POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN
|
|
- Wacław Dziedzic
- 9 lat temu
- Przeglądów:
Transkrypt
1 POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Ćwiczenie nr Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji Analiza statyczna obciążonej kratownicy Szczecin 007
2 Cel ćwiczenia Celem ćwiczeń jest zapoznanie się z systemem ANSYS, z elementami dostępnymi w systemie oraz nabycie praktycznej wiedzy dotyczącej wykorzystania elementów prętowych w MES. Opis zadania Jest to kratownica, której lewa strona jest podparta na podporze stałej, natomiast prawa strona na podporze ruchomej. Kratownica jest obciążona dwoma siłami o różnych wartościach. Zadanie jest o charakterze statycznym, z analizą w granicach liniowej sprężystości materiału. Przykład ma na celu zademonstrowanie typowej procedury przy analizie konstrukcji z użyciem programu ANSYS. Wszystkie pręty mają długość m. pręt o przekroju 4 cm = m pręt o przekroju cm = m 3 pręt o przekroju cm = m 4 pręt o przekroju cm = m 5 pręt o przekroju 4 cm = m 6 pręt o przekroju 4 cm = m 7 pręt o przekroju cm = m P siła o wartości 000N P siła o wartości 000N Kątownik wykonany jest ze stali konstrukcyjnej o module Younga E=. 0 5 MPa i współczynniku Poissona ν = 0.3.
3 PREPROCESOR. Nadanie tytułu (maksymalnie 7 znaki) Utility Menu: File Change Title Wpisz nazwę: Kratownica OK by zatwierdzić i zamknąć okno Tytuł będzie wyświetlany w oknie graficznym (ANSYS Graphics) po odświeżeniu okna Utility Menu: Plot Replot. Ustawienia preferencji Okno Preferences pozwala wybrać pożądaną dziedzinę analizy (strukturalna, termiczna, mechanika płynów, elektromagnetyczna) oraz jej typ (metoda h, metoda p). Preferences Włącz analizę strukturalną OK by zatwierdzić i zamknąć okno
4 3. Definiowanie typu elementu i opcji W każdej dziedzinie analizy należy określić typ elementu (wybrać z biblioteki elementów) stosownie do danej analizy. Każdy element jest określony przez stopnie swobody (przemieszczenia, obroty, temperatury itp.), charakterystyczny kształt (linia, prostopadłościan, belka, czworobok itd.), liczby węzłów, oraz to, czy jest rozpatrywany w przestrzeni dwu- czy trójwymiarowej. Do obecnej analizy (strukturalnej) zastosujemy jeden typ elementu, Link, który jest elementem: prętowym, do analizy w przestrzeni D, stopnie swobody: UX, UY w każdym węźle. Preprocessor Element Type Add/Edit/Delete Dodaj typ elementu Wybierz Structural Link 3 Wybierz element prętowy -D Spar 4 OK by zatwierdzić i zamknąć okno 5 Close by zatwierdzić i zamknąć okno
5 4. Definiowanie geometrycznych cech elementu Geometryczne cechy elementu są niezbędne by w pełni opisać budowę danego elementu. Konstrukcja tylko na podstawie węzłów jest niewystarczająca. Typową cechą elementu prętowego jest jego przekrój. Preprocessor Real Constants Add/Edit/Delete Definiowanie cech OK by wybrać element LINK 3 Wpisz Wpisz przekrój pręta Apply by zatwierdzić cechy elementu LINK 6 Wpisz Wpisz przekrój pręta Apply by zatwierdzić cechy elementu LINK 4
6 9 Wpisz Wpisz przekrój pręta OK by zatwierdzić cechy elementu LINK Close by zamknąć okno 5. Definiowanie stałych materiałowych Stałe materiałowe opisują właściwości fizyczne materiału. Zależnie od dziedziny i typu analizy wprowadzane są odpowiednie stałe materiałowe jak: - moduł Younga, - współczynnik Poisona, - współczynnik rozszerzalności cieplnej, - współczynnik przenikania ciepła itp. Stosownie do aplikacji stałe materiałowe mogą być liniowe, nieliniowe, izo- lub ortotropiczne. Można stworzyć wiele takich zestawów stałych materiałowych odpowiadających różnym materiałom użytym w rozwiązywaniu problemu. W naszym przypadku w statycznej analizie będzie potrzebny tylko moduł Younga E i współczynnik Poisona ν. 5
7 Preprocessor Material Props Material Models Structural Linear Elastic Isotropic Kliknij dwukrotnie dla zatwierdzenia definiowania materiału Wpisz wartość modułu Younga EX =.e 3 Wpisz wartość współczynnika Poisona PRXY = 0.3 4,5 OK by zatwierdzić i zamknąć okno Zapisanie bazy danych By nie utracić wszystkich nastawów wykonanych dotychczas zapisujemy naszą pracę. Miejscem docelowym dla pliku powinien być katalog, w którym znajduje się program ANSYS. Utility Menu: File Save as... Save Database to Wpisz nazwę kratownica.db i kliknij OK by zatwierdzić i zamknąć okno 6
8 7. Rysowanie kratownicy Kratownicę rysuje się tworząc ją z elementów prętowych LINK. Najpierw określimy położenie węzłów, a następnie węzły połączymy elementami prętowymi. Tworzenie elementów kratownicy za pomocą węzłów: Utility Menu: Plot Ctrls Numbering 3 Włącz numerowanie węzłów (Nodes) 4 OK by zmienić nastawy, zamknąć okno i odświeżyć ekran 3 4 7
9 Preprocessor -Modeling- Create -Nodes In Active CS Wpisz nr węzła: Wpisz współrzędną X = Wpisz współrzędną Y = 0 4 Apply by stworzyć następny węzeł 5 Wpisz numer węzła: 6 Wpisz współrzędną X = 7 Wpisz współrzędną Y = 0 8 Apply by stworzyć następny węzeł W ten sam sposób utwórz 3 następne węzły (3,4,5) według rysunku poniżej: 8
10 8. Odświeżenie ekranu Utility Menu: Plot -Multi-Plots 9. Rysowanie elementów. Preprocessor -Modeling- Create Elements -Elem Attributes Ustaw (Real constant set number: - pręt o przekroju 0.000m patrz punkt 4) OK Preprocessor -Modeling- Create Elements -Auto Numbered Thru Nodes 5 Wskaż węzeł nr 6 Wskaż węzeł nr 4 UWAGA: Należy pamiętać, między którymi węzłami kratownicy będą tworzone elementy o zadanych w Real constant set number przekrojach. 7 OK. 9
11 Preprocessor -Modeling- Create -Elem Attributes 8 Ustaw (pręt o przekroju cm ) 9 OK 8 9 Preprocessor -Modeling- Create Elements -Auto Numbered Thru Nodes 0 Wskaż węzeł nr i Apply Wskaż węzeł nr i 3 3 Apply 4 Wskaż węzeł nr 4 i 5 5 OK. Preprocessor -Modeling- Create Elements -Elem Attributes 6 Ustaw 3 (pręt o przekroju 4cm ) 7 OK 6 7 Preprocessor -Modeling- Create Elements -Auto Numbered Thru Nodes 8 Wskaż węzeł nr i 4 9 Apply 0
12 0 Wskaż węzeł nr i 5 Apply Wskaż węzeł nr 5 i 3 3 OK. SOLVER SOLVER jest blokiem, w którym definiuje się obciążenia (siły skupione, momenty, obciążenia ciągłe, temperatury, prędkości płynu itp.), odbiera się stopnie swobody (utwierdzanie) i rozwiązuje zadanie. 0. Utwierdzanie kratownicy Solution Define Loads Apply -Structural- Displacement On Nodes Wybierz węzeł OK by zakończyć wybieranie 3 Wybierz All DOF (odebranie wszystkich stopni swobody pełne utwierdzenie) 4 OK. by zatwierdzić i zamknąć okno 3 4
13 Solution -Loads- Apply -Structural- Displacement On Nodes 5 Wybierz węzeł 3 6 OK by zakończyć wybieranie 7 Wybierz UY i odznacz All DOF (zerowe przemieszczenie w kierunku osi Y) 8 OK. by zatwierdzić i zamknąć okno 7 8. Definiowanie obciążenia Solution Define Loads Apply Force/Moment On Nodes Wybierz węzeł 4 Kliknij Apply 3 Wybierz FY 4 Wpisz Kliknij OK Solution -Loads- Apply Force/Moment On Nodes Wybierz węzeł 5 Kliknij Apply 3 Wybierz FY 4 Wpisz Kliknij OK
14 . Zapisanie bazy danych Utility Menu: File Save as Jobname.db 3. Rozwiązanie zadania Solution -Solve- Current LS Ogólne informacje o zadaniu dostępne są w oknie statutowym. By zamknąć okno kliknij File Close OK by rozpocząć rozwiązywanie POSTPROCESOR W bloku POSTPROCESOR oglądamy rozwiązanie naszego zadania. Wyniki są przedstawiane w formie graficznej, w formie tabeli lub z użyciem wykresu. 4. Wczytanie rezultatów General Postproc -Read Results- First Set 5. Oglądanie wyników a) kształt kratownicy General Postproc -Plot Results- Deformed Shape... Wybierz kształt odkształcony i nieodkształcony OK by zatwierdzić i zamknąć okno 3
15 największe przemieszczenie [m] 6. Włączenie wyświetlania grubości elementów prętowych: Utility Menu: PlotCtrls>Style>Size and Shape> /ESHAPE Display of element: On 7. Animacja odkształconej konstrukcji: Utility Menu: PlotCtrls>Animate>Deformed Shape >OK 8. Siły osiowe w prętach ANSYS umożliwia tworzenie modelu MES w trybie okienkowym (jak dotychczas) lub w trybie wsadowym (pisanie komend). W przypadku sił i naprężeń w prętach wygodniej będzie utworzyć wykresy i tabele właśnie w trybie wsadowym. Komendy wpisuje się w oknie ANSYS Commnad Prompt ANSYS Command Prompt W oknie tym wpisz: ETABLE,SILY,SMISC, [Enter] a następnie wyświetl wykres sił w prętach: PLLS,SILY,SILY [Enter] 4
16 Wartości dodatnie oznaczają rozciąganie, ujemne natomiast ściskanie prętów kratownicy dokładne wartości sił w poszczególnych elementach (prętach) można odczytać z tabeli: PRETAB,SILY,SILY [Enter] 8. Naprężenia w prętach zdefiniowanie tabeli: wykres: tabela: ETABLE,NAPR,LS, PLLS,NAPR,NAPR PRETAB,NAPR,NAPR 5
17 9. Reakcje w podporach General Postproc List Results Reaction Solu OK Reakcja w podporze lewej (NODE ): Reakcja w podporze prawej (NODE 3): R Ax = 0.369E- = 0 N R Ay = 50 N R Bx = 50 N R By = 750 N 0. Wyjście z programu ANSYS Utility Menu: File Exit OK 6
POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN
POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Ćwiczenie nr 2 Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji Analiza statyczna obciążonej kratownicy
Bardziej szczegółowoInstrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji
POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Ćwiczenie nr 7 Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji Analiza statyczna obciążonego kątownika
Bardziej szczegółowoZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN ZACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY Instrukcja do ćwiczeń laboratoryjnych z metody
Bardziej szczegółowoZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN ZACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY Instrukcja do ćwiczeń laboratoryjnych z metody
Bardziej szczegółowoInstrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA
POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Instrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA Obliczenia kratownicy płaskiej Wykonał: dr
Bardziej szczegółowoZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie ZACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Instrukcja do ćwiczeń laboratoryjnych z metody
Bardziej szczegółowoZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN ZACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY Instrukcja do ćwiczeń laboratoryjnych z metody
Bardziej szczegółowoPOLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN
POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Ćwiczenie nr 9 Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji Wykorzystanie operacji boolowskich przy
Bardziej szczegółowoAnaliza obciążeń baneru reklamowego za pomocą oprogramowania ADINA-AUI 8.9 (900 węzłów)
Politechnika Łódzka Wydział Technologii Materiałowych i Wzornictwa Tekstyliów Katedra Materiałoznawstwa Towaroznawstwa i Metrologii Włókienniczej Analiza obciążeń baneru reklamowego za pomocą oprogramowania
Bardziej szczegółowoZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie Z ACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Instrukcja do ćwiczeń laboratoryjnych z metody
Bardziej szczegółowoZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN ZACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY Instrukcja do ćwiczeń laboratoryjnych z metody
Bardziej szczegółowoInstrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA
POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Instrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA Obliczenia statycznie obciążonej belki Szczecin
Bardziej szczegółowoAnaliza obciążeń baneru reklamowego za pomocą oprogramowania ADINA-AUI 8.9 (900 węzłów)
Politechnika Łódzka Wydział Technologii Materiałowych i Wzornictwa Tekstyliów Katedra Materiałoznawstwa Towaroznawstwa i Metrologii Włókienniczej Analiza obciążeń baneru reklamowego za pomocą oprogramowania
Bardziej szczegółowoPOLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN
POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Ćwiczenie nr 12 Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji Przenikanie ciepła Szczecin 2007 Opis
Bardziej szczegółowoZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN ZACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY Instrukcja do ćwiczeń laboratoryjnych z metody
Bardziej szczegółowoInstrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji
POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Ćwiczenie nr 5 Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji Obliczenia statycznie obciążonej belki
Bardziej szczegółowoInstrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA
POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Instrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA Obliczenia ramy płaskiej obciążonej siłą skupioną
Bardziej szczegółowoAnaliza obciążeń belki obustronnie podpartej za pomocą oprogramowania ADINA-AUI 8.9 (900 węzłów)
Politechnika Łódzka Wydział Technologii Materiałowych i Wzornictwa Tekstyliów Katedra Materiałoznawstwa Towaroznawstwa i Metrologii Włókienniczej Analiza obciążeń belki obustronnie podpartej za pomocą
Bardziej szczegółowoZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN ZACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY Instrukcja do ćwiczeń laboratoryjnych z metody
Bardziej szczegółowoZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie Z ACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Instrukcja do ćwiczeń laboratoryjnych z metody
Bardziej szczegółowoWYZNACZANIE PRZEMIESZCZEŃ SOLDIS
WYZNACZANIE PRZEMIESZCZEŃ SOLDIS W programie SOLDIS-PROJEKTANT przemieszczenia węzła odczytuje się na końcu odpowiednio wybranego pręta. Poniżej zostanie rozwiązane przykładowe zadanie, które również zostało
Bardziej szczegółowoTemat: Komputerowa symulacja procesu wytłaczania w programie ANSYS LS-DYNA
Opracował: mgr inż. Paweł K. Temat: Komputerowa symulacja procesu wytłaczania w programie ANSYS LS-DYNA 1. Uruchamianie programu Po uruchomieniu ANSYS Product Launcher należy wybrać z pola License ANSYS
Bardziej szczegółowoObliczenie kratownicy przy pomocy programu ROBOT
Obliczenie kratownicy przy pomocy programu ROBOT 1. Wybór typu konstrukcji (poniższe okno dostępne po wybraniu ikony NOWE) 2. Ustawienie norm projektowych oraz domyślnego materiału Z menu górnego wybieramy
Bardziej szczegółowoUruchomić programu AUI kliknięciem ikony znajdującej się na pulpicie. Zadanie rozwiązać za pomocą systemu ADINA.
Określić deformacje kratownicy (rys1) poddanej obciążeniu siłami F 1 =1MN i F 2 =0.2MN przyłożonymi do jej wierzchołków oraz siłą ciężkości. Kratownica składa się z prętów o przekroju 0.016 m 2 połączonych
Bardziej szczegółowoWłasności materiału E=200e9 Pa v=0.3. Preprocessing. 1. Moduł Part moduł ten słuŝy do stworzenia części. Part Create
Ćwiczenie 1. Kratownica płaska jednoosiowy stan napręŝeń Cel ćwiczenia: Wyznaczenie stanu napręŝeń w elementach kratownicy płaskiej pod wpływem obciąŝenia siłą skupioną. Własności materiału E=200e9 Pa
Bardziej szczegółowoWprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z
Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z wykorzystaniem Metody Sił Temat zadania rozwiązanie
Bardziej szczegółowoObsługa programu Soldis
Obsługa programu Soldis Uruchomienie programu Po uruchomieniu, program zapyta o licencję. Można wybrać licencję studencką (trzeba założyć konto na serwerach soldisa) lub pracować bez licencji. Pliki utworzone
Bardziej szczegółowoMetoda Elementów Skończonych - Laboratorium
Metoda Elementów Skończonych - Laboratorium Laboratorium 1 Podstawy ABAQUS/CAE Tworzenie modeli geometrycznych części Celem ćwiczenia jest wykonanie następujących modeli geometrycznych rys. 1. a) b) c)
Bardziej szczegółowoINSTRUKCJA DO LABORATORIUM
instrukcja jest dystrybuowana bezpłatnie PIEZORESISTIVE PRESSURE SENSOR Laboratory #4 Updated: 14/12/2014 INSTRUKCJA DO LABORATORIUM ~ 1 ~ Aim of the exercise The aim of this exercise is to design a piezoresistive
Bardziej szczegółowoWprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z
Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z wykorzystaniem Metody Sił Temat zadania rozwiązanie
Bardziej szczegółowoZASTOSOWANIE ELEMENTÓW POWŁOKOWYCH ZGINANA PŁYTA I BELKA CIENKOŚCIENNA.
ZASTOSOWANIE ELEMENTÓW POWŁOKOWYCH ZGINANA PŁYTA I BELKA CIENKOŚCIENNA. 1. Wprowadzenie Elementy powłokowe są elementami płata powierzchniowego w przestrzeni i są definiowane za pomocą ich warstwy środkowej
Bardziej szczegółowoDWUWYMIAROWE ZADANIE TEORII SPRĘŻYSTOŚCI. BADANIE WSPÓŁCZYNNIKÓW KONCENTRACJI NAPRĘŻEŃ.
Cw1_Tarcza.doc 2015-03-07 1 DWUWYMIAROWE ZADANIE TEORII SPRĘŻYSTOŚCI. BADANIE WSPÓŁCZYNNIKÓW KONCENTRACJI NAPRĘŻEŃ. 1. Wprowadzenie Zadanie dwuwymiarowe teorii sprężystości jest szczególnym przypadkiem
Bardziej szczegółowoF+L STATIK DO ROZWIĄZANIA PŁASKIEGO USTROJU PRĘTOWEGO.
1 PRZYKŁAD ZASTOSOWANIA MODUŁU Stabwerke ESK programu F+L STATIK DO ROZWIĄZANIA PŁASKIEGO USTROJU PRĘTOWEGO. Schemat statyczny zadania P= 10 kn q1= 4kN/m M= 5 knm 2 EI 3 q2= 4 kn/m EI EI T= 40.00 4m T=
Bardziej szczegółowoWprowadzanie zadanego układu do
Wprowadzanie zadanego układu do programu ROBOT w celu rozwiązania MP 1. Ustawienie preferencji zadania WYMIARY Narzędzia -> Preferencje zadania SIŁY INNE MATERIAŁY Najpierw należy dodać, a potem kliknąć
Bardziej szczegółowoPolitechnika Poznańska. Metoda Elementów Skończonych
Politechnika Poznańska Metoda Elementów Skończonych Mechanika i Budowa Maszyn Gr. M-5 Prowadzący: dr hab. Tomasz Stręk, prof. nadzw. Wykonali: Damian Woźniak Michał Walerczyk 1 Spis treści 1.Analiza zjawiska
Bardziej szczegółowoObliczenie kratownicy przy pomocy programu ROBOT
Geometria i obciąŝenie Obliczenie kratownicy przy pomocy programu ROBOT Przekroje 1. Wybór typu konstrukcji 2. Definicja domyślnego materiału Z menu górnego wybieramy NARZĘDZIA -> PREFERENCJE ZADANIA 1
Bardziej szczegółowoPrzykład rozwiązania tarczy w zakresie sprężysto-plastycznym
Przykład rozwiązania tarczy w zakresie sprężysto-plastycznym Piotr Mika Kwiecień, 2012 2012-04-18 1. Przykład rozwiązanie tarczy programem ABAQUS Celem zadania jest przeprowadzenie analizy sprężysto-plastycznej
Bardziej szczegółowo1.1. Przykład projektowania konstrukcji prętowej z wykorzystaniem ekranów systemu ROBOT Millennium
ROBOT Millennium wersja 20.0 - Podręcznik użytkownika (PRZYKŁADY) strona: 3 1. PRZYKŁADY UWAGA: W poniższych przykładach została przyjęta następująca zasada oznaczania definicji początku i końca pręta
Bardziej szczegółowoPierwsze zastosowanie pakietu ANSYS Rama przestrzenna
1 z 28 PODSTAWY MES - InżBio ćwiczenie 1 Przygotowane z użyciem materiałów z University of Alberta, Kanada Pierwsze zastosowanie pakietu ANSYS Rama przestrzenna Wprowadzenie Przykład został przygotowany
Bardziej szczegółowoZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie Z ACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Instrukcja do ćwiczeń laboratoryjnych z metody
Bardziej szczegółowoPytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
Bardziej szczegółowoPrzykład rozwiązania tarczy w zakresie sprężysto-plastycznym
Przykład rozwiązania tarczy w zakresie sprężysto-plastycznym Piotr Mika Maj, 2014 2012-05-07 1. Przykład rozwiązanie tarczy programem ABAQUS Celem zadania jest przeprowadzenie analizy sprężysto-plastycznej
Bardziej szczegółowoZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie Z ACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Instrukcja do ćwiczeń laboratoryjnych z metody
Bardziej szczegółowoPODSTAWY I ZASTOSOWANIA INśYNIERSKIE MES
PODSTAWY I ZASTOSOWANIA INśYNIERSKIE MES Mechanika i Budowa Maszyn Wprowadzenie do laboratorium podział zadań 1. preprocessing projektant definicja geometrii: obszar lub węzły i elementy wybór typu elementu
Bardziej szczegółowoAnaliza dynamiczna fundamentu blokowego obciążonego wymuszeniem harmonicznym
Analiza dynamiczna fundamentu blokowego obciążonego wymuszeniem harmonicznym Tomasz Żebro Wersja 1.0, 2012-05-19 1. Definicja zadania Celem zadania jest rozwiązanie zadania dla bloku fundamentowego na
Bardziej szczegółowoAutor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE
METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody
Bardziej szczegółowo1.2. Przykład projektowania konstrukcji prętowej bez wykorzystania ekranów systemu ROBOT Millennium
ROBOT Millennium wersja 20.0 - Podręcznik użytkownika (PRZYKŁADY) strona: 13 1.2. Przykład projektowania konstrukcji prętowej bez wykorzystania ekranów systemu ROBOT Millennium Ten przykład przedstawia
Bardziej szczegółowo1.Otwieranie modelu Wybierz opcję Otwórz. W oknie dialogowym przechodzimy do folderu, w którym znajduje się nasz model.
1.Otwieranie modelu 1.1. Wybierz opcję Otwórz. W oknie dialogowym przechodzimy do folderu, w którym znajduje się nasz model. 1.2. Wybierz system plików typu STEP (*. stp, *. ste, *.step). 1.3. Wybierz
Bardziej szczegółowoSTATYCZNA PRÓBA ROZCIĄGANIA
Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: STATYCZNA PRÓBA ROZCIĄGANIA oprac. dr inż. Jarosław Filipiak Cel ćwiczenia 1. Zapoznanie się ze sposobem przeprowadzania statycznej
Bardziej szczegółowoMetoda Elementów Brzegowych LABORATORIUM
Akademia Techniczno-Humanistyczna W Bielsku-Białej Metoda Elementów Brzegowych LABORATORIUM INSTRUKCJE DO ĆWICZEŃ Ćwiczenie 1. Zapoznanie z obsługą systemu BEASY Celem ćwiczenia jest zapoznanie się z obsługą
Bardziej szczegółowoRozdział 8 WYNIKI ANALIZY SPIS TREŚCI. I. ULEPSZONY INTERFEJS SCADA Pro II. OPIS INTERFEJSU SCADA Pro 1. Wyniki Deformacji
SPIS TREŚCI I. ULEPSZONY INTERFEJS SCADA Pro II. OPIS INTERFEJSU SCADA Pro 1. Wyniki Deformacji 2 I. ULEPSZONY INTERFEJS SCADA Pro 3 I. OPIS SZCZEGÓŁOWY INTERFEJSU SCADA Pro W SCADA Pro 17 komendy pogrupowane
Bardziej szczegółowoNA PODSTAWIE PROGRAMU ROBOT STRUCTURAL ANALYSIS PROFESSIONAL Autor: mgr inż. Bartosz Kawecki
NA PODSTAWIE PROGRAMU ROBOT STRUCTURAL ANALYSIS PROFESSIONAL 2016 Autor: mgr inż. Bartosz Kawecki Konstrukcję należy wykonać z przestrzennych elementów prętowych Wybór ikony pręt z paska narzędzi po prawej
Bardziej szczegółowoUchwyt w płaskim stanie napręŝenia
Strona 1 z 24 PODSTAWY MES ćwiczenie 3 i 4 Przygotowane z uŝyciem materiałów z University of Alberta, Kanada Uchwyt w płaskim stanie napręŝenia Wprowadzenie To kolejny przykład na zastosowanie ANSYSa.
Bardziej szczegółowoMechanika teoretyczna
Inne rodzaje obciążeń Mechanika teoretyczna Obciążenie osiowe rozłożone wzdłuż pręta. Obciążenie pionowe na pręcie ukośnym: intensywność na jednostkę rzutu; intensywność na jednostkę długości pręta. Wykład
Bardziej szczegółowoMetoda Elementów Skończonych - Laboratorium
Metoda Elementów Skończonych - Laboratorium Laboratorium 5 Podstawy ABAQUS/CAE Analiza koncentracji naprężenia na przykładzie rozciąganej płaskiej płyty z otworem. Główne cele ćwiczenia: 1. wykorzystanie
Bardziej szczegółowoMetoda elementów skończonych
Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną
Bardziej szczegółowo1. Dostosowanie paska narzędzi.
1. Dostosowanie paska narzędzi. 1.1. Wyświetlanie paska narzędzi Rysuj. Rys. 1. Pasek narzędzi Rysuj W celu wyświetlenia paska narzędzi Rysuj należy wybrać w menu: Widok Paski narzędzi Dostosuj... lub
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204
WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW
Bardziej szczegółowoANSYS Opis wybranych rozkazów Utility Menu i przycisków pasków narzędziowych
ANSYS Opis wybranych rozkazów Utility Menu i przycisków pasków narzędziowych Listwa przycisków predefiniowanych Menu narzędziowe systemu ( Utility Menu ) Okno rozkazów systemu Listwa przycisków programowalnych
Bardziej szczegółowoMECHANIKA PRĘTÓW CIENKOŚCIENNYCH
dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki
Bardziej szczegółowoPRZYKŁADOWE ZADANIA. ZADANIE 1 (ocena dostateczna)
PRZYKŁADOWE ZADANIA ZADANIE (ocena dostateczna) Obliczyć reakcje, siły wewnętrzne oraz przemieszczenia dla kratownicy korzystając z Metody Elementów Skończonych. Zweryfikować poprawność obliczeń w mathcadzie
Bardziej szczegółowoANALIZA RAMY PŁASKIEJ W SYSTEMIE ROBOT. Adam Wosatko
ANALIZA RAMY PŁASKIEJ W SYSTEMIE ROBOT Adam Wosatko v. 1.2, Marzec 2019 2 1. Definicja i typ zadania, początkowe ustawienia Definicja zadania. Zadanie przykładowe do rozwiązania za pomocą systemu obliczeniowego
Bardziej szczegółowoINSTRUKCJA OBSŁUGI ❽ Wyniki analizy
INSTRUKCJA OBSŁUGI ❽ Wyniki analizy 2 SPIS TREŚCI I. ZAKTUALIZOWANY INTERFEJS PROGRAMU SCADA Pro II. OPIS NOWEGO INTERFEJSU 1. Wyniki analizy 1.1 Wykresy/Deformacje 1.2 Różne 3 I. ZAKTUALIZOWANY INTERFEJS
Bardziej szczegółowoMechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17
Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1 MECHANIKA OGÓLNA - lista zadań 2016/17 Część 1 analiza kinematyczna układów płaskich Przeprowadzić analizę kinematyczną układu. Odpowiednią
Bardziej szczegółowoPrzeprowadź analizę odkształceń plastycznych części wykonanej z drutu o grubości 1mm dociskanej statycznie do nieodkształcalnej ściany.
Przeprowadź analizę odkształceń plastycznych części wykonanej z drutu o grubości 1mm dociskanej statycznie do nieodkształcalnej ściany. Dane: gęstość 7800kg/m 3 ; moduł Younga 210GPa; współczynnik Poissona
Bardziej szczegółowoINSTRUKCJA DO ĆWICZENIA NR 2
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 PRZEDMIOT TEMAT OPRACOWAŁ MECHANIKA UKŁADÓW MECHANCZNYCH Modelowanie fizyczne układu o jednym stopniu
Bardziej szczegółowoDr inż. Janusz Dębiński
Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.
Bardziej szczegółowoPytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
Bardziej szczegółowoLaboratorium Wytrzymałości Materiałów
Katedra Wytrzymałości Materiałów Instytut Mechaniki Budowli Wydział Inżynierii Lądowej Politechnika Krakowska Laboratorium Wytrzymałości Materiałów Praca zbiorowa pod redakcją S. Piechnika Skrypt dla studentów
Bardziej szczegółowoMECHANIKA BUDOWLI LINIE WPŁYWU BELKI CIĄGŁEJ
Zadanie 6 1. Narysować linie wpływu wszystkich reakcji i momentów podporowych oraz momentu i siły tnącej w przekroju - dla belki. 2. Obliczyć rzędne na wszystkich liniach wpływu w czterech punktach: 1)
Bardziej szczegółowoPodstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
Bardziej szczegółowo49. Zmieniono ikony programów. Ułatwia to kontrolę nad otwartymi składnikami ABC.
Styczeń 2013 (Wersja 6.13) 48. Zrezygnowano z obligatoryjnego odbierania obrotu wokół osi prostopadłej do osi ściany - podpory liniowej zadawanej w ABC Płyta. Na planszy definicji ściany, jak również na
Bardziej szczegółowoINSTRUKCJA DO ĆWICZENIA NR 4
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 4 PRZEDMIOT TEMAT OPRACOWAŁ MECHANIKA UKŁADÓW MECHANCZNYCH Modelowanie fizyczne układu o dwóch stopniach
Bardziej szczegółowoProjektowanie i techniki wytwarzania mikrosystemów laboratorium
Projektowanie i techniki wytwarzania mikrosystemów laboratorium Ćwiczenie 1: Analiza mechaniczna (statyczna) belki Ćwiczenie przygotowane na podstawie materiałów firmy LISA-FET (http://www.lisa-fet.com/)
Bardziej szczegółowoĆWICZENIE 6 Kratownice
ĆWICZENIE 6 Kratownice definicja konstrukcja składająca się z prętów prostych połączonych przegubowo w węzłach, dla której jedynymi obciążeniami są siły skupione przyłożone w węzłach. Umowa: jeśli konstrukcja
Bardziej szczegółowoĆWICZENIE Nr 1. Laboratorium CAD/MES. Przedmiot: Modelowanie właściwości materiałów. Opracował: dr inż. Hubert Dębski
POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA PODSTAW KON- STRUKCJI MASZYN Przedmiot: Modelowanie właściwości materiałów Laboratorium CAD/MES ĆWICZENIE Nr 1 Opracował: dr inż. Hubert Dębski I. Temat
Bardziej szczegółowoUchwyt w płaskim stanie napręŝenia
1 z 27 SYSTEMY I ZASTOSOWANIA INśYNIERSKIE MES - AiR ćwiczenie 2 Przygotowane z uŝyciem materiałów z University of Alberta, Kanada Uchwyt w płaskim stanie napręŝenia Wprowadzenie To kolejny przykład na
Bardziej szczegółowoAnaliza nieliniowej odpowiedzi żelbetowej belki pod obciążeniem statycznym w programie MIDAS FEA
POLITECHNIKA KRAKOWSKA im.t.kościuszki Wydział Inżynierii Lądowej Instytut Technologii Informatycznych w Inżynierii Lądowej L-5 Kierunek studiów: Specjalność: Budownictwo Budowle informacja i modelowanie
Bardziej szczegółowo1. Opis okna podstawowego programu TPrezenter.
OPIS PROGRAMU TPREZENTER. Program TPrezenter przeznaczony jest do pełnej graficznej prezentacji danych bieżących lub archiwalnych dla systemów serii AL154. Umożliwia wygodną i dokładną analizę na monitorze
Bardziej szczegółowoAnaliza kinematyczna i dynamiczna układu roboczego. koparki DOSAN
Metody modelowania i symulacji kinematyki i dynamiki z wykorzystaniem CAD/CAE Laboratorium 7 Analiza kinematyczna i dynamiczna układu roboczego koparki DOSAN Maszyny górnicze i budowlne Laboratorium 6
Bardziej szczegółowoĆwiczenie nr 10 - Analiza wytrzymałościowa modeli bryłowych
Ćwiczenie nr 10 - Analiza wytrzymałościowa modeli bryłowych Wprowadzenie Grafika inżynierska II ćwiczenia laboratoryjne W programie Inventor oprócz modelowania geometrii części zespołów oraz tworzenia
Bardziej szczegółowoLaboratorium. Podstaw Wibroakustyki. Witold Kubiak, Andrzej Młotkowski, Paweł Witczak
Laboratorium Podstaw Wibroakustyki Witold Kubiak, Andrzej Młotkowski, Paweł Witczak Instytut Mechatroniki i Systemów Informatycznych Politechniki Łódzkiej listopad 2009 Ćwiczenie 1. Statyczna analiza odkształceń
Bardziej szczegółowoPODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE
PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE Podstawy statyki budowli: Pojęcia podstawowe Model matematyczny, w odniesieniu do konstrukcji budowlanej, opisuje ją za pomocą zmiennych. Wartości zmiennych
Bardziej szczegółowoINSTRUKCJA DO ĆWICZENIA NR 4
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 4 PRZEDMIOT TEMAT Wybrane zagadnienia z optymalizacji elementów konstrukcji Zastosowanie optymalizacji
Bardziej szczegółowoCover sheet. WinCC (TIA Portal) FAQ Listopad 2012
Cover sheet W jaki sposób migrować projekt zintegrowany ze STEP 7 z WinCC flexible do WinCC (TIA Portal)? WinCC (TIA Portal) FAQ Listopad 2012 Service & Support Answers for industry. Pytanie Dokument ten
Bardziej szczegółowoKarta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu:
Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia Przedmiot: Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MT 1 N 0 3 19-0_1 Rok: II Semestr: 3 Forma studiów:
Bardziej szczegółowoJedną z ciekawych funkcjonalności NOLa jest możliwość dokonywania analizy technicznej na wykresach, które mogą być otwierane z poziomu okna notowań:
Wykresy w NOLu Jedną z ciekawych funkcjonalności NOLa jest możliwość dokonywania analizy technicznej na wykresach, które mogą być otwierane z poziomu okna notowań: Po naciśnięciu F2 otwiera się nowe okno,
Bardziej szczegółowoOlga Kopacz, Adam Łodygowski, Krzysztof Tymber, Michał Płotkowiak, Wojciech Pawłowski Poznań 2002/2003 MECHANIKA BUDOWLI 1
Olga Kopacz, Adam Łodygowski, Krzysztof Tymber, ichał Płotkowiak, Wojciech Pawłowski Poznań 00/003 ECHANIKA UDOWLI WSTĘP. echanika budowli stanowi dział mechaniki technicznej, zajmujący się statyką, statecznością
Bardziej szczegółowoSterowanie, uczenie i symulacja robotów przemysłowych Kawasaki
Ćwiczenie VIII LABORATORIUM MECHATRONIKI IEPiM Sterowanie, uczenie i symulacja robotów przemysłowych Kawasaki Zał.1 - Roboty przemysłowe i mobilne. Roboty Kawasaki - charakterystyka Zał.2 - Oprogramowanie
Bardziej szczegółowoTRÓJWYMIAROWE ZADANIE TEORII SPRĘŻYSTOŚCI. NAPRĘŻENIA W GRUBOŚCIENNYM ZBIORNIKU CIŚNIENIOWYM.
TRÓJWYMIAROWE ZADANIE TEORII SPRĘŻYSTOŚCI. NAPRĘŻENIA W GRUBOŚCIENNYM ZBIORNIKU CIŚNIENIOWYM. 1. Wprowadzenie Zadanie trójwymiarowe teorii sprężystości dotyczy sprężystego ciała przestrzennego, na którego
Bardziej szczegółowoOsiadanie kołowego fundamentu zbiornika
Przewodnik Inżyniera Nr 22 Aktualizacja: 01/2017 Osiadanie kołowego fundamentu zbiornika Program: MES Plik powiązany: Demo_manual_22.gmk Celem przedmiotowego przewodnika jest przedstawienie analizy osiadania
Bardziej szczegółowoModelowanie i obliczenia statyczne kratownicy w AxisVM Krok po kroku
Modelowanie i obliczenia statyczne kratownicy w AxisVM Krok po kroku Nowe zadanie Oś Z jest domyślną osią działania grawitacji. W ustawieniach programu można przypisać dowolny kierunek działania grawitacji.
Bardziej szczegółowoI. Spis treści I. Spis treści... 2 II. Kreator szablonów... 3 1. Tworzenie szablonu... 3 2. Menu... 4 a. Opis ikon... 5 3. Dodanie nowego elementu...
Kreator szablonów I. Spis treści I. Spis treści... 2 II. Kreator szablonów... 3 1. Tworzenie szablonu... 3 2. Menu... 4 a. Opis ikon... 5 3. Dodanie nowego elementu... 7 a. Grafika... 7 b. Tekst... 7 c.
Bardziej szczegółowoSymulacja Analiza_moc_kosz_to w
Symulacja Analiza_moc_kosz_to w Data: 16 czerwca 2016 Projektant: Nazwa badania: Analiza statyczna 1 Typ analizy: Analiza statyczna Opis Brak danych Spis treści Opis... 1 Założenia... 2 Informacje o modelu...
Bardziej szczegółowoKarta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu:
Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia Przedmiot: Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MT 1 S 0 3 19-0_1 Rok: II Semestr: 3 Forma studiów:
Bardziej szczegółowoINSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE TWORZYW SZTUCZNYCH OZNACZENIE WŁASNOŚCI MECHANICZNYCH PRZY STATYCZNYM ROZCIĄGANIU
Bardziej szczegółowoWIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH
Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1 1.. 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1.1. Wstęp echanika budowli stanowi dział mechaniki technicznej zajmującej się statyką, dynamiką,
Bardziej szczegółowoFEM Finite Element Method
FEM Finite Element Method czyli modelowanie Metodą Elementów Skończonych (MES) Opracował: Zbigniew Rudnicki MODEL Model to uproszczona reprezentacja rzeczywistego obiektu w naszym przypadku: konstrukcji
Bardziej szczegółowoDla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów
1. Kratownica Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 2. Szkic projektu rysunek jest w skali True 3. Ustalenie warunku statycznej niewyznaczalności układu Warunek
Bardziej szczegółowo