METODA I OPROGRAMOWANIE DO OCENY WIELOKRYTERIALNEJ I WIELOPOZIOMOWEJ DECYZJI W WARUNKACH NIEPEWNOCI ROZMYTEJ
|
|
- Nina Piątkowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 METOA I OPROGRAMOWAIE O OCEY WIELOKRYTERIALEJ I WIELOPOZIOMOWEJ ECYZJI W WARUKACH IEPEWOCI ROZMYTEJ Prof. dzw. r. In. Pweł Sewstnow Student 5 roku nformtyk Pweł Fgt Wydzł Inyner Mechncznej Informtyk Instytut Mtemtyk Informtyk Poltechnk Czstochowsk ul. browskego Czstochow sevst@k2.pcz.czest.pl Streszczene. Wszyscy doskonle zdjemy sobe sprw jk czsto w ycu pojwj s przed nm róne wybory decyzje orz jk cko wybr sporód nch t njlepsz. Zwłszcz wtedy, gdy chodz o pendze. Problem ten pojw s w prwe kdej dzedzne nszego yc, le skoncentrujmy s n tkch dzedznch jk dzłlno bnków, funduszy nwestycyjnych, optymlzowny wybór jednego, njlepszego projektu nwestycyjnego. W nnejszej prcy przedstwono powstjce przy ocene jkoc projektów. Przedstwono tke metody umolwjce elmncje tych problemów. Wynk teoretyczne zlustrowno przykłdm rozwz konkretnych problemów prktycznych.. Problemy powstjce przy ocene jkoc projektów.. Problem, który czsto pojw s podczs oceny projektów to rón welko pomrów. Przykłdowo podczs porównywn projektów jedno z kryterów merzone jest w mescch, nne w procentch czy w wluce. l osoby porównujcej stnow to powny problem zwłszcz w połczenu z problemem welokryterlnoc, gdy mmy do porównn wele rónych pomrów wycgn z nch wnosk, co do podjc dlszej decyzj..2. Przed dylemtem stjemy tke wówczs, gdy mmy do czynen z prmetrm jkocowym (mog by merzone bezporedno) locowym (mog by przedstwone werblne), w prktyce czsto odgrywj główn rol w procese podejmown decyzj. Wdomym jest, e wygodnejsze jest uywne lngwstycznych ocen prmetru. l przykłdu, wyrene zkresu prmetru "kwlfkcje" jest ocenne przez znwców poprzez zstosowne skl werblnej: " nske ", " zdowljce ", " dobre", lub prmetru "ngerencje w rodowsko nturlne" poprzez: " nske ", " zdowljce ", " wysoke ", td..3. stpn trudnoc jest nerównowno kryterów uywnych w ocene jkoc projektów. Problem ten we s z ocen wnoc szczegółowych prmetrów w sposób locowy stosunkowy (locow ocen rng). W welu przypdkch człowek ne jest zdolny ocen welu prmetrów bezporedno z pomoc lczbowej wrto z pewnym dopuszczlnym błdem (w nszym przypdku jest to współczynnk wzgldnej wnoc lbo rng kryterum). Czsto wynk prcy przedstwne s w postc opsów czy opowd, bez stosown lczb. W tym smym przypdku podczs porównn dwóch lterntyw człowek jest zdolny zdefnow odpowedno, któr z nch jest brdzej wyrzst, któr mnej orz w welu przypdkch moe ocen dokłdne (ustne) rónc mdzy wrtocm dwóch lterntyw..4. Głównym problemem, jk pojw s podczs podejmown decyzj jest welokryterlno oceny, do której uyw s czsto klkudzescu prmetrów. Czyl stnene welu przesłnek, zmennych, które mj wpływ n to, co chcemy osgn. Molwoc człowek w podejmownu decyzj n podstwe welu prmetrów s brdzo ogrnczone.
2 .5. Zncznym problemem jest równe welopozomowo oceny. W przypdku, kedy kdy nowy pozom powstł n podstwe grupy prmetrów nszego rzdu, połczonych w sensowny do uzsdnony sposób. 2. Metod rozwzywn. Celem tego refertu jest przedstwene metody rozwzujcej kweste podejmown decyzj w wrunkch, kedy mmy do czynen z wyej wymenonym problemm. 2. Formlzcj kryterów szczegółowych przedstwonych n pozome locowym orz jkocowym. Z dwom perwszym problemm (róne jednostk pomrowe, stnene prmetrów jkocowych locowych), moemy zwycy dzk wprowdzenu prtu funkcj przynlenoc. Funkcje te w przypdku zd optymlzcyjnych lub wspomgjcych decyzje moemy rozptryw jko funkcje przydtnoc, poytecznoc wrtoc prmetrów. Uywmy ch w celu formlzcj okrelonych kryterów. Funkcje te przyberj wrtoc od 0 w polu nedopuszczlnych wrtoc (z punktu wdzen prmetru) do mksymlnej wrtoc, któr jest równ w polu njlepszych wrtoc prmetru Główne sposoby budown funkcj przynlenoc kryterów szczegółowych ) b) d) e) IRR mn IRR mx )-d) typowe formy kryterum e) funkcj przynlenoc kryterum zdnego werblne 2.3 Wylczene współczynnków wzgldnej wnoc rng. Z nerówn wnoc kryterów moemy sobe pordz dzk uycu rng, czyl współczynnków wzgldnej wnoc oblcznych n bze mcerzy przystych porówn (dwuwymrowych porówn). W mcerzy przystych porówn umeszczne s wynk porównn kdej pry prmetrów. Oto lngwstyczne oceny przystych porówn szczegółowych kryterów ch lczbowe wrtoc: w kryter s dentyczne - Umrkown wyszo perwszego prmetru nd drugm - 3 Istotn wyszo perwszego prmetru nd drugm - 5 Znczc wyszo perwszego prmetru nd drugm - 7 dzwyczj sln wyszo perwszego prmetru nd drugm - 9 Poredne wrtoc znczen - 2,4,6,8 Zmn kolejnoc porównywnych kryterów jest ocenn jko odwrotno przypsnej lczbowej wrtoc w przypdku zgodnej kolejnoc, tzn. j j Oto prosty przykłd wypełnen mcerzy przystych porówn (mcerz dwuwymrowych porówn) dl kryterów X,Y,Z IRR c) 0.5 Termn Termn Termn
3 X jest newele slnejsze n Y, s prwe tke sme Y jest newele slnejsze n Z, s prwe tke sme X jest sporo slnejsze n Z X Y Z X 3 7 Y /3 3 Z /7 /3 Tbel. Sposób wypełnn mcerzy przystych porówn 2.4 efncj współczynnków wzjemnej wnoc pojedynczych kryterów. l okrelen współczynnk wzjemnej wnoc proponuje s wykorzyst dobrze znn metod T. Stty ego. Przyjmjmy, e >,,..., jko cłkowty zkres kryterów. Rozwmy mcerz wzjemnych porówn A { / j }. Jest oczywstym, jel pomnoymy mcerz A od prwej strony przez wektor o neznnych prmetrch, W (, 2,..., ) otrzymmy AAW. W ten sposób, jel mcerz A jest znn znlezene ktegor W bdze ogrncz s do rozwzn równ lgebrcznych. W prktyce jednk elementy mcerzy bd podwójnym zmennym wzjemnej wnoc kryterów ustlonych jko bz subektywnych preferencj tj. ne precyzyjnych. ltego T. Stty proponuje rozwzne równn AW λw, gdze λ jest mksymln wrtoc włsn mcerzy A. Obecne dowodz s, e zdefnowne wektor W moe ogrncz s do problemu mnmlzcj funkcj: S j ( A j j z ogrnczenem ; ) 2 mn; Problem wyznczen współczynnków zostł rozstrzygnty z pomoc stndrdowej metody Lgrnge. Metod Stty ego oprt jest przede wszystkm n prmetrch jkocowych. W przypdku prmetru locowego, powoływny jest ekspert, który werblne ocen dny prmetr według 9 stopnowej skl. W tym momence nstpuje strt nformcj poprzez ne zwsze trfn ocen. W nszej metodze ne dopuszczmy do strty cennych nformcj. Zmenmy prmetr (nformcj) locowy n zbór rozmyty, budujemy funkcj przynlenoc, któr dlej wykorzystujemy Budow ogólnego kryterum uogólnjcego jko projektów nwestycyjnych. Problem welokryterlnoc moe by pokonny przez wprowdzne ogólnego kryterum, które bdze zwerło wszystke ndywdulne kryter wrz z współczynnkm ch wzgldnej wnoc. ech {x }, dl,, bd locowym jkocowym prmetrm projektu. ech m (x ), m 2 (x 2 ),,m n (x n ), bd funkcjm przynlenoc szczegółowych kryterów jkoc projektu n dnym pozome. ech, 2,, n bd współczynnkm wzgldnej wnoc szczegółowych kryterów (rng kryterów). Wsknk te wylczone s n podstwe ocen ekspertów zwrtych w mcerzy przystych porówn ( w mcerzy dwuwymrowych porówn). A oto główne sposoby (typy) uogólnen nerównownych szczegółowych kryterów w budowe globlnego kryterum oceny projektu:.kryterum mksymlnego pesymzmu µ mn x, µ x µ 3 ( ( ) ( ) ( x ) 3 3,... ) 2.Kryterum multplktywne 2 3.Kryterum ddytywne 3 µ ( ) x * µ ( x ) W wynku otrzymujemy wrtoc kryterów zwerjce s w przedzle <0,> 0, 2, Kreowne systemu welopozomowego porednch kryterów jkoc. Oprcown metod pozwl w sposób nturlny budow struktury weloszczeblowe herrchczne, których schemt jest pokzny ponej. Kde kryterum wyszego rzdu buduje s n podstwe kryterów szczegółowych rzdu nszego z pomoc jednego ze sposobów ch gregown.
4 Ogólne wyrene mtemtyczne do wylczen kryterów n pozomch porednch herrch jest gdze przedstwone ponej. (,...,, α α ) n, f,..., n n, n n, n, n 2, n,m n n, 2 n, n f jest opertorem gregown n, n kryterów. Jk to wynk ze sposobu budown, n, przyjmuj wrtoc zwsze mdzy 0 n mog by nterpretowne jko wrtoc nektórych porednch kryterów szczegółowych., n, n,...,, k f 2 2, n, n 2,..., 2, n, m n njnszym pozome herrch wykorzystne s bezporedne funkcje przynlenoc (uytecznoc) perwotnych kryterów szczegółowych okrelnych przez bzowe prmetry jkoc., k ({ µ }, { α } ) j k j k n n, n, 2 n, n n,m n n 2, n, n 2, n, 2 n 2,n, n 2 n 2,n, m n n 3, n, n 2, Schemt.Ogólny schemt budown struktury herrchcznej. 3. System plkcyjny do relzcj metody 3.. Przykłd oceny projektów nwestycyjnych. przedstwonych nej rysunkch przedstwmy rozwzne problemu wyboru njlepszego projektu medzy 4 dostpnym. Kdy z projektów jest okrelony 5 prmetrm o rónej skl n 3, n, n 2, m n,n 2 porównwczej: IRR, PV, Rentowno, Okres zwrotu, Ryzyko. Perwszym krokem jest okrelene typu funkcj punktów kluczowych tyche funkcj przynlenoc dl poszczególnych kryterów.(rys.)
5 Rys. Okrelene typów funkcj punktów kluczowych stpnym etpem jest okrelene współczynnków wzgldnej wnoc dl poszczególnych kryterów. Ekspert z dnej dzedzny n podstwe zebrnych dowdcze posdnej wedzy wypełn mcerz przystych porówn (Rys.2), progrm wylcz n jej podstwe współczynnk wzgldnej wnoc. Rys.2 Okrelene współczynnków wzgldnej wnoc dl poszczególnych kryterów Kolejnym krokem jest podne dnych o kdym prmetrze dl poszczególnych projektów, z poród których wyber bdzemy ten njlepszy. Moemy wprowdz dowoln lo rozptrywnych przypdków. odw
6 odejmow, lub modyfkow je co jest brdzo przydtne gdy zmenj s wrunk, w których je rozwmy. Osttn fz jest oblczene kryterów globlnych, porównne, których umolw wybór njlepszego z zdnych projektów. Rys.3 Oblczene kryterum globlnego Terz ne pozostje nm nc nnego jk wybr njlepszy projekt według uogólnonego kryterum porównwczego. Jk łtwo mon zuwy (Rys.3) njlepszy projekt z poród zdnych to projekt 3, który według dwóch kryterów: mksymlnego pesymzmu multplktywnego (osttne, kryterum ddytywne tke ne pozostje dleko w tyle) jest znczne lepszy od 3 pozostłych. sz system pozwl wylcz kryterum globlne tke w welopozomowej strukturze herrchcznej. estety przedstwene tkego przykłdu wymgłby wcej mejsc czsu. 4. Podsumowne. Prgnemy uwdom pstwu, e nsz metod stnow pewen etp rozwoju w dzedzne wspomgn decyzj. Pomg sprwne podj decyzje mmo tk welu problemów wystpujcych w trkce jej wyboru. Oprócz tego nstpnym etpem do rozwzn bdze wprowdzene do systemu rozmytych funkcj przynlenoc orz funkcje przynlenoc rozmytych rgumentów. odtkowy problem, jk s pojw to rozmyt mcerz przystych porówn wynkjc z molwoc formułown mcerzy przez grup ekspertów. Teoretyczne podstwy tych rozwz s ju oprcowne dzsj jestemy w trkce tworzen odpowednego oprogrmown.
Równania liniowe. gdzie. Automatyka i Robotyka Algebra -Wykład 8- dr Adam Ćmiel,
utomtyk Robotyk lgebr -Wykłd - dr dm Ćmel cmel@ghedupl Równn lnowe Nech V W będą przestrzenm lnowym nd tym smym cłem K T: V W przeksztłcenem lnowym Rozwżmy równne lnowe T(v)w Powyższe równne nzywmy równnem
Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,
Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,
ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GRANULOMETRYCZNEJ SUROWCÓW I PRODUKTÓW
1 ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GANULOMETYCZNEJ SUOWCÓW I PODUKTÓW 1. Cel zkres ćwczen Celem ćwczen jest opnowne przez studentów metody oceny mterłu sypkego pod względem loścowej zwrtośc frkcj
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Poltechnk Gdńsk Wydzł Elektrotechnk Automtyk Ktedr Inżyner Systemów Sterown Teor sterown Podstwy lgebry mcerzy Mterły pomocncze do ćwczeń lbortoryjnych 1 Część 3 Oprcowne: Kzmerz Duznkewcz, dr hb. nż.
DOBÓR LINIOWO-ŁAMANEGO ROZDZIAŁU SIŁ HAMUJĄCYCH W SAMOCHODACH DOSTAWCZYCH
Zgnew Kmńsk DOBÓ INIOWO-ŁMNEO OZDZIŁU SIŁ HMUJĄCYCH W SMOCHODCH DOSTWCZYCH Streszczene. W rtykule opsno sposoy dooru lnowo-łmnego rozdzłu sł mującyc w smocodc dostwczyc według wymgń egulmnu 3 ECE. Przedstwono
MODELE TEORII GIER. Modelowanie matematyczne. dr inż. Zbigniew Tarapata Wykład nr 5: Modele teorii gier
MODELE TEORII GIER Podejmowne decyzj nwestycyjnych często jest dokonywne w sytucjch, w których ne wdomo, jk będze stn otoczen lub też, jką decyzję podejmą nn decydenc, mjący wpływ n wynk decyzj przez ns
EKONOMIA MENEDŻERSKA. Wykład 2 Analiza popytu. Optymalna polityka cenowa. 1 ANALIZA POPYTU. OPTYMALNA POLITYKA CENOWA.
Wykłd Anlz popytu. Optymln poltyk cenow. 1 ANALIZA OYTU. OTYMALNA OLITYKA CENOWA. rzedmotem wykłdu jest prolem zrządzn zyskem poprzez oprcowne wdrożene odpowednej strteg różncown cen, wykorzystując do
STYLE. TWORZENIE SPISÓW TREŚCI
STYLE. TWORZENIE SPISÓW TREŚCI Ćwiczenie 1 Tworzenie nowego stylu n bzie istniejącego 1. Formtujemy jeden kpit tekstu i zznczmy go (stnowi on wzorzec). 2. Wybiermy Nrzędzi główne, rozwijmy okno Style (lub
METODY KOMPUTEROWE 11
METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Mchł PŁOTKOWIAK Adm ŁOYGOWSKI Konsultcje nukowe dr nż. Wtold Kąkol Poznń / METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Metod wżonych rezduów jest slnym nrzędzem znjdown
OKRE LANIE OPTYMALNEGO UDZIAŁU POWIERZCHNI PRZEGRODY PRZEZROCZYSTEJ W CAŁKOWITEJ POWIERZCHNI PRZEGRODY BUDOWLANEJ
OKRELNIE OPTYMLNEGO UDZIŁU POWIERZCHNI PRZEGRODY PRZEZROCZYSTEJ W CŁKOWITEJ POWIERZCHNI PRZEGRODY BUDOWLNEJ M. Pomorsk 1, S. Petrowcz 1 1. Zkłd Termodynmk, Instytut Technk Ceplnej Mechnk Płynów, Wydzł
O pewnych zgadnieniach optymalizacyjnych O pewnych zgadnieniach optymalizacyjnych
Spis tresci 1 Spis tresci 1 W wielu zgdnienich prktycznych brdzo wżne jest znjdownie optymlnego (czyli njlepszego z jkiegoś punktu widzeni) rozwiązni dnego problemu. Dl przykłdu, gdybyśmy chcieli podróżowć
INSTRUKCJA. - Jak rozwiązywać zadania wysoko punktowane?
INSTRUKCJA - Jk rozwiązywć zdni wysoko punktowne? Mturzysto! Zdni wysoko punktowne to tkie, z które możesz zdobyć 4 lub więcej punktów. Zdni z dużą ilość punktów nie zwsze są trudniejsze, często ich punktcj
Proces decyzyjny: 1. Sformułuj jasno problem decyzyjny. 2. Wylicz wszystkie możliwe decyzje. 3. Zidentyfikuj wszystkie możliwe stany natury.
Proces decyzyny: 1. Sformułu sno problem decyzyny. 2. Wylcz wszyste możlwe decyze. 3. Zdentyfu wszyste możlwe stny ntury. 4. Oreśl wypłtę dl wszystch możlwych sytuc, ( tzn. ombnc decyz / stn ntury ). 5.
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 9. ZBIORY ROZMYTE Częstochow 204 Dr hb. inż. Grzegorz Dudek Wydził Elektryczny Politechnik Częstochowsk ZBIORY ROZMYTE Klsyczne pojęcie zbioru związne jest z logiką dwuwrtościową
Metoda prądów obwodowych
Metod prądów owodowyh Zmenmy wszystke rzezywste źródł prądowe n npęowe, Tworzymy kłd równń lnowyh opsjąyh poszzególne owody. Dowolną seć lnową skłdjąą sę z elementów skponyh możn opsć z pomoą kłd równń
Redukcja układów sił działających na bryły sztywne
1 Redukcj ukłdów sił dziłjących n bryły sztywne W zdnich tego rozdziłu wykorzystuje się zsdy redukcji ukłdów sił wykłdne w rmch mechniki ogólnej i powtórzone w tomie 1 podręcznik. Zdnie 1 Zredukowć ukłd
MXZ INVERTER SERIA. Jedna jednostka zewnętrzna może obsługiwać do 8 pomieszczeń. Ograniczenie poboru prądu. Efektywność energetyczna: klasa A
INVERTER SERIA MXZ Typoszereg MXZ gwrntuje cicy, wysokowydjny i elstyczny system, spełnijący wszystkie wymgni w zkresie klimtyzcji powietrz. 6 MXZ-2C30VA MXZ-2C40VA MXZ-2C52VA MXZ-3C54VA MXZ-3C68VA MXZ-4C71VA
ZASTOSOWANIE RÓWNANIA NASGRO DO OPISU KRZYWYCH PROPAGACYJI PĘKNIĘĆ ZMĘCZENIOWYCH
Sylwester KŁYSZ *, **, nn BIEŃ **, Pweł SZBRCKI ** ** Instytut Techniczny ojsk Lotniczych, rszw * Uniwersytet rmińsko-mzurski, Olsztyn ZSTOSONIE RÓNNI NSGRO DO OPISU KRZYYCH PROPGCYJI PĘKNIĘĆ ZMĘCZENIOYCH
ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE. Fuzja danych nawigacyjnych w przestrzeni filtru Kalmana
ISSN 733-867 ZESZ NAUKOWE NR (83) AKADEMII MORSKIEJ W SZCZECINIE IV MIĘDZNARODOWA KONFERENCJA NAUKOWO-ECHNICZNA E X L O - S H I 6 Andrzej Stteczny, Andrzej Lsj, Chfn Mohmmd Fzj dnych nwgcyjnych w przestrzen
Sformułowanie zagadnienia. c c. Analiza zagadnienia dla przypadku m = 4 i n = 3. B 2. c A. c A
ZGDNIENIE TRNSPORTOWE Sformułowne zgdnen Przypuśćmy, że z m punktów odprwy,, K, m m być wysłny w lośh,, K, m ednorodny produkt do n punktów przyęć,, K, n. odboru przymuą produkt w lośh b, b, K, bn. Kżdy
Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych
Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni
Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)
Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu
Wyrównanie sieci niwelacyjnej
1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre
MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH
MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH oprcowne n podstwie przedmiotowego systemu ocenini NOWEJ ERY
Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule
Fizyk Kurs przygotowwczy n studi inżynierskie mgr Kmil Hule Dzień 3 Lbortorium Pomir dlczego mierzymy? Pomir jest nieodłączną częścią nuki. Stopień znjomości rzeczy często wiąże się ze sposobem ich pomiru.
system identyfikacji wizualnej forma podstawowa karta A03 część A znak marki
krt A03 część A znk mrki form podstwow Znk mrki Portu Lotniczego Olsztyn-Mzury stnowi połączenie znku grficznego (tzw. logo) z zpisem grficznym (tzw. logotypem). Służy do projektowni elementów symboliki
Wykªad 1. Macierze i wyznaczniki Macierze podstawowe okre±lenia
Wykªd 1 Mcierze i wyznczniki 11 Mcierze podstwowe okre±leni Denicj 1 Mcierz (rzeczywist ) wymiru m n, gdzie m, n N, nzywmy prostok tn tblic zªo»on z m n liczb rzeczywistych ustwionych w m wierszch i n
Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE
Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych
CHARAKTERYSTYKA I MOŻLIWOŚCI STOSOWANIA WIELOKRYTERIALNEJ METODY ANALIZY HIERARCHICZNEJ PROBLEMU
FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Fol Unv. Agrc. Stetn. 2007, Oeconomc 258 (49), 67 78 Andrzej JUREK CHARAKTERYSTYKA I MOŻLIWOŚCI STOSOWANIA WIELOKRYTERIALNEJ METODY ANALIZY HIERARCHICZNEJ PROBLEMU
Zadanie optymalnej mieszanki - maksymalizacja ilości mieszanki wykonanej z dostępnych komponentów
P. Kowlk, Lbortorum bdń opercyjnych: moduł - zdne optymlnej mesznk - mksymlzcj lośc mesznk Zdne optymlnej mesznk - mksymlzcj lośc mesznk wykonnej z dostępnych komponentów JeĀel wszystke komponenty dostępne
Temat lekcji Zakres treści Osiągnięcia ucznia
ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:
Rozwiązania maj 2017r. Zadania zamknięte
Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1
Wykład 6 Dyfrakcja Fresnela i Fraunhofera
Wykłd 6 Dyfrkcj Fresnel i Frunhofer Zjwisko dyfrkcji (ugięci) świtł odkrył Grimldi (XVII w). Poleg ono n uginniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny). Wyjśnienie
Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02
Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie
Wprowadzenie: Do czego służą wektory?
Wprowdzenie: Do czego służą wektory? Mp połączeń smolotowych Isiget pokzuje skąd smoloty wyltują i dokąd doltują; pokzne jest to z pomocą strzłek strzłki te pokzują przemieszczenie: skąd dokąd jest dny
OPTYMALIZACJA INFORMACJI NAWIGACYJNYCH W SYSTEMACH MAP ELEKTRONICZNYCH
PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 70 Trnsport 2009 Mciej GUCMA, Zbigniew PIETRZYKOWSKI Akdemi Morsk w Szczecinie Wły Chrobrego ½ 70-500 Szczecin m.gucm@m.szczecin.pl z.pietrzykowski@m.szczecin.pl
Wyk lad 1 Podstawowe wiadomości o macierzach
Wyk ld 1 Podstwowe widomości o mcierzch Oznczeni: N {1 2 3 } - zbiór liczb nturlnych N 0 {0 1 2 } R - ci lo liczb rzeczywistych n i 1 + 2 + + n i1 1 Określenie mcierzy Niech m i n bed dowolnymi liczbmi
Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1
Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem
Metalohalogenkowe lampy wysokoprężne do ogólnego oświetlenia zewnętrznego i wewnętrznego. a i
Group Metlohlogenkowe lmpy wysokoprężne do ogólnego ośwetlen zewnętrznego wewnętrznego Hgh pressure metl-hlde lmps for generl ndoor nd outdoor lghtng t s m o g e k l e w ³ t Œw NATRIUM Sp. z o.o. ul. Grodzsk
MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej
Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe
LABORATORIUM METROLOGII TECHNIKA POMIARÓW (M-1)
LABORATORIUM METROLOGII TECHNIKA POMIARÓW (M-) wwwmuepolslpl/~wwwzmape Opracował: Dr n Jan Około-Kułak Sprawdzł: Dr hab n Janusz Kotowcz Zatwerdzł: Dr hab n Janusz Kotowcz Cel wczena Celem wczena jest
MATEMATYKA Wykład 4 (Funkcje) przyporządkowany został dokładnie jeden element
MATEMATYKA Wykłd 4 (Funkcje) Pisząc f : (,b) R rozumiemy Ŝe kŝdemu (, b) przyporządkowny zostł dokłdnie jeden element y R. Wykresem funkcji nzywmy zbiór pr (,f()) n płszczyźnie skłdjącej się ze wszystkich
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka. Poziom rozszerzony. Listopad Wskazówki do rozwiązania zadania
Vdemecum i Testy GIELDAMATURALNA.PL ODBIERZ KOD DOSTĘPU* - Twój indywidulny klucz do wiedzy! *Kod n końcu klucz odpowiedzi Mtemtyk KRYTERIA OCENIANIA ODPOWIEDZI Próbn Mtur z OPERONEM Mtemtyk Poziom rozszerzony
Obliczanie caªek. Kwadratury
Rozdziª 6 Oblicznie cªek. Kwdrtury W tym rozdzile zjmiemy si zdniem obliczeni przybli»onego cªek postci: dl funkcji f, czy ogólniej: dl ρ dnej wgi. f(t) dt, f(t)ρ(t) dt, 6.1 Funkcj octve' qud() Do obliczni
WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ
Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i
Wymagania kl. 2. Uczeń:
Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej
Kombinowanie o nieskończoności. 4. Jak zmierzyć?
Kombinownie o nieskończoności.. Jk zmierzyć? Projekt Mtemtyk dl ciekwych świt spisł: Michł Korch 9 kwietni 08 Trochę rzeczy z wykłdu Prezentcj multimediln do wykłdu. Nieskończone sumy Będzie nm się zdrzć
PEWNIK DEDEKINDA i jego najprostsze konsekwencje
PEWNIK DEDEKINDA i jego njprostsze konsekwencje W rozdzile ósmym stwierdziliśmy, że z podnych tm pewników nie wynik istnienie pierwistków z liczb rzeczywistych. Uzupe lnimy terz liste pewników jeszcze
Równania i nierówności kwadratowe z jedną niewiadomą
50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej
Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna
lger Bool i podstwy systemów liczowych. Ćwiczeni z Teorii Ukłdów Logicznych, dr inż. Ernest Jmro. System dwójkowy reprezentcj inrn Ukłdy logiczne operują tylko n dwóch stnch ozncznymi jko zero (stn npięci
Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK
I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II TAK 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie
2. FUNKCJE WYMIERNE Poziom (K) lub (P)
Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy
Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne
Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych
Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające
Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci
Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO
I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II LO 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie
Maciej Grzesiak. Iloczyn skalarny. 1. Iloczyn skalarny wektorów na płaszczyźnie i w przestrzeni. a b = a b cos ϕ. j) (b x. i + b y
Mciej Grzesik Iloczyn sklrny. Iloczyn sklrny wektorów n płszczyźnie i w przestrzeni Iloczyn sklrny wektorów i b określmy jko b = b cos ϕ. Bezpośrednio z definicji iloczynu sklrnego mmy, że i i = j j =
Raport Przeliczenie punktów osnowy wysokościowej III, IV i V klasy z układu Kronsztadt60 do układu Kronsztadt86 na obszarze powiatu krakowskiego
Rport Przelczene punktów osnowy wysokoścowej III, IV V klsy z ukłdu Kronsztdt60 do ukłdu Kronsztdt86 n oszrze powtu krkowskego Wykonł: dr h. nż. Potr Bnsk dr nż. Jcek Kudrys dr nż. Mrcn Lgs dr nż. Bogdn
Podstawy układów logicznych
Podstwy ukłdów logicznych Prw logiki /9 Alger Boole Prw logiki WyrŜeni i funkcje logiczne Brmki logiczne Alger Boole /9 Alger Boole' Powszechnie stosowne ukłdy cyfrowe (logiczne) prcują w oprciu o tzw.
NOWE NIŻSZE CENY. Ceny spiral introligatorskich DOUBLE-LOOP WIRE. www.radpor.pl
Rok złożeni 1994 Nowodworsk 32, 21-100 Lubrtów tel./fks 81-855-6154, RADPOR 81-854-2860 Nowodworsk 32, 21-100 Lubrtów tel./fks 81-855-6154, 81-854-2860 www.rdpor.pl Ceny spirl introligtorskic DOUBLE-LOOP
N(0, 1) ) = φ( 0, 3) = 1 φ(0, 3) = 1 0, 6179 = 0, 3821 < t α 1 e t dt α > 0. f g = fg. f = e t f = e t. U nas: g = t α 1 g = (α 1)t α 2
Zdnie X,..., X 5 N(6, 5 ) Y,..., Y 6 N(7, 5 ) X N(6, 5 6 ) Ȳ N(7, 5 6 ) Przy złożeniu niezleżności zmiennych mmy: X Ȳ N(, ) po stndryzcji otrzymmy: Ȳ X N(, ) Pr(Ȳ X < ) = Pr(Ȳ X < ) = φ(, 3) = φ(, 3) =,
Kodowanie liczb. Kodowanie stałopozycyjne liczb całkowitych. Niech liczba całkowita a ma w systemie dwójkowym postać: Kod prosty
Kodownie licz Kodownie stłopozycyjne licz cłkowitych Niech licz cłkowit m w systemie dwójkowym postć: nn 0 Wtedy może yć on przedstwion w postci ( n+)-itowej przy pomocy trzech niżej zdefiniownych kodów
12. Zadanie optymalnej mieszanki - maksymalizacja ilości mieszanki wykonanej z dostępnych komponentów
P. Kowlk, Lbortorum bdń opercyjnych: zdne optymlnej mesznk - mksymlzcj lośc mesznk. Zdne optymlnej mesznk - mksymlzcj lośc mesznk wykonnej z dostępnych komponentów Jeżel wszystke komponenty dostępne są
Niewymierność i przestępność Materiały do warsztatów na WWW6
Niewymierność i przestępność Mteriły do wrszttów n WWW6 Piotr Achinger 23 sierpni 2010 1 Wstęp 1.1 Liczby wymierne i niewymierne Pytnie 1. Czy istnieją liczby niewymierne? Zdnie 1. Wykzć, że 1. 2 / Q,
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka. Poziom rozszerzony. Listopad Wskazówki do rozwiązania zadania
Vdemecum i Testy GIELDAMATURALNA.PL ODBIERZ KOD DOSTĘPU* - Twój indywidulny klucz do wiedzy! *Kod n końcu klucz odpowiedzi Mtemtyk KRYTERIA OCENIANIA ODPOWIEDZI Próbn Mtur z OPERONEM Mtemtyk Poziom rozszerzony
Analiza wariancji klasyfikacja prosta
Anlz wrnc Oprcowno n podstwe: Łomnck A. 003. Wprowdzene do sttystyk dl przyrodnków. PW Wrszw. Anlz wrnc klsyfkc prost Dne o przeżywlnośc chrząszczy hodownych hodowlnych n czterech różnych pożywkch. Kżd
Matematyka stosowana i metody numeryczne
Ew Pbisek Adm Wostko Piotr Pluciński Mtemtyk stosown i metody numeryczne Konspekt z wykłdu 0 Cłkownie numeryczne Wzory cłkowni numerycznego pozwlją n obliczenie przybliżonej wrtości cłki: I(f) = f(x) dx
< f g = fg. f = e t f = e t. U nas: e t (α 1)t α 2 dt = 0 + (α 1)Γ(α 1)
Zdnie X,..., X 5 N(6, 5 ) Y,..., Y 6 N(7, 5 ) X N(6, 5 6 ) Ȳ N(7, 5 6 ) Przy złożeniu niezleżności zmiennych mmy: X Ȳ N(, ) po stndryzcji otrzymmy: Ȳ X N(, ) Pr(Ȳ X < ) = Pr(Ȳ X < ) = φ(, 3) = φ(, 3) =,
KOMPENDIUM MATURZYSTY Matematyka poziom podstawowy
KOMPENDIUM MATURZYSTY Mtemtyk poziom podstwowy Publikcj dystrybuown bezpłtnie Dostępn n stronie: Kompendium do pobrni n stronie: SPIS TREŚCI. Potęgi i pierwistki... W tym:. Wykorzystnie wzorów;. Przeksztłcnie
WENTYLACJA PRZESTRZENI POTENCJALNIE ZAGROŻONYCH WYBUCHEM MIESZANIN GAZOWYCH
Ochron przeciwwybuchow Michł Świerżewski WENTYLACJA PRZESTRZENI POTENCJALNIE ZAGROŻONYCH WYBUCHEM MIESZANIN GAZOWYCH 1. Widomości ogólne Zgodnie z postnowienimi rozporządzeni Ministr Sprw Wewnętrznych
Księga Identyfikacji Wizualnej. Polskie Sieci Elektroenergetyczne S.A.
Księg Identyfikcji Wizulnej Polskie Sieci Elektroenergetyczne S.A. 1. Elementy bzowe 1.1. KONSTRUKCJA OPIS ZNAKU PSE 3 1.2. WERSJA PODSTAWOWA ZNAKU 4 1.3. WERSJE UZUPEŁNIAJĄCE 5 1.4. OPIS KOLORYSTYKI ZNAKU
Matematyka wykaz umiejętności wymaganych na poszczególne oceny KLASA II
1.Sumy lgebriczne Mtemtyk wykz umiejętności wymgnych n poszczególne oceny KLASA II N ocenę dop: 1. Rozpoznwnie jednominów i sum lgebricznych 2. Oblicznie wrtości liczbowych wyrżeń lgebricznych 3. Redukownie
Algorytmy graficzne. Filtry wektorowe. Filtracja obrazów kolorowych
Algorytmy grficzne Filtry wektorowe. Filtrcj orzów kolorowych Filtrcj orzów kolorowych Metody filtrcji orzów kolorowych możn podzielić n dwie podstwowe klsy: Metody komponentowe (component-wise). Cechą
Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy
Szczegółowe wymgni edukcyjne z mtemtyki, kls 2C, poziom podstwowy Wymgni konieczne () dotyczą zgdnieo elementrnych, stnowiących swego rodzju podstwę, ztem powinny byd opnowne przez kżdego uczni. Wymgni
( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu.
Elementy rchunku prwdopodoeństw f 0 f() - gęstość rozkłdu prwdopodoeństw X f d P< < = f( d ) F = f( tdt ) - dystryunt rozkłdu E( X) = tf( t) dt - wrtość średn D ( X) = E( X ) E( X) - wrncj = f () F ()
ZASTOSOWANIE ANALIZY REGRESJI W OCENIE KONKURENCYJNOŚCI WYBRANYCH BANKÓW KOMERCYJNYCH W POLSCE W LATACH
Zeszyty Nukowe WSInf Vol 5, Nr 1, 2006 Ktrzyn Posck 1, Ann Szelągowsk 2 1 Poltechnk Rdomsk, Ktedr Mtemtyk 2 Poltechnk Rdomsk, Ktedr Poltyk Ekonomcznej Bnkowośc ZASTOSOWANIE ANALIZY REGRESJI W OCENIE KONKURENCYJNOŚCI
MATURA 2014 z WSiP. Zasady oceniania zadań
MATURA z WSiP Mtemtyk Poziom podstwowy Zsdy ocenini zdń Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o., Wrszw Krtotek testu Numer zdni 6 7 8 9 6 7 8 9 Uczeń: Sprwdzn umiejętność (z numerem stndrdu)
4. RACHUNEK WEKTOROWY
4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt
Zawór regulacyjny ZK210 z wielostopniową dyszą promieniową
Zwór regulcyjny z wielostopniową dyszą promieniową Zwór regulcyjny Opis Zwór regulcyjny służący do prcy przy wysokich ciśnienich różnicowych. Stosowny jest między innymi, w instlcjch przemysłowych i elektrownich,
Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy
Dorot Ponczek, rolin Wej MATeMAtyk Pln wynikowy Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące
PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych
PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f
Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH
Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.
Układ elektrohydrauliczny do badania siłowników teleskopowych i tłokowych
TDUSZ KRT TOMSZ PRZKŁD Ukłd elektrohydruliczny do bdni siłowników teleskopowych i tłokowych Wprowdzenie Polsk Norm PN-72/M-73202 Npędy i sterowni hydruliczne. Cylindry hydruliczne. Ogólne wymgni i bdni
Modelowanie 3 D na podstawie fotografii amatorskich
Edwrd Nowk 1, Jonn Nowk Modelownie D n podstwie fotogrfii mtorskich 1. pecyfik fotogrmetrycznego oprcowni zdjęć mtorskich wynik z fktu, że n ogół dysponujemy smymi zdjęcimi - nierzdko są to zdjęci wykonne
PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6,
Zdnie PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD 04 Zbiorem wszystkich rozwiązń nierówności x 6 6 jest: A, 4 0, B 4,0 C,0 4, D 0,4 Odpowiedź: C Rozwiąznie Sposób I Nierówność A 6 jest równowżn lterntywie
DZIAŁ 2. Figury geometryczne
1 kl. 6, Scenriusz lekcji Pole powierzchni bryły DZAŁ 2. Figury geometryczne Temt w podręczniku: Pole powierzchni bryły Temt jest przeznczony do relizcji podczs 2 godzin lekcyjnych. Zostł zplnowny jko
( ) Lista 2 / Granica i ciągłość funkcji ( z przykładowymi rozwiązaniami)
List / Grnic i ciągłość funkcji ( z przykłdowymi rozwiąznimi) Korzystjąc z definicji grnicy (ciągowej) funkcji uzsdnić podne równości: sin ) ( + ) ; b) ; c) + 5 Obliczyć grnice funkcji przy orz : + ) f
PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKÓW OBCYCH w Gimnazjum nr 2 im. ks. Stanisława Konarskiego nr 2 w Łukowie
I. ZASADY OGÓLNE PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKÓW OBCYCH w Gimnzjum nr 2 im. ks. Stnisłw Konrskiego nr 2 w Łukowie 1. W Gimnzjum nr 2 w Łukowie nuczne są: język ngielski - etp educyjny III.1 język
Uszczelnienie przepływowe w maszyn przepływowych oraz sposób diagnozowania uszczelnienia przepływowego zwłaszcza w maszyn przepływowych
Uszczelnienie przepływowe w mszyn przepływowych orz sposób dignozowni uszczelnieni przepływowego zwłszcz w mszyn przepływowych Przedmiotem wynlzku jest uszczelnienie przepływowe mszyn przepływowych orz
KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań
KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni
5.4.1. Ruch unoszenia, względny i bezwzględny
5.4.1. Ruch unozeni, zględny i bezzględny Przy ominiu ruchu punktu lub bryły zkłdliśmy, że punkt lub brył poruzły ię zględem ukłdu odnieieni x, y, z użnego z nieruchomy. Możn rozptrzyć tki z przypdek,
Legenda. Optymalizacja wielopoziomowa Inne typy bramek logicznych System funkcjonalnie pełny
Dr Glin Criow Legend Optymlizcj wielopoziomow Inne typy brmek logicznych System funkcjonlnie pełny Optymlizcj ukłdów wielopoziomowych Ukłdy wielopoziomowe ukłdy zwierjące więcej niż dw poziomy logiczne.
2. Funktory TTL cz.2
2. Funktory TTL z.2 1.2 Funktory z otwrtym kolektorem (O.. open olletor) ysunek poniżej przedstwi odnośny frgment płyty zołowej modelu. Shemt wewnętrzny pojedynzej rmki NAND z otwrtym kolektorem (O..)
Metody Lagrange a i Hamiltona w Mechanice
Metody Lgrnge i Hmilton w Mechnice Mriusz Przybycień Wydził Fizyki i Informtyki Stosownej Akdemi Górniczo-Hutnicz Wykłd 3 M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 1 / 15 Przestrzeń
Pierwiastek z liczby zespolonej
Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć
System identyfikacji Doradców Podatkowych
System identyfikcji Dordców Podtkowych Spis treści Spis treści Stron 2. Podstwow wersj logo Krjowej Izby Dordców Podtkowych Stron 3. Kolory podstwowe Stron 4. Wersje negtywowe Stron 5. Wymirownie i pole
Funkcje i charakterystyki zmiennych losowych
Funkcje charakterystyk zmennych losowych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Funkcje zmennych losowych
Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa
Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut
Macierz. Wyznacznik macierzy. Układ równań liniowych
Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: żółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk Zgdnieni. Pojęci. Dziłni n mcierzch.
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony
Wymgni edukcyjne n poszczególne oceny z mtemtyki w klsie II poziom rozszerzony N ocenę dopuszczjącą, uczeń: rysuje wykres funkcji f ( x) x i podje jej włsności; sprwdz lgebricznie, czy dny punkt nleży