodná veličina
fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (reg. č. CZ.1.07/2.2.00/28.
Extrémy Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného
Lineární algebra - iterační metody
Lineární algebra - iterační metody Numerické metody 7. dubna 2018 FJFI ČVUT v Praze 1 Úvod Úvod Rozdělení Metody Zastavení SOR Programy 1 Úvod Úvod - LAR Mějme základní úlohu A x = b, (1) kde A R n,n je
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text
Algebra I Cvičení. Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se
Algebra I Cvičení Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se kterými jsem při přípravě cvičení spolupracoval. Sbírka vznikla modifikací některých
Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid
Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006
Modelování systémů a procesů (K611MSAP) Přednáška 4 Katedra aplikované matematiky Fakulta dopravní ČVUT Pravidelná přednáška K611MSAP čtvrtek 20. dubna 2006 Obsah 1 Laplaceova transformace Přenosová funkce
Paradoxy geometrické pravděpodobnosti
Katedra aplikované matematiky 1. června 2009 Úvod Cíle práce : Analýza Bertrandova paradoxu. Tvorba simulačního softwaru. Osnova 1 2 3 4 Osnova 1 2 3 4 Osnova 1 2 3 4 Osnova 1 2 3 4 V rovině je zadán kruh
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 8. přednáška: Kvadratické formy Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen
Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
Anotace. Martin Pergel,
Anotace Třídění, medián lineárně. Třídění Ukazovali jsme si: bubblesort, shakesort, zatřid ování (insert-sort), přímý výběr (select-sort) důležité je znát algoritmy, není nutné pamatovat si přesné přiřazení
MATEMATIKA 3 NUMERICKÉ METODY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATIKA 3 NUMERICKÉ METODY Dana Černá http://kmd.fp.tul.cz Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci INFORMACE O PŘEDMĚTU Konzultační hodiny: ÚT 11:00-12:00, budova G,
Matematika 1 Jiˇr ı Fiˇser 24. z aˇr ı 2013 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 24. z aˇr ı / 52
í150doc-start í251doc-start Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 24. září 2013 1 / 52 Matematika 1 Jiří Fišer 24. září 2013 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 24. září 2013 1 / 52 Zimní semestr
6 Dedekindovy řezy (30 bodů)
Pokročilá lineární algebra 3. série 6 Dedekindovy řezy (3 bodů) V této úloze se pokusíme seznámit s Dedekindovými řezy, pomocí nichž zavedeme reálná čísla. Tuto konstrukci vymyslel a publikoval Dedekind
v 1 /2 semestru 4. listopadu v rámci přednášky 1 úvod do UI, jazyk Prolog (23.9.) 3 prohledávání stavového prostoru (7.10.)
Úvod do umělé inteligence Organizace předmětu PB06 ORGANIZACE PŘEDMĚTU PB06 Hodnocení předmětu: Úvod do umělé inteligence, jazyk Prolog průběžná písemka (max 32 bodů) v /2 semestru 4. listopadu v rámci
Obsah: CLP Constraint Logic Programming. Úvod do umělé inteligence 6/12 1 / 17
Problémy s omezujícími podmínkami Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Průběžná písemná práce Problémy s omezujícími podmínkami Úvod do umělé inteligence 6/12 1 / 17 Průběžná
Rovnice proudění Slapový model
do oceánského proudění Obsah 1 2 3 Co způsobuje proudění v oceánech? vyrovnávání rozdílů v teplotě, salinitě, tlaku, ρ = ρ(p, T, S) vítr - wind stress F wind = ρ air C D AU 2 10 slapy produkují silné proudy,
Kybernetika a umělá inteligence. Gerstnerova laboratoř katedra kybernetiky. Daniel Novák
Kybernetika a umělá inteligence 2. Strojové učení laboratory Gerstner Gerstnerova laboratoř katedra kybernetiky České vysoké učení technické v Praze Daniel Novák Poděkování: Filip Železný Shrnutí minulé
kontaktní modely (Winklerův, Pasternakův)
TÉMA 7: Pružný poloprostor, modely podloží pružný poloprostor základní předpoklady pružný poloprostor Boussinesqueovo řešení kontaktní modely (Winklerův, Pasternakův) 1 Pružný poloprostor (1) vychází z
Obsah. Petr Hasil. (konjunkce) (disjunkce) A B (implikace) A je dostačující podmínka pro B; B je nutná podmínka pro A A B: (A B) (B A) A (negace)
Množiny, číselné obory, funkce Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) Množiny, číselné obory, funkce Matematická analýza / 5 Obsah Množinové operace Operace s funkcemi Definice
Nekomutativní Gröbnerovy báze
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Bc. Zuzana Požárková Nekomutativní Gröbnerovy báze Katedra algebry Vedoucí diplomové práce: RNDr. Jan Št ovíček, Ph.D. Studijní
(a). Pak f. (a) pro i j a 2 f
Připomeň: 1. Necht K R n. Pak 1. Funkce více proměnných II 1.1. Parciální derivace vyšších řádů K je kompaktní K je omezená a uzavřená. 2. Necht K R n je kompaktní a f : K R je spojitá. Pak f nabývá na
Matematika (KMI/PMATE)
Matematika (KMI/PMATE) Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam (smysl) koeficientů lineární
Metody, s nimiž se seznámíme v této kapitole, lze použít pro libovolnou
2. Řešení nelineárních rovnic Průvodce studiem Budeme se zabývat výpočtem reálných kořenů nelineární rovnice f(x) =0, (2.0.1) kde f je v jistém smyslu rozumná reálná funkce. Pro některé funkce (kvadratické,
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32
Komplexní analýza Úvod Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Úvod 1 / 32 Základní informace Stránky předmětu: http://math.feld.cvut.cz/bohata/kan.html
Register and win! www.kaercher.com
Register and win! www.kaercher.com A B A, B A B 2 6 A régi készülékek értékes újrahasznosítható anyagokat tartalmaznak, amelyeket tanácsos újra felhasználni. Szárazelemek, olaj és hasonló anyagok ne kerüljenek
Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy
Formálne jazyky Automaty. Formálne jazyky. 1 Automaty. IB110 Podzim
Formálne jazyky 1 Automaty 2 Generatívne výpočtové modely IB110 Podzim 2010 1 Jednosmerné TS alebo konečné automaty TS sú robustné voči modifikáciam existuje modifikácia, ktorá zmení (zmenší) výpočtovú
Internetová matematická olympiáda 8. ročník, Baví se student Fakulty strojního inženýrství VUT v Brně (FSI) s kamarádem:
Internetová matematická olympiáda 8. ročník, 24. 11. 2015 1. Baví se student Fakulty strojního inženýrství VUT v Brně (FSI) s kamarádem: Kamarád: Co jsi tak veselý? Něco slavíš? Student FSI: Já přímo ne,
Ó Ć Ó Ż Ó Ó Ó Ó Ż Ó Ę Ę Ę Ó Ź Ź Ę Ź Ź Ó Ź Ż Ó Ó Ę Ó Ń Ą Ó Ą Ź Ź Ó Ę Ź Ó Ż Ń Ź Ż Ż Ź Ę Ż Ł Ó Ź Ó Ń Ż Ę Ó Ź Ó Ż Ó Ć Ę Ó Ó Ó Ć Ż Ę Ę Ó ÓĘ Ż Ź Ż Ę Ó Ź Ź Ą Ó Ę Ź Ó Ź Ł Ń Ę Ę Ń Ó Ó Ę Ó Ó Ź Ż Ó Ó Ź Ź Ó Ó Ż Ó
Ę Ą Ę Ł Ł Ę ż Ł ż Ą ż ż ż ć ż ć Ł ż Ę Ą Ę Ł ż Ó ć ŚĆ Ś Ś Ń ż ż Ż Ć Ń Ę Ę ÓĘ ć ż ż Ó Ę Ó ć ć ż ż ż ż ż Ą ć Ł ż Ó ć ć Ł Ś ć Ż Ź Ś ć ć ż Ę ż ć ć ż ć Ą ż Ś Ł Ł ż ć ż ć Ą ż ć Ś ż ż ż ć ć ć ć Ć ż ć ż ć ż ż ż
ČVUT FEL, K Radek Mařík Strukturované testování 20. října / 52
Strukturované testování Radek Mařík ČVUT FEL, K13132 20. října 2016 Radek Mařík (radek.marik@fel.cvut.cz) Strukturované testování 20. října 2016 1 / 52 Obsah 1 Návrh testů řízené modelem Principy 2 Testování
Obsah. 1 Konstrukce (definice) Riemannova integrálu Výpočet Newtonova Leibnizova věta Aplikace výpočet objemů a obsahů 30
Určitý integrál Robert Mřík 6. září 8 Obsh 1 Konstrukce (definice) Riemnnov integrálu. Výpočet Newtonov Leibnizov vět. 18 3 Numerický odhd Lichoběžníkové prvidlo 19 4 Aplikce výpočet objemů obshů 3 c Robert
CA CZ, s.r.o. May 21, Radek Mařík Testování řídicích struktur May 21, / 45
Testování řídicích struktur Radek Mařík CA CZ, s.r.o. May 21, 2010 Radek Mařík (radek.marik@ca.com) Testování řídicích struktur May 21, 2010 1 / 45 Obsah 1 Testování cest Princip Kritéria pokrytí Demo
Obsah. Limita posloupnosti a funkce. Petr Hasil. Limita posloupnosti. Pro a R definujeme: Je-li a < 0, pak a =, a ( ) =. vlastní body.
Obsah a funkce Petr Hasil Přednáška z Matematické analýzy I Úvod 2 c Petr Hasil (MUNI) a funkce Matematická analýza / 90 c Petr Hasil (MUNI) a funkce Matematická analýza 2 / 90 Úvod Úvod Pro a R definujeme:
Základy obecné algebry
. Základy obecné algebry Ústav matematiky, Fakulta strojního inženýrství VUT v Brně, 2013 Obsah 1 Algebraické struktury 3 1.1 Operace a zákony................................. 3 1.2 Některé důležité typy
Wykład 9. Znajdowanie najlepszej drogi
Wykład 9 Znajdowanie najlepszej drogi 1 Algorytmy znajdowania najkrótszyh śieżek Właśiwośi najkrótszyh śieżek Algorytm Bellmana-Forda Algorytm Dijsktry Literatura Cormen, Leiserson, Rivest, Wprowadzenie
z geoinformatických dat
z geoinformatických dat 30. listopadu 2012 Rozvoj aplikačního potenciálu (RAPlus) CZ.1.07/2.4.00/17.0117 Dvě DN na úseku Příklad Najděte mezní situaci pro dvě DN na úseku délky L metrů tak, aby se ještě
Automatové modely. Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Automatové modely Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Stefan
Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2019
Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2019 6. Vedení obvod s nesoustředěnými parametry 1 Obecný impulsní signál základní parametry t r t f u vrchol
Pharo Whirlpool Serie 200
M o n t a g e a n l e i t u n g Instrukcja montażu Návod k montáži Ðóêîâîäñòâî ïî ìîíòàæó Pharo Whirlpool Serie 200 Pharo Whirlpool 200 Links 2270xxx Pharo Whirlpool 200 Rechts 22702xxx Pharo Whirlpool
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky METODA FAST MARCHING PRO
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky METODA FAST MARCHING PRO HLEDÁNÍ NEJKRATŠÍCH CEST Bakalářská práce Plzeň, 2006 Martina SMITKOVÁ Prohlášení Předkládám tímto k