Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
|
|
- Lidia Jastrzębska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Vytěžování dat Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Filip Železný (ČVUT) Vytěžování dat 1 / 27
2 Vytěžování dat: základní myšlenky Co následuje? Odpovídá vzoru 1, 2, 4, 8,? 16 x 1 =1 x k =2x k 1 (k 2) Vytěžování dat = hledání srozumitelných vzorů v datech Filip Železný (ČVUT) Vytěžování dat 2 / 27
3 Vzor vs. Data Odvozování dat ze vzorů: x k = 2x k 1 1, 2, 4, 8,... Vytěžování dat 1, 2, 4, 8,... x k = 2x k 1 vzor předpis model hypotéza teorie... Filip Železný (ČVUT) Vytěžování dat 3 / 27
4 Využití vzorů x k = 2x k 1 Predikce (x 5 = 16, x 6 = 32,...) Zlepšení rozhodování Interpretace člověkem (vzor vyjadřuje znalost) Porozumění procesům Filip Železný (ČVUT) Vytěžování dat 4 / 27
5 Vytěžování dat (Data Mining) Data Mining je netriviální proces identifikace pravdivých, dosud neznámých, potenciálně využitelných a zcela srozumitelných vzorů v datech (Fayyad) Používá techniky oborů statistika strojové učení (umělá inteligence) databázové technologie vizualizace dat Filip Železný (ČVUT) Vytěžování dat 5 / 27
6 Reálné příklady vytěžování: Asociace v nákupních košících pivo párky horčice pleny (atd.) pleny pivo Filip Železný (ČVUT) Vytěžování dat 6 / 27
7 Reálné příklady vytěžování: Predikce karcinogenity karcinogenní kontrolní v karcinogenních Filip Železný (ČVUT) Vytěžování dat 7 / 27
8 Reálné příklady vytěžování: Rozpoznávání obrazu 6 Filip Železný (ČVUT) Vytěžování dat 8 / 27
9 Struktura a parametry vzoru struktura parametry Vzory jsou rozličných druhů (rovnice, pravidla, grafy,...). x k = ax k 1 pleny pivo a (žádné) Rozlišujeme jejich diskrétní strukturu reálné parametry (žádné) váhy synapsí W Filip Železný (ČVUT) Vytěžování dat 9 / 27
10 Parametrické vs. neparametrické metody Parametrické metody: Struktura je zadána předem Úkolem vytěžování je vyhledat hodnoty parametrů a R n maximalizující soulad s daty Neparametrické metody: Hledá se struktura i případné parametry Struktura se hledá v nějaké předepsané konečné množině struktur S Zaujetí algoritmu Čím menší n resp. S, tím větší zaujetí vytěžovacího algoritmu. Větší zaujetí = menší flexibilita = menší možnost adaptace na data. Filip Železný (ČVUT) Vytěžování dat 10 / 27
11 Zaujetí y = a 1 x y = a 1 x + a 2 x 2 + a 3 x 3 příliš slabé zaujetí, velká flexibilita Filip Železný (ČVUT) Vytěžování dat 11 / 27
12 Zaujetí y = a 1 x příliš silné zaujetí, malá flexibilita y = a 1 x + a 2 x 2 + a 3 x 3 Filip Železný (ČVUT) Vytěžování dat 12 / 27
13 Vytěžování dat: definice 1 Úloha nalezení množiny vzorů φ Vstupní data {φ L platí q(d, φ)} Prohledávaná množina, tj. zaujetí algoritmu. Obsahuje všechny přípustné vzory. Vyhodnocovací predikát. Platí, pokud φ je v souladu s D Filip Železný (ČVUT) Vytěžování dat 13 / 27
14 Vytěžování dat: definice 2 Úloha nalezení nejlepšího vzoru φ φ = arg max φ L Vstupní data q(d, φ) Prohledávaná množina, tj. zaujetí algoritmu Vyhodnocovací funkce. Měří kvalitu φ vzhledem k D. Může zohlednit i vlastnosti nezávislé na D, např. složitost vzoru. Pro parametrické metody: hledáme optimální parametry pro zadanou strukturu S. Zde tedy L = {(S, a) a R n } Filip Železný (ČVUT) Vytěžování dat 14 / 27
15 Jak hledat vzory Konkrétní techniky: v dalších přednáškách Obecně: Parametrické metody: optimální parametry lze někdy vyjádřit a spočítat analyticky, jindy prohledávání L ( pokus-omyl ) Neparametrické metody: téměř vždy prohledávání Filip Železný (ČVUT) Vytěžování dat 15 / 27
16 Volba zaujetí Konkrétní techniky: v dalších přednáškách Obecně: Voĺıme dle typu dat (grafy, vektory reálných čísel,...) toho, co se chceme dozvědět dostupnosti algoritmů (různá zaujetí - různé algoritmy) Čím více o datech předem víme, tím silnější zaujetí můžeme stanovit Např. data leží na přímce y = ax, hledáme jen a Occamova břitva: fungují-li dva vzory stejně dobře na datech, preferujeme ten jednodušší Filip Železný (ČVUT) Vytěžování dat 16 / 27
17 Generativní modely x 1 =1 x k =2x k 1 (k 2) pleny pivo Generativní (též globální) model Vzor jednoznačně určující, jak generovat data Ostatní (lokální) vzory fungují jako omezující podmínky Nejsou předpisem pro generování dat Filip Železný (ČVUT) Vytěžování dat 17 / 27
18 Data: statistické předpoklady Budou nalezené vzory platit i v budoucích datech? Neplatí ve vytěžených datech jen náhodou? Je třeba zavést statistické předpoklady na data: Uvažujeme množinu všech možných instancí X obsahy nákupních košíků, grafy molekul, řádky v relační tabulce,... Pravděpodobnostní rozdělení P X na X Data: D je multimnožina D = {x 1, x 2,... x m } (m N) prvky vybrány náhodně a navzájem nezávisle z P X Vzor se bude používat na tomtéž X a P X. Filip Železný (ČVUT) Vytěžování dat 18 / 27
19 Data: statistické předpoklady (pokr.) Nalezené generativní vzory pak aproximují P X, např. P X (x) = N(µ, σ) Jiné typy nalezených vzorů zachycují určité vlastnosti P X, např. pivo pleny říká, že P X (x) je malá pro instance x v nichž implikace neplatí. Takto definované úloze říkáme učení (vytěžování) bez učitele (terminologie strojového učení) Cvičení Jak za právě definovaných statistických předpokladů zformulovat úlohu vytěžování z úvodu přednášky (str. 2)? Filip Železný (ČVUT) Vytěžování dat 19 / 27
20 Učení s učitelem Speciální, zvláště častá úloha vytěžování: najít vzor pro předpovídání cílové veličiny (třídy) instance ze zbylého popisu instance. Příklad: karcinogenní kontrolní Vedle X uvažujeme ještě Y : množinu hodnot cílové veličiny. Zde X: struktury molekul (grafy) Y = {karcinogenní, kontrolní} Filip Železný (ČVUT) Vytěžování dat 20 / 27
21 Učení s učitelem (pokr.) Předpoklady na data: Pravděpodobnostní rozdělení P XY Data: D je multimnožina na X Y D = {(x 1, y 1 ), (x 2, y 2 ),... (x m, y 2 )} (m N) prvky vybrány náhodně a navzájem nezávisle z P XY Vzor se bude používat na tomtéž X, Y a P XY Obvykle hledáme vzory aproximující podmíněnou pravděpodobnost P Y X (y x) = P XY (x, y)/p X (x) nebo nejpravděpodobnější hodnotu arg max y Y P Y X (y x) pro zadané x X. Filip Železný (ČVUT) Vytěžování dat 21 / 27
22 Učení s učitelem: příklad Např. nalezený vzor v karcinogenních interpretujeme jako resp. P Y X (y, x) = y = { 1 je-li tato struktura v x 0 jinak { karcinogenní, je-li tato struktura v x jinak kontrolní Filip Železný (ČVUT) Vytěžování dat 22 / 27
23 Učení s učitelem (pokr.) Proč učení s učitelem? Terminologie strojového učení. Učitel poskytuje x i y prostřednictvím dat D (trénovací data) Žák (algoritmus) se učí odvozovat y z x (trénovací fáze) Potom učitel zadává pouze x a žák odhaduje y pomocí naučených vzorů Filip Železný (ČVUT) Vytěžování dat 23 / 27
24 Příznakový popis Většina známých vytěžovacích algoritmů umí pracovat pouze s daty v příznakovém popisu. Předpokládají, že X = X 1 X 2... X n (n N) kde každé X i je obor hodnot příznaku i, např. X i = R (reálná čísla) X i = {muž, žena} (kategorie) tedy pouze jednoduché datové typy, ne struktury, grafy apod. Některé algoritmy dále omezují přípustné typy příznaků, např. pouze numerické, pouze kategorické ( nominální ), pouze binární... Filip Železný (ČVUT) Vytěžování dat 24 / 27
25 Příznakový popis (pokr.) Data D = {x 1, x 2,... x m } (m N), x i X (1 i m) jsou tedy n-ticemi hodnot příznaků. Příklad: x 1 : x 2 : x 3 : x 4 : věk pohlaví kuřák rakovina 56 muž žena 48 žena muž + + Příznaková data tedy tvoří matici odpovídající jedné tabulce relační databáze. Jednotlivé instance jsou její řádky. Filip Železný (ČVUT) Vytěžování dat 25 / 27
26 Příznakový popis (pokr.) Co s daty, která nejsou v příznakovém popisu? grafy relační struktury signály (např. zvuk) obrazy číselné řady texty Použít specializovaných algoritmů graph mining, text mining, induktivní logické programování, počítačové vidění,... Převést na příznakovou reprezentaci nelehký úkol, je třeba zachovat podstatnou informaci. (mimo rozsah tohoto kursu) Filip Železný (ČVUT) Vytěžování dat 26 / 27
27 Přehled přednášek 1 Úvod 2 Odhad parametrů Gaussovské směsi, EM algoritmus 3 Grafické pravděpodobností modely 4 Shluková analýza 5 Samoorganizující se mapy 6 Časté množiny a asociační pravidla 7 Klasifikační úloha, klasifikace dle podobnosti a Bayesovská 8 Rozhodovací stromy a pravidla 9 Lineární a polynomiální klasifikace 10 Perceptron a neuronové sítě s dopřednou strukturou 11 Testování modelů 12 Kombinování modelů a výběr příznaků 13 Rezerva (aplikace vytěžování dat) Bez učitele S učitelem Filip Železný (ČVUT) Vytěžování dat 27 / 27
28 Přehled přednášek 1 Úvod 2 Odhad parametrů Gaussovské směsi, EM algoritmus 3 Grafické pravděpodobností modely 4 Shluková analýza 5 Samoorganizující se mapy 6 Časté množiny a asociační pravidla 7 Klasifikační úloha, klasifikace dle podobnosti a Bayesovská 8 Rozhodovací stromy a pravidla 9 Lineární a polynomiální klasifikace 10 Perceptron a neuronové sítě s dopřednou strukturou 11 Testování modelů 12 Kombinování modelů a výběr příznaků 13 Rezerva (aplikace vytěžování dat) Parametrické Neparametrické Filip Železný (ČVUT) Vytěžování dat 27 / 27
Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování dat Filip Železný Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Filip Železný (ČVUT) Vytěžování dat 1 / 26
Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování dat: klasifikace Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Filip Železný (ČVUT) Vytěžování
Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 3. listopadu Filip Železný (ČVUT) Vytěžování dat 3. listopadu / 1
Vytěžování dat Filip Železný Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 3. listopadu 2014 Filip Železný (ČVUT) Vytěžování dat 3. listopadu 2014 1 / 1 Metafora pro tuto přednášku Filip
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18
Komplexní analýza Mocninné řady Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Posloupnosti komplexních čísel opakování
Linea rnı (ne)za vislost
[1] Lineární (ne)závislost Skupiny, resp. množiny, vektorů mohou být lineárně závislé nebo lineárně nezávislé... a) zavislost, 3, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010,
Edita Pelantová, katedra matematiky / 16
Edita Pelantová, katedra matematiky seminář současné matematiky, září 2010 Axiomy reálných čísel Axiomy tělesa Axiom 1. x + y = y + x a xy = yx (komutativní zákon). Axiom 2. x + (y + z) = (x + y) + z a
Funkce zadané implicitně. 4. března 2019
Funkce zadané implicitně 4. března 2019 Parciální derivace druhého řádu Parciální derivace druhého řádu funkce z = f (x, y) jsou definovány: Parciální derivace 2 f 2 = ( ) f 2 f 2 = ( ) f 2 f a 2 f 2 f
Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.
Příklad Známe následující hodnoty funkce Φ: u Φ(u) 1,00 0,841 1,10 0,864 1,20 0,885 Odhadněte přibližně hodnoty Φ(1,02) a Φ(1,16). Možnosti: Vezmeme hodnotu v nejbližším bodě. Body proložíme lomenou čarou.
Úvodní informace. 18. února 2019
Úvodní informace Funkce více proměnných Cvičení první 18. února 2019 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Úvodní informace. Komunikace: e-mail: olga@majling.eu nebo olga.majlingova@fs.cvut.cz
MATEMATIKA 3. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATIKA 3 Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Osnova: Komplexní funkce - definice, posloupnosti, řady Vybrané komplexní funkce
podle přednášky doc. Eduarda Fuchse 16. prosince 2010
Jak souvisí plochá dráha a konečná geometrie? L ubomíra Balková podle přednášky doc. Eduarda Fuchse Trendy současné matematiky 16. prosince 2010 (FJFI ČVUT v Praze) Konečná geometrie 16. prosince 2010
kontaktní modely (Winklerův, Pasternakův)
TÉMA 7: Pružný poloprostor, modely podloží pružný poloprostor základní předpoklady pružný poloprostor Boussinesqueovo řešení kontaktní modely (Winklerův, Pasternakův) 1 Pružný poloprostor (1) vychází z
Co nám prozradí derivace? 21. listopadu 2018
Co nám prozradí derivace? Seminář sedmý 21. listopadu 2018 Derivace základních funkcí Tečna a normála Tečna ke grafu funkce f v bodě dotyku T = [x 0, f (x 0 )]: y f (x 0 ) = f (x 0 )(x x 0 ) Normála: y
Kybernetika a umělá inteligence. Gerstnerova laboratoř katedra kybernetiky. Daniel Novák
Kybernetika a umělá inteligence 2. Strojové učení laboratory Gerstner Gerstnerova laboratoř katedra kybernetiky České vysoké učení technické v Praze Daniel Novák Poděkování: Filip Železný Shrnutí minulé
Kristýna Kuncová. Matematika B2 18/19
(6) Určitý integrál Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (6) Určitý integrál 1 / 28 Newtonův integrál Zdroj: https://kwcalculus.wikispaces.com/integral+applications Kristýna Kuncová (6)
1 Soustava lineárních rovnic
Soustavy lineárních rovnic Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Soustava lineárních rovnic 2 Řešitelnost soustavy lineárních rovnic 3 Gaussova eliminační metoda 4 Jordanova eliminační
Matematika (KMI/PMATE)
Matematika (KMI/PMATE) Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam (smysl) koeficientů lineární
(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35
(1) Derivace Kristýna Kuncová Matematika B2 17/18 Kristýna Kuncová (1) Derivace 1 / 35 Růst populací Zdroj : https://www.tes.com/lessons/ yjzt-cmnwtvsq/noah-s-ark Kristýna Kuncová (1) Derivace 2 / 35 Růst
Numerické metody minimalizace
Numerické metody minimalizace Než vám klesnou víčka - Stříbrnice 2011 12.2. 16.2.2011 Emu (Brkos 2011) Numerické metody minimalizace 12.2. 16.2.2011 1 / 19 Obsah 1 Úvod 2 Základní pojmy 3 Princip minimalizace
Numerické metody 8. května FJFI ČVUT v Praze
Obyčejné diferenciální rovnice Numerické metody 8. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Základní metody Pokročilejší metody Soustava Vyšší řád Program 1 Úvod Úvod - Úloha Základní úloha, kterou řešíme
Kristýna Kuncová. Matematika B3
(10) Vícerozměrný integrál II Kristýna Kuncová Matematika B3 Kristýna Kuncová (10) Vícerozměrný integrál II 1 / 30 Transformace Otázka Jaký obrázek znázorňuje čtverec vpravo po transformaci u = x + y a
Cauchyova úloha pro obyčejnou diferenciální rovnici
Řešení ODR v MATLABu Přednáška 3 15. října 2018 Cauchyova úloha pro obyčejnou diferenciální rovnici y = f (x, y), y(x 0 ) = y 0 Víme, že v intervalu a, b existuje jediné řešení. (f (x, y) a f y jsou spojité
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií
Náhodné vektory prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký,
5. a 12. prosince 2018
Integrální počet Neurčitý integrál Seminář 9, 0 5. a. prosince 08 Neurčitý integrál Definice. Necht funkce f (x) je definovaná na intervalu I. Funkce F (x) se nazývá primitivní k funkci f (x) na I, jestliže
Kapitola 4: Soustavy diferenciálních rovnic 1. řádu
Sbírka příkladů Matematika II pro strukturované studium Kapitola 4: Soustavy diferenciálních rovnic 1 řádu Chcete-li ukončit prohlížení stiskněte klávesu Esc Chcete-li pokračovat stiskněte klávesu Enter
Geometrická nelinearita: úvod
Geometrická nelinearita: úvod Opakování: stabilita prutů Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace průhyby,
ggplot2 Efektní vizualizace dat v prostředí jazyka R Martin Golasowski 8. prosince 2016
ggplot2 Efektní vizualizace dat v prostředí jazyka R Martin Golasowski 8. prosince 2016 Jak vizualizovat? Požadované vlastnosti nástroje opakovatelnost, spolehlivost separace formy a obsahu flexibilita,
Kombinatorika a grafy I
Kombinatorika a grafy I Martin Balko 1. přednáška 19. února 2019 Základní informace Základní informace úvodní kurs, kde jsou probrány základy kombinatoriky a teorie grafů ( pokračování diskrétní matematiky
Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze
Elementární funkce Edita Pelantová FJFI, ČVUT v Praze Seminář současné matematiky katedra matematiky, FJFI, ČVUT v Praze únor 2013 c Edita Pelantová (FJFI) Elementární funkce únor 2013 1 / 19 Polynomiální
z geoinformatických dat
z geoinformatických dat 30. listopadu 2012 Rozvoj aplikačního potenciálu (RAPlus) CZ.1.07/2.4.00/17.0117 Dvě DN na úseku Příklad Najděte mezní situaci pro dvě DN na úseku délky L metrů tak, aby se ještě
Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky
Monotónie a extrémy funkce Diferenciální počet - průběh funkce Věta o střední hodnotě (Lagrange) Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f (ξ)
GEM a soustavy lineárních rovnic, část 2
GEM a soustavy lineárních rovnic, část Odpřednesenou látku naleznete v kapitole 6 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: B6B0LAG 8.3.09: GEM a soustavy, část / Minulá přednáška Gaussova
Statistika (KMI/PSTAT)
Statistika (KMI/PSTAT) Cvičení deváté aneb Důležitá rozdělení pravděpodobnosti spojité náhodné veličiny Statistika (KMI/PSTAT) 1 / 15 Spojitá náhodná veličina Spojitá náhodná veličina Spojitá náhodná veličina
Petr Křemen FEL ČVUT. Petr Křemen (FEL ČVUT) Vysvětlování modelovacích chyb 133 / 156
Vysvětlování modelovacích chyb Petr Křemen FEL ČVUT Petr Křemen (FEL ČVUT) Vysvětlování modelovacích chyb 133 / 156 Co nás čeká 1 Konjunktivní dotazy 2 Vyhodnocování konjunktivních dotazů v jazyce ALC
Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006
Modelování systémů a procesů (K611MSAP) Přednáška 4 Katedra aplikované matematiky Fakulta dopravní ČVUT Pravidelná přednáška K611MSAP čtvrtek 20. dubna 2006 Obsah 1 Laplaceova transformace Přenosová funkce
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 11 Křivkový integrál Vybrané kapitoly z matematiky 2018-2019 2 / 11 Parametricky zadaná křivka v R 3 :
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text
Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS
Whitův pro heteroskedasticitě pro heteroskedasticitě Stochastické modelování v ekonomii a financích 7. 12. 2009 Obsah Whitův pro heteroskedasticitě pro heteroskedasticitě 1 Whitův 2 pro 3 heteroskedasticitě
Inverzní Z-transformace
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 9. přednáška 11MSP úterý 16. dubna 2019 verze: 2019-04-15 12:25
Matematika 2, vzorová písemka 1
Matematika 2, vzorová písemka Pavel Kreml 9.5.20 Přesun mezi obrazovkami Další snímek: nebo Enter. Zpět: nebo Shift + Enter 2 3 4 Doporučení Pokuste se vyřešit zadané úlohy samostatně. Pokud nebudete vědět
fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (reg. č. CZ.1.07/2.2.00/28.
Extrémy Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného
Martin Pergel. 26. února Martin Pergel
26. února 2017 Užitečné informace Navážeme na Programování I, změníme jazyk na C#, podrobnosti o C# budou v navazujícím kurzu, soustředíme se na totéž, co v zimě, tedy: technické programování, návrh a
Co to znamená pro vztah mezi simultánní a marginální hustotou pravděpodobnosti f (x) (pravděpodobnostní funkci p(x))?
Ondřej Pokora M5120 Lineární statistické modely I poznámky do cvičení podzim 2011 1 / 36 12.12.2011 Maximálně věrohodné odhady Náhodný výběr X 1,..., X n rosahu n z rozdělení pravděpodobnosti P: X i P
Kristýna Kuncová. Matematika B2
(3) Průběh funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (3) Průběh funkce 1 / 26 Monotonie (x 2 ) = 2x (sin x) = cos x Jak souvisí derivace funkce a fakt, zda je funkce rostoucí nebo klesající?
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32
Komplexní analýza Úvod Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Úvod 1 / 32 Základní informace Stránky předmětu: http://math.feld.cvut.cz/bohata/kan.html
TGH01 - Algoritmizace
TGH01 - Algoritmizace Jan Březina Technical University of Liberec 31. března 2015 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms) SPOX: tgh.spox.spoj.pl
Operace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument)
KAPITOLA : Funkce - úvod [MA-8:P.] reálná funkce (jedné) reálné proměnné... f : A R...... zobrazení množin A R do množin reálných čísel R funkční hodnota... = f() ( argument) ( tj. reálná funkce f : A
DFT. verze:
Výpočet spektra signálu pomocí DFT kacmarp@fel.cvut.cz verze: 009093 Úvod Signály můžeme rozdělit na signály spojité v čase nebo diskrétní v čase. Další možné dělení je na signály periodické nebo signály
Univerzita Palackého v Olomouci
Počítačová grafika - 5. cvičení Radek Janoštík Univerzita Palackého v Olomouci 22.10.2018 Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení 22.10.2018 1 / 10 Reakce na úkoly
PA152,Implementace databázových systémů 2 / 25
PA152 Implementace databázových systémů Pavel Rychlý pary@fi.muni.cz Laboratoř zpracování přirozeného jazyka http://www.fi.muni.cz/nlp/ 19. září 2008 PA152,Implementace databázových systémů 1 / 25 Technické
TGH01 - Algoritmizace
TGH01 - Algoritmizace Jan Březina Technical University of Liberec 28. února 2017 Co je to algoritmus? Porovnávání algoritmů Porovnávání algoritmů Co je to algoritmus? Který algoritmus je lepší? Záleží
Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid
Obsah: CLP Constraint Logic Programming. Úvod do umělé inteligence 6/12 1 / 17
Problémy s omezujícími podmínkami Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Průběžná písemná práce Problémy s omezujícími podmínkami Úvod do umělé inteligence 6/12 1 / 17 Průběžná
Biosignál II. Lékařská fakulta Masarykovy univerzity Brno
Biofyzikální ústav Lékařská fakulta Masarykovy univerzity Brno 2010 Fourierova analýza periodická funkce a posloupnost periodická funkce: f (t) = f (t + nt ), n N periodická posloupnost: a(i) = a(i + it
Ústav teorie informace a automatizace RESEARCH REPORT. Pavel Boček, Karel Vrbenský: Implementace algoritmu MIDIA v prostředí Google Spreadsheets
Akademie věd České republiky Ústav teorie informace a automatizace Academy of Sciences of the Czech Republic Institute of Information Theory and Automation RESEARCH REPORT Pavel Boček, Karel Vrbenský:
Západočeská univerzita v Plzni Fakulta aplikovaných věd. Katedra matematiky. Semestrální práce - matematika a byznys
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Obor: Matematické inženýrství Optimální výrobní program Semestrální práce - matematika a byznys Vypracovala: Radka Zahradníková
Rovnice proudění Slapový model
do oceánského proudění Obsah 1 2 3 Co způsobuje proudění v oceánech? vyrovnávání rozdílů v teplotě, salinitě, tlaku, ρ = ρ(p, T, S) vítr - wind stress F wind = ρ air C D AU 2 10 slapy produkují silné proudy,
Algebra I Cvičení. Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se
Algebra I Cvičení Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se kterými jsem při přípravě cvičení spolupracoval. Sbírka vznikla modifikací některých
(13) Fourierovy řady
(13) Fourierovy řady Kristýna Kuncová Matematika B3 Kristýna Kuncová (13) Fourierovy řady 1 / 22 O sinech a kosinech Lemma (O sinech a kosinech) Pro m, n N 0 : 2π 0 2π 0 2π 0 sin nx dx = sin nx cos mx
Obsah: Rozhodovací stromy. Úvod do umělé inteligence 11/12 2 / 41. akce
Učení, rozhodovací stromy, neuronové sítě Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Učení Hodnocení úspěšnosti učícího algoritmu Úvod do umělé inteligence /2 / 4 Učení Učení
Automatové modely. Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Automatové modely Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Stefan
Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU
Zadání: Vypočítejte hlavní momenty setrvačnosti a vykreslete elipsu setrvačnosti na zadaných
Příklad k procvičení : Průřeové charakteristik Zadání: Vpočítejte hlavní moment setrvačnosti a vkreslete elipsu setrvačnosti na adaných obracích. Příklad. Zadání: Rokreslení na jednoduché obrace: 500 T
ROBUST January 19, Zdeněk Fabián Ústav informatiky AVČR Praha
ROBUST 2014 Zdeněk Fabián Ústav informatiky AVČR Praha January 19, 2014 Starověk x 1,..., x n data průměry Starověk x 1,..., x n data průměry aritm., geom., harm. Novověk Model F a skórová funkce Ψ F inferenční
Expresivní deskripční logiky
Expresivní deskripční logiky Petr Křemen FEL ČVUT Petr Křemen (FEL ČVUT) Expresivní deskripční logiky 79 / 156 Co nás čeká 1 Inference v deskripčních logikách 2 Inferenční algoritmy Tablový algoritmus
Klasifikační metody (nejen) pro molekulárně genetická data
Klasifikační metody (nejen) pro molekulárně genetická data Jan Kalina Ústav informatiky AV ČR Kardiovaskulární genetická studie Centrum biomedicínské informatiky (Praha, 2006 2011) Diagnostika kardiovaskulárních
6 Dedekindovy řezy (30 bodů)
Pokročilá lineární algebra 3. série 6 Dedekindovy řezy (3 bodů) V této úloze se pokusíme seznámit s Dedekindovými řezy, pomocí nichž zavedeme reálná čísla. Tuto konstrukci vymyslel a publikoval Dedekind
Anna Kratochvílová Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu / 17
Parciální diferenciální rovnice ve zpracování obrazu Anna Kratochvílová FJFI ČVUT 10. 6. 2009 Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu 10. 6. 2009 1 / 17 Obsah 1 Motivace 2 Vyšetření pomocí
Ústav teorie informace a automatizace. Tato prezentace je k dispozici na:
Aplikace bayesovských sítí Jiří Vomlel Ústav teorie informace a automatizace Akademie věd České republiky Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/ Obsah přednášky Podmíněná pravděpodobnost,
Obsah. Petr Hasil. (konjunkce) (disjunkce) A B (implikace) A je dostačující podmínka pro B; B je nutná podmínka pro A A B: (A B) (B A) A (negace)
Množiny, číselné obory, funkce Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) Množiny, číselné obory, funkce Matematická analýza / 5 Obsah Množinové operace Operace s funkcemi Definice
MATEMATIKA 3 NUMERICKÉ METODY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATIKA 3 NUMERICKÉ METODY Dana Černá http://kmd.fp.tul.cz Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci INFORMACE O PŘEDMĚTU Konzultační hodiny: ÚT 11:00-12:00, budova G,
Robustní architektura vícevrstvých
Robustní architektura vícevrstvých neuronových sítí Zuzana Petříčková reitezuz@fjfi.cvut.cz Katedra softwarového inženýrství, Fakulta jaderná a fyzikálně inženýrská, ČVUT v Praze Na základě dizertační
Matematika III Stechiometrie stručný
Matematika III Stechiometrie stručný matematický úvod Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík Ústav matematiky Přednášky LS 2015-2016 Obsah 1 Zápis chemické reakce 2 umožňuje jednotný přístup
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 8. přednáška: Kvadratické formy Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií
Základní pojmy pravděpodobnosti prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek,
heteroskedasticitě Radim Navrátil, Jana Jurečková Katedra pravděpodobnosti a matematické statistiky, MFF UK, Praha
Pořadové testy v regresi při rušivé heteroskedasticitě Radim Navrátil, Jana Jurečková Katedra pravděpodobnosti a matematické statistiky, MFF UK, Praha Robust 2014, Jetřichovice 22.1.2014 Radim Navrátil,
Shrnutí. Vladimír Brablec
Řešení problému SAT s využitím lokálního prohledávání Vladimír Brablec Seminář z umělé inteligence II, 2010 Motivace Obsah referátů Články, podle nichž je prezentace vytvořena 1 Selman B., Kautz H., Cohen
Statistika (KMI/PSTAT)
Cvičení sedmé (a asi i osmé a doufám, že ne deváté) aneb Náhodná veličina, rozdělení pravděpodobnosti náhodné veličiny Náhodná veličina Náhodná veličina Studenti skládají písemku sestávající ze tří úloh.
x2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2.
Příklady k 1 zápočtové písemce Definiční obor funkce Určete definiční obor funkce: x + x 15 1 f(x x + x 1 ( x + x 1 f(x log x + x 15 x + x 1 3 f(x x 3 + 3x 10x ( x 3 + 3x 10x f(x log x + x 1 x3 + 5x 5
vystavit agenta realitě místo přepisování reality do pevných pravidel
Učení, rozhodovací stromy, neuronové sítě Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Učení Hodnocení úspěšnosti učícího algoritmu PA026 Projekt z umělé inteligence Učení Úvod
1 Dedekindovy řezy (30 bodů)
Pokročilá matematická analýza úlohy pro zimní semestr Dedekindovy řezy ( bodů) V této úloze se pokusíme seznámit s Dedekindovými řezy, pomocí nichž zavedeme reálná čísla. Tuto konstrukci vymyslel a publikoval
Obsah. Zobrazení na osmistěn. 1 Zobrazení sféry po částech - obecné vlastnosti 2 Zobrazení na pravidelný konvexní mnohostěn
Obsah 1 2 3 Použití Zobrazení rozsáhlého území, ale hodnoty zkreslení nesmí přesáhnout určitou hodnotu Rozdělením území na menší části a ty pak zobrazíme zvlášť Nevýhodou jsou však samostatné souřadnicové
Matematika 1 Jiˇr ı Fiˇser 24. z aˇr ı 2013 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 24. z aˇr ı / 52
í150doc-start í251doc-start Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 24. září 2013 1 / 52 Matematika 1 Jiří Fišer 24. září 2013 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 24. září 2013 1 / 52 Zimní semestr
Odpřednesenou látku naleznete v kapitolách skript Abstraktní a konkrétní lineární algebra.
Lineární prostor Lineární kombinace Lineární prostory nad R Odpřednesenou látku naleznete v kapitolách 1.1 1.4 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: Lineární algebra 01A-2018: Lineární
Matematika pro ekonomiku
Statistika, regresní analýza, náhodné procesy 7.10.2011 1 I. STATISTIKA Úlohy statistiky 2 1 Sestavit model 2 Odhadnout parametr(y) 1 Bodově 2 Intervalově 3 Testovat hypotézy Častá rozdělení ve statistice:
Uvod Symbolick e modelov an ı Neuronov e s ıtˇ e Shrnut ı Modelov an ı myˇslen ı Radek Pel anek
Modelování myšlení Radek Pelánek Modelování a myšlení Myšlení, modelování, počítače (zjednodušeně) kognitivní modelování umělá inteligence cíl: zachytit, jak funguje mysl důraz na jednoduchost, věrnost,
Modelov an ı v yukov ych dat, obt ıˇznosti probl em u Radek Pel anek
Modelování výukových dat, obtížnosti problémů Radek Pelánek Kontext odlišné od zbytku předmětu nikoliv standardní pojmy, ale aktuální výzkum na FI osobní zkušenosti, ilustrace postupného vývoje (cca 8
Diferenciální rovnice základní pojmy. Rovnice se
Diferenciální rovnice základní pojmy. Rovnice se separovanými proměnnými. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské
Periodický pohyb obecného oscilátoru ve dvou dimenzích
Periodický pohyb obecného ve dvou dimenzích Autor: Šárka Petříčková (A05221, sarpet@students.zcu.cz) Vedoucí: Ing. Petr Nečesal, Ph.D. Matematické metody v aplikovaných vědách a ve vzdělávání, Fakulta
Obsah Atributová tabulka Atributové dotazy. GIS1-2. cvičení. ČVUT v Praze, Fakulta stavební, katedra mapování a kartografie
ČVUT v Praze, Fakulta stavební, katedra mapování a kartografie září 2010 prezentace 1 2 Obecně otevření atributové tabulky (vlastnosti vrstvy Open Attribute Table) řádky v tabulce jednotlivé záznamy (objekty)
Lineární algebra - iterační metody
Lineární algebra - iterační metody Numerické metody 7. dubna 2018 FJFI ČVUT v Praze 1 Úvod Úvod Rozdělení Metody Zastavení SOR Programy 1 Úvod Úvod - LAR Mějme základní úlohu A x = b, (1) kde A R n,n je
Martin Dlask (KSI FJFI) 3. března 2016
Využití zlomkových stochastických procesů pro analýzu signálu a časových řad Seminář strojového učení a modelování Martin Dlask (KSI FJFI) http://people.fjfi.cvut.cz/dlaskma1/ 3. března 2016 Martin Dlask
Robotika. Kinematika 13. dubna 2017 Ing. František Burian Ph.D.
Robotika Kinematika 13. dubna 2017 Ing. František Burian Ph.D., Řízení stacionárních robotů P P z q = f 1 (P) q z Pøímá úloha q U ROBOT q P R q = h(u) P = f (q) DH: Denavit-Hartenberg (4DOF/kloub) A i
Paralelní implementace a optimalizace metody BDDC
Paralelní implementace a optimalizace metody BDDC J. Šístek, M. Čertíková, P. Burda, S. Pták, J. Novotný, A. Damašek, FS ČVUT, ÚT AVČR 22.1.2007 / SNA 2007 Osnova Metoda BDDC (Balancing Domain Decomposition
Numerické metody a statistika
Numerické metody a statistika Radek Kučera VŠB-TU Ostrava 2016-2017 ( ) Numerické metody a statistika 2016-2017 1 / 17 Číslo předmětu: 714-0781/02 Rozsah: 2+2 Hodnocení: 6 kreditů Přednáší: Radek Kučera
Platforma pro analýzu, agregaci a vizualizaci otevřených dat souv
Platforma pro analýzu, agregaci a vizualizaci otevřených dat souvisejících s územním plánováním University of West Bohemia March 4, 2014 Obsah 1 2 3 Obsah 1 2 3 Otevřená data (Open data) jsou horkým tématem
Laplaceova transformace
Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP 219 verze: 219-3-17
nejsou citlivé na monotónní transformace vstupů, dost dobře se vyrovnají s nerelevantními vstupy.
Přednosti rozhodovacích stromů Přirozeně pracují s kategoriálními i spojitými veličinami, přirozeně pracují s chybějícími hodnotami, jsou robustní vzhledem k outliers vybočujícím pozorováním, nejsou citlivé