Zadanie optymalnej mieszanki - maksymalizacja ilości mieszanki wykonanej z dostępnych komponentów
|
|
- Witold Kurek
- 7 lat temu
- Przeglądów:
Transkrypt
1 P. Kowlk, Lbortorum bdń opercyjnych: moduł - zdne optymlnej mesznk - mksymlzcj lośc mesznk Zdne optymlnej mesznk - mksymlzcj lośc mesznk wykonnej z dostępnych komponentów JeĀel wszystke komponenty dostępne są w ogrnczonych loścch, zdne optymlnej mesznk z normm zwrtośc skłdnków zwrtych w mesznce wyrāonym w wrtoścch względnych, (w loścch, które muszą być zwrte w jednej jednostce mesznk w szczególnośc w procentch moāe meć wrnt gdze celem optymlzcj jest mksymlzcj łącznej lośc mesznk. NleĀy zplnowć, które komponenty w jkch loścch nleāy zkupć, by zmksymlzowć łączną lość mesznk tych komponentów (dostępnych w ogrnczonych loścch, zpewnjąc przy tym, Āe zwrtośc skłdnków w mesznce będą tke jk przewdują wymgn (dolne lub górne normy wyrāone jko lośc skłdnków przypdjące n jedną jednostkę mesznk. Prmetry modelu to j - zwrtość -tego skłdnk n jednostkę j-tego komponentu (moāe być wyrāon procentowo (=,...,m; j =,...,n jeāel jest wyrāon w %, to lośc procentowe są lczbowo równe lośc dg skłdnk n kg komponentu (dg/kg lbo centyltrów skłdnk n ltr komponentu (cl/l, cl centyltr=0,0 ltr, oczywśce pod wrunkem, Āe jednostkm, w których merzone są komponenty, są odpowedno klogrmy/ltry b / d - mnmlne/mksymlne dopuszczlne zwrtośc -tego skłdnk w mesznce (=,...,m. JeĀel są one wyrāone w procentch, to są one lczbowo równe wymgnej lczbe dg czy cl przypdjącej n kg/ltr mesznk.. Uwg! Wrtośc te w wrunkch ogrnczjących są pomnoāone przez sumę zmennych (łączną lość komponentów. k - dostępn lość j-tego komponentu (j =,...,n, wyrāon w tkch jednostkch jk zmenne (kg, t, l, tp.. j Opcjonlne prmetry (neuāywne przy optymlzcj c j cen jednostkow dl j-tego komponentu (j =,...,n, lczon np. w PLN/l, PLN/kg, PLN/m, PLN/t tp. zmst PLN moāe być oczywśce dowoln nn wlut, le dl wszystkch komponentów jednkow. Zmennym decyzyjnym są lośc komponentów j - lość j-tego komponentu merzon np. w kg Model mtemtyczny zdn to: n m (łączn lość mesznk przy ogrnczench rzeczywste zwrt. skłdn. mnmlne wymgne zwrt. skłdn. (w jednostkch msy (w jednostkch msy n n b ( n m + m mn n bm ( n rzeczywste zwrt. skłdn. mksymlne wymgne zwrt. skłdn. (w jednostkch msy (w jednostkch msy n n d( n m + m mnn dm( n k, k,..., n kn lośc komponentów ne mogą być wększe od mksymlnych dostępnych lośc. 0, 0,..., n 0 lośc komponentów ne mogą być ujemne. Uwg. JeĀel doln norm zwrtośc skłdnk b (wyrāon w % ne jest zdefnown, nleāy przyjąć b = 0 (0%. Anlogczne, jeāel górn norm zwrtośc skłdnk d (wyrāon w % ne jest zdefnown, nleāy przyjąć d = 00 (00 %.
2 P. Kowlk, Lbortorum bdń opercyjnych: moduł - zdne optymlnej mesznk - mksymlzcj lośc mesznk Zdne optymln mesznk (mksymlzcj lośc mesznk Z czterech rodzjów komponentów nleāy stworzyć mesznkę o zdnym skłdze procentowym trzech rodzjów skłdnków. Oblczyć, jką mksymlną lość mesznk moān stworzyć, jeāel dostępne lośc komponentów są ogrnczone. Rodzje komponentów K K K K Zwrtośc % skłdnków w poszczególnych rodzjch Skłdnk komponentów Mn. zwrtośc % skłdn. Mks. zwrtośc % skłdn. S 0 S S Dostępne lośc komponentów (t Model mtemtyczny do zdn optymlnej mesznk (mksymlzcj lośc mesznk wykonnej z dostępnych komponentów,,, - lośc poszczególnych komponentów w tonch m (funkcj celu łączn lość mesznk docelowej w tonch przy ogrnczench rzeczywste zwrt. skłdn w dzesątkch kg ( ( ( + rzeczywste zwrt. skłdn w dzesątkch kg mn. zwrt. skłdn. w dzesątkch kg mks. zwrt. skłdn. w dzesątkch kg ( ( ( + 0, 0, lośc komponentów ne mogą być ujemne 9, 67, 5, - lośc komponentów ne mogą być wększe nā lmty (dostępne lośc Perwszy z wrunków ogrnczjących rozpsny z jednostkm. JeĀel chodz o wrunk ogrnczjące zwązne z procentowym zwrtoścm skłdnków, to ch wrtośc lczbowe (zrówno prmetrów jk formuł odpowdją zwrtoścom lczonym w dekgrmch n klogrm (dg/kg lub centyltrch n ltr (cl/l. MoĀn jednk dokonć łtwego dopsown w sytucj, gdy jednostk mry, w której lczone są mesznk jest nn nā kg lub ltr. W przypdku ton prmetry odpowdjące procentowym zwrtoścom skłdnków są lczbowo równe dzesątkom klogrmów n tonę ponewā 0 kg jest to % z tony (000 kg. PonewĀ dl welokrotnośc 0000 (0 kg = 0000 g ne m specjlnego przedrostk, ztem w rozpsnu zostne uāyte w chrkterze jednostk 0 kg. Perwszy wrunek n lość skłdnk jest rozpsny ponāej: 0kgS 0kgS 0kgS 0kgS t K+ t K +, t K + 0 t K t K t K t K t K 0kgS 0kgS ( t K+ t K t K + t K = ( + t M t M t M Jk wdć, tony poszczególnych rodzjów komponentów po lewej strone nerównośc skrcją sę. Po prwej strone wrunku symbol t M ozncz tony mesznk docelowej. MoĀn dokonć skrócen ton mesznk docelowej z tonm poszczególnych komponentów, ponewā te osttne jednostk de fcto moān potrktowć jko tę smą jednostkę.
3 P. Kowlk, Lbortorum bdń opercyjnych: moduł - zdne optymlnej mesznk - mksymlzcj lośc mesznk Rozwązywne zdn Wprowdzne dnych do komórek rkusz UĀytkownk mus zdecydowć, które komórk rkusz będą pełnć rolę zmennych decyzyjnych ( ksów. W nnejszym zdnu komórkm pełnącym rolę zmennych decyzyjnych będą B, C, D czyl w skróce zkres (tblc B:D. Odpowedność pomędzy komórkm zmennym jest nstępując: B -, C -, D -, E - Funkcj celu to formuł odpowdjąc sume zwykłej +. Będze to =B+C+D+E lub =SUMA(B:E. Formuł t będze umeszczon w komórce F, le ponewā ne będze on kopown, ztem t loklzcj moāe być w zsdze dowoln Perwsz formuł, któr będze kopown to łączn zwrtość perwszego skłdnk w mesznce docelowej w tonch będze formuł =B*B+C*C+D*D+E*D Zstosujemy jednk prostszą we wprowdznu (zwłszcz, jeāel uāyty zostne kretor funkcj równowāną formułę =SUMA.ILOCZYNÓW(B:E;B:E. Formuł reprezentując w rkuszu funkcję celu zostne wykorzystn do stworzen, przy pomocy kopown, formuł reprezentujących lewe strony wrunków ogrnczjących W tym celu formuł t mus być wpsn do F w postc =SUMA.ILOCZYNÓW(B:E;B$:E$ Pondto, do I nleāy wprowdzć formułę będącą odpowednkem ( + czyl G*$F$. Po jej skopownu powstną formuły będące prwym stronm wrunków ogrnczjących n zwrtośc skłdnków.
4 P. Kowlk, Lbortorum bdń opercyjnych: moduł - zdne optymlnej mesznk - mksymlzcj lośc mesznk Informcj n temt formuł wprowdznych kopownych Zps mtemtyczny Formuły dosłowne tzn. tke, które nleāłoby wpsć przy lterlnym przełoāenu zpsu mtemtycznego n skłdnę Ecel + =B+C+D+E =B*B+C*C+D*D+E*E =B5*B+C5*C+D5*D+E5*E =B6*B+C6*C+D6*D+E6*E ( + =G*(B+C+D+E 5( + =G5*(B+C+D+E 9( + =G6*(B+C+D+E ( + =H*(B+C+D+E 55( + =H5*(B+C+D+E ( + =H6*(B+C+D+E Komórk F Formuły (wpsywne lub uzyskne przez kopowne odpowdjące formułom dosłownym =SUMA(B:E F =SUMA.ILOCZYNÓW(B:E;B$:E$ F5 =SUMA.ILOCZYNÓW(B5:E5;B$:E$ F6 =SUMA.ILOCZYNÓW(B6:E6;B$:E$ I I5 I6 J J5 J6 =G*$F$ =G5*$F$ =G6*$F$ =H*$F$ =H5*$F$ =H6*$F$ Uwg Wprowdzon przez uāytkownk Wprowdzon przez uāytkownk kopowne z F kopowne z F Wprowdzon przez uāytkownk kopowne z I kopowne z I kopowne z I kopowne z I kopowne z I Wdok po skopownu. Ten zrzut ekrnu ne lustruje Ādnych czynnośc, jedyne słuāy do kontrol poprwnośc wprowdzen dnych!!!
5 P. Kowlk, Lbortorum bdń opercyjnych: moduł - zdne optymlnej mesznk - mksymlzcj lośc mesznk 5 To smo co powyāej, le zmst wynków formuł (które to wynk n tym etpe są zerm są wyśwetlone sme formuły. Smo wstwne formuł kopowne odbyw sę nlogczne jk w zdnu optymlnej dety dltego teā zrzuty ekrnu lustrujące w/w czynnośc zostły pomnęte. Ustwen Solver NleĀy terz otworzyć okno (Ecel 00 strsze menu Nrzędz-Solver, Ecel 007 nowsze wstąāk Dne- Solver; nzewnctwo uāywne ponāej jest dostosowne do nterfejsu Solver do wersj Ecel do 007 włączne, nstępne zdeklrowć ustwen: B C D E (B:E,,, - lośc poszczególnych komponentów w tonch F + m (funkcj celu łączn lość mesznk docelowej w tonch przy ogrnczench rzeczywste zwrt. skłdn w dzesątkch kg mn. zwrt. skłdn. w dzesątkch kg F6 F7 F ( + I ( + I ( + I8 (F6:F8 rzeczywste zwrt. skłdn w dzesątkch kg F6 F7 F8 (F6:F8 (I6:I8 mks. zwrt. skłdn. w dzesątkch kg ( + J ( + J ( + J8 B C D E (B:E 0, 0, lośc komponentów ne mogą być ujemne B 9 B8 C 67 C8 D 5 D8 (J6:J8 E - E8 lośc komponentów ne mogą być wększe nā lmty (dostępne lośc (B:E (B8:E8 NleĀy terz otworzyć okno główne Solver (Ecel 00 strsze menu Nrzędz-Solver, Ecel 007 nowsze wstąāk Dne-Solver; nzewnctwo uāywne ponāej jest dostosowne do nterfejsu Solver do wersj Ecel do 007 włączne, nstępne zdeklrowć ustwen
6 P. Kowlk, Lbortorum bdń opercyjnych: moduł - zdne optymlnej mesznk - mksymlzcj lośc mesznk 6 Komórk celu: F Równ: Mn (funkcj celu jest mksymlzown jest to ustwene domyślne ne trzeb go zmenć Komórk zmenne: B:E Wrunk ogrnczjące: F6:F8>=I6:I8 F6:F8<=J6:J8 B:E>=0 B:E<= B8:E8 Uwg B:E>=0 jest skróconym zpsem dl B>=0, C>=0, D>=0, E>=0, (czyl 0, 0, 0, 0, B:E<= B8:E8 jest skróconym zpsem dl B<=B8, C<=C8, D<=B8, E<=E8 (czyl 9, 67, 5,. F6:F8>=I6:I8 jest skróconym zpsem dl F6>=I6, F7>=I7, F8>=I8 (wrunk zwązne z dolnym normm zwrtośc skłdnków mesznk. F6:F8<=J6:J8 jest skróconym zpsem dl F6<=J6, F7<=J7, F8<=J8 (wrunk zwązne z górnym normm zwrtośc skłdnków mesznk. Ustwen Solver dl rozwązywnego zdn MoĀe sę zdrzyć (zwłszcz w strszych wersjch Ecel do 00 włączne, Ā rozwązne będze zerowe tzn. po oblczench stn komórek ne zmen sę (komórk pełnące rolę zmennych będą ndl zwerły zer. W tkej sytucj pomg ustwene opcj Przyjmj modelowy lnowy wymuszjącej uāyce przez Solver metody smpleks.
7 P. Kowlk, Lbortorum bdń opercyjnych: moduł - zdne optymlnej mesznk - mksymlzcj lośc mesznk 7 Rozwązne wynk oblczeń Solver Rozwązne: Mksymln wrtość funkcj celu czyl mksymln lość mesznk moālw do wykonn wynos 0, tony. Jest on osągnęt dl skłdu mesznk: * = 8,6 t komponentu K, * 7, 8 * = t t komponentu K, = 5 t komponentu K. Komponent K jest wykorzystny w pełnej dostępnej lośc tzn. 5 t, z kole komponent K ne jest wykorzystny w ogóle.
12. Zadanie optymalnej mieszanki - maksymalizacja ilości mieszanki wykonanej z dostępnych komponentów
P. Kowlk, Lbortorum bdń opercyjnych: zdne optymlnej mesznk - mksymlzcj lośc mesznk. Zdne optymlnej mesznk - mksymlzcj lośc mesznk wykonnej z dostępnych komponentów Jeżel wszystke komponenty dostępne są
rzeczywiste zawart. składn. maksymalne wymagane zawart. w 1 jednostce mieszanki składn. w 1 jednostce mieszanki
P. Kowalk, Laboratorum badań operacyjnych: zadane optymalnej meszank - mnmalzacja kosztu jednostk meszank 4. Zadane optymalnej meszank - mnmalzacja kosztu jednostk meszank Model matematyczny dentyczny
ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GRANULOMETRYCZNEJ SUROWCÓW I PRODUKTÓW
1 ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GANULOMETYCZNEJ SUOWCÓW I PODUKTÓW 1. Cel zkres ćwczen Celem ćwczen jest opnowne przez studentów metody oceny mterłu sypkego pod względem loścowej zwrtośc frkcj
2. Wybór optymalnego planu (asortymentu) produkcji przy ograniczonej dostępności środków produkcji
P. Kowalik, Laboratorium badań operacyjnych: wybór optymalnego planu produkcji. Wybór optymalnego planu (asortymentu) produkcji przy ograniczonej dostępności środków produkcji Firma może produkować n rodzajów
7. Zadanie optymalnej diety (przykład w wersji rozszerzonej o górne normy spożycia produktów)
P. Kowalik, Laboratorium badań operacyjnych: zadanie optymalnej diety 7. Zadanie optymalnej diety (przykład w wersji rozszerzonej o górne normy spożycia produktów) Zadanie to opisuje sytuację decyzyjną,
Sformułowanie zagadnienia. c c. Analiza zagadnienia dla przypadku m = 4 i n = 3. B 2. c A. c A
ZGDNIENIE TRNSPORTOWE Sformułowne zgdnen Przypuśćmy, że z m punktów odprwy,, K, m m być wysłny w lośh,, K, m ednorodny produkt do n punktów przyęć,, K, n. odboru przymuą produkt w lośh b, b, K, bn. Kżdy
Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa
Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1
EKONOMIA MENEDŻERSKA. Wykład 2 Analiza popytu. Optymalna polityka cenowa. 1 ANALIZA POPYTU. OPTYMALNA POLITYKA CENOWA.
Wykłd Anlz popytu. Optymln poltyk cenow. 1 ANALIZA OYTU. OTYMALNA OLITYKA CENOWA. rzedmotem wykłdu jest prolem zrządzn zyskem poprzez oprcowne wdrożene odpowednej strteg różncown cen, wykorzystując do
2. Wybór optymalnego planu (asortymentu) produkcji przy ograniczonej dostępności środków produkcji
P. Kowalik, Laboratorium badań operacyjnych: wybór optymalnego planu produkcji. Wybór optymalnego planu (asortymentu) produkcji przy ograniczonej dostępności środków produkcji Firma może produkować n rodzajów
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Poltechnk Gdńsk Wydzł Elektrotechnk Automtyk Ktedr Inżyner Systemów Sterown Teor sterown Podstwy lgebry mcerzy Mterły pomocncze do ćwczeń lbortoryjnych 1 Część 3 Oprcowne: Kzmerz Duznkewcz, dr hb. nż.
ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE. Fuzja danych nawigacyjnych w przestrzeni filtru Kalmana
ISSN 733-867 ZESZ NAUKOWE NR (83) AKADEMII MORSKIEJ W SZCZECINIE IV MIĘDZNARODOWA KONFERENCJA NAUKOWO-ECHNICZNA E X L O - S H I 6 Andrzej Stteczny, Andrzej Lsj, Chfn Mohmmd Fzj dnych nwgcyjnych w przestrzen
MXZ INVERTER SERIA. Jedna jednostka zewnętrzna może obsługiwać do 8 pomieszczeń. Ograniczenie poboru prądu. Efektywność energetyczna: klasa A
INVERTER SERIA MXZ Typoszereg MXZ gwrntuje cicy, wysokowydjny i elstyczny system, spełnijący wszystkie wymgni w zkresie klimtyzcji powietrz. 6 MXZ-2C30VA MXZ-2C40VA MXZ-2C52VA MXZ-3C54VA MXZ-3C68VA MXZ-4C71VA
( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu.
Elementy rchunku prwdopodoeństw f 0 f() - gęstość rozkłdu prwdopodoeństw X f d P< < = f( d ) F = f( tdt ) - dystryunt rozkłdu E( X) = tf( t) dt - wrtość średn D ( X) = E( X ) E( X) - wrncj = f () F ()
Równania liniowe. gdzie. Automatyka i Robotyka Algebra -Wykład 8- dr Adam Ćmiel,
utomtyk Robotyk lgebr -Wykłd - dr dm Ćmel cmel@ghedupl Równn lnowe Nech V W będą przestrzenm lnowym nd tym smym cłem K T: V W przeksztłcenem lnowym Rozwżmy równne lnowe T(v)w Powyższe równne nzywmy równnem
Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,
Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,
Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa
Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut
DOBÓR LINIOWO-ŁAMANEGO ROZDZIAŁU SIŁ HAMUJĄCYCH W SAMOCHODACH DOSTAWCZYCH
Zgnew Kmńsk DOBÓ INIOWO-ŁMNEO OZDZIŁU SIŁ HMUJĄCYCH W SMOCHODCH DOSTWCZYCH Streszczene. W rtykule opsno sposoy dooru lnowo-łmnego rozdzłu sł mującyc w smocodc dostwczyc według wymgń egulmnu 3 ECE. Przedstwono
Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1
Złącznik nr 3 Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL 1 NR WNIOSKU KSI: POKL.05.02.01 00../..
A4 Klub Polska Audi A4 B6 - sprężyny przód (FWD/Quattro) Numer Kolory Weight Range 1BA / 1BR 1BE / 1BV
Audi A4 B6 - sprężyny przód E0 411 105 BA żółty niebieski różowy 3 E0 411 105 BB żółty niebieski różowy różowy 4 E0 411 105 BC żółty zielony różowy 5 E0 411 105 BD żółty zielony różowy różowy 6 E0 411
METODY KOMPUTEROWE 11
METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Mchł PŁOTKOWIAK Adm ŁOYGOWSKI Konsultcje nukowe dr nż. Wtold Kąkol Poznń / METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Metod wżonych rezduów jest slnym nrzędzem znjdown
KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań
KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni
Proces decyzyjny: 1. Sformułuj jasno problem decyzyjny. 2. Wylicz wszystkie możliwe decyzje. 3. Zidentyfikuj wszystkie możliwe stany natury.
Proces decyzyny: 1. Sformułu sno problem decyzyny. 2. Wylcz wszyste możlwe decyze. 3. Zdentyfu wszyste możlwe stny ntury. 4. Oreśl wypłtę dl wszystch możlwych sytuc, ( tzn. ombnc decyz / stn ntury ). 5.
2. Funktory TTL cz.2
2. Funktory TTL z.2 1.2 Funktory z otwrtym kolektorem (O.. open olletor) ysunek poniżej przedstwi odnośny frgment płyty zołowej modelu. Shemt wewnętrzny pojedynzej rmki NAND z otwrtym kolektorem (O..)
MODELE TEORII GIER. Modelowanie matematyczne. dr inż. Zbigniew Tarapata Wykład nr 5: Modele teorii gier
MODELE TEORII GIER Podejmowne decyzj nwestycyjnych często jest dokonywne w sytucjch, w których ne wdomo, jk będze stn otoczen lub też, jką decyzję podejmą nn decydenc, mjący wpływ n wynk decyzj przez ns
1. Warunki. 2. Zakładanie konta. 3. Logowanie. 4. Korzystanie z portalu klienta 5. Subkonta 5.1Zakładanie subkonta. 5.
PL Instrukcj DROGA DO PORTALU KLIENTA TOLL COLLECT Spis treści 1. Wrunki 2. Zkłdnie kont 3. Logownie 4. Korzystnie z portlu klient 5. Subkont 5.1Zkłdnie subkont 5.2 Edycj subkont 5.3 Usuwnie subkont 1
Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1
Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 01/015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A, A, A, A6, A7) GRUDZIEŃ 01 Klucz odpowiedzi do zdń zmkniętych Nr zdni 1 5 Odpowiedź
Regulamin promocji 14 wiosna
promocja_14_wosna strona 1/5 Regulamn promocj 14 wosna 1. Organzatorem promocj 14 wosna, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 lutego 2014 do 30
Pojęcia Działania na macierzach Wyznacznik macierzy
Temt: Mcierze Pojęci Dziłni n mcierzch Wyzncznik mcierzy Symbolem gwizdki (*) oznczono zgdnieni przeznczone dl studentów wybitnie zinteresownych prezentowną temtyką. Ann Rjfur Pojęcie mcierzy Mcierz to
Zaawansowane metody numeryczne
Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x
Materiały pomocnicze do ćwiczeń z przedmiotu: Ogrzewnictwo, wentylacja i klimatyzacja II. Klimatyzacja
Mteriły pomocnicze do ćwiczeń z przedmiotu: Orzewnictwo, wentylcj i klimtyzcj II. Klimtyzcj Rozdził 1 Podstwowe włsności powietrz jko nośnik ciepł mr inż. Anieszk Sdłowsk-Słę Mteriły pomocnicze do klimtyzcji.
Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I
Mtemtyk finnsow.03.2014 r. Komisj Egzmincyjn dl Akturiuszy LXVI Egzmin dl Akturiuszy z mrc 2014 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 0 minut 1 Mtemtyk
Wyk lad 1 Podstawowe wiadomości o macierzach
Wyk ld 1 Podstwowe widomości o mcierzch Oznczeni: N {1 2 3 } - zbiór liczb nturlnych N 0 {0 1 2 } R - ci lo liczb rzeczywistych n i 1 + 2 + + n i1 1 Określenie mcierzy Niech m i n bed dowolnymi liczbmi
Metoda prądów obwodowych
Metod prądów owodowyh Zmenmy wszystke rzezywste źródł prądowe n npęowe, Tworzymy kłd równń lnowyh opsjąyh poszzególne owody. Dowolną seć lnową skłdjąą sę z elementów skponyh możn opsć z pomoą kłd równń
MATURA 2014 z WSiP. Zasady oceniania zadań
MATURA z WSiP Mtemtyk Poziom podstwowy Zsdy ocenini zdń Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o., Wrszw Krtotek testu Numer zdni 6 7 8 9 6 7 8 9 Uczeń: Sprwdzn umiejętność (z numerem stndrdu)
Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH
Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.
Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.
Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane
EKONOMETRIA I Spotkanie 1, dn. 05.10.2010
EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra
Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.
Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc
wersja podstawowa (gradient)
księg znku wersj podstwow (grdient) Logo RAKU FILM w wersji podstwowej może występowć w dwóch wrintch, n jsnym (domyślnie - biłe tło) orz n ciemnym (domyślnie - czrne tło). Nleży unikć stosowni logo n
Analiza matematyczna i algebra liniowa
Anliz mtemtyczn i lgebr liniow Mteriły pomocnicze dl studentów do wykłdów Mcierze liczbowe i wyznczniki. Ukłdy równń liniowych. Mcierze. Wyznczniki. Mcierz odwrotn. Równni mcierzowe. Rząd mcierzy. Ukłdy
Ź Ł Ęć ę ę ę ę Ę ń ę ń Ę Ś Ę ę ę ę ę ę ę ć ę ę ę ę Ę ę ń ź ć ć ć Ź ę Ę ć Ś ę ę ń ć Ę ź ę ę Ś Ę ę ę ę ę Ł ę Ź ć Ęę ę ę ń Ł Ś Ą ę ź ę ę Ę Ź Ę ę ń ę Ą ę ę Ę ę ę Ś Ś ź ź ń ń ź Ź ę ń Ę Ą ę Ę Ą ź ć Ę ę ń ę Ę
4. RACHUNEK WEKTOROWY
4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie
liniowym w przeciwnym przypadku mówimy o programowaniu nieliniowym.
=DGDQLHSROHJDMFHQDSRV]XNLZDQLXPDNV\PDOQHMOXEPLQLPDOQHMZDUWRFLIXQNFMLZLHOX ]PLHQQ\FKSU]\MHGQRF]HVQ\PVSHáQLHQLXSHZQHMLORFLQDáR*RQ\FKZDUXQNyZ UyZQDOXE QLHUyZQRFLQRVLQD]Z]DGDQLDRSW\PDOL]DF\MQHJROXE]DGDQLDSURJUDPRZDQLD
Ś Ś Ś Ś Ś Ś Ę Ą Ę ŚĘ Ę Ś ń Ę Ę Ą Ł Ż Ń Ł ć Ą ć Ł Ę Ó ć Ź ć ź ń Ń ń Ś Ą Ę Ł Ę Ą Ę ń ć ń Ź ć ń ć ń Ś ń ŚĆ ć ź Ł Ę Ę Ś Ę Ę Ę ń ŚĘ Ń Ę Ę ń ŚĘ Ę Ę Ś Ś ć ń Ę ń Ś Ę ć ć Ę Ę ć ź ć ń Ę Ń ń ć Ł Ę Ę Ę Ę ć Ę ć ć ź
Rozwiązania maj 2017r. Zadania zamknięte
Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1
łączny czas pracy (1 wariant) łączny koszt pracy (2 wariant) - całkowite (opcjonalnie - dla wyrobów liczonych w szt.)
14. Zadanie przydziału z ustalonym poziomem produkcji i limitowanym czasem pracy planowanie wielkości produkcji (wersja uproszczona) Producent może wytwarzać n rodzajów wyrobów. Każdy z wyrobów można być
Jest błędem odwołanie się do zmiennej, której nie przypisano wcześniej żadnej wartości.
Zmienne: W progrmie operuje się n zmiennych. Ndwnie im wrtości odbyw się poprzez instrukcję podstwieni. Interpretcj tej instrukcji jest nstępując: zmiennej znjdującej się z lewej strony instrukcji podstwieni
WENTYLACJA PRZESTRZENI POTENCJALNIE ZAGROŻONYCH WYBUCHEM MIESZANIN GAZOWYCH
Ochron przeciwwybuchow Michł Świerżewski WENTYLACJA PRZESTRZENI POTENCJALNIE ZAGROŻONYCH WYBUCHEM MIESZANIN GAZOWYCH 1. Widomości ogólne Zgodnie z postnowienimi rozporządzeni Ministr Sprw Wewnętrznych
T-08 Sprawozdanie o przewozach morską i przybrzeżną flotą transportową
GŁÓWNY URZĄD STATYSTYCZNY, l. Niepodległości 208, 00-925 Wrszw www.stt.gov.pl Nzw i dres jednostki sprwozdwczej T-08 Sprwozdnie o przewozch morską i przyrzeżną flotą trnsportową Portl sprwozdwczy GUS www.stt.gov.pl
Analiza wariancji klasyfikacja prosta
Anlz wrnc Oprcowno n podstwe: Łomnck A. 003. Wprowdzene do sttystyk dl przyrodnków. PW Wrszw. Anlz wrnc klsyfkc prost Dne o przeżywlnośc chrząszczy hodownych hodowlnych n czterech różnych pożywkch. Kżd
Dodatkowe informacje i objaśnienia. Zakres zmian wartości grup rodzajowych środków trwałych, wnip oraz inwestycji długoterminowych Zwieksz Stan na.
STOWARZYSZENIE RYNKÓW FINANSOWYCH ACI POLSKA Afiliowne przy ACI - The Finncil Mrkets Assocition Dodtkowe informcje i objśnieni Wrszw, 21 mrzec 2014 1.1 szczegółowy zkres zmin wrtości grup rodzjowych środków
Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE
Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:
Regulamin promocji upalne lato 2014 2.0
upalne lato 2014 2.0 strona 1/5 Regulamn promocj upalne lato 2014 2.0 1. Organzatorem promocj upalne lato 2014 2.0, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa
Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych
Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni
Transformatory sterujące ST, DTZ, transformatory wielouzwojeniowe UTI, uniwersalne zasilacze AING
sterujące ST, DTZ, trnsformtory wielouzwojeniowe UTI, uniwerslne zsilcze AING Wszystkie trnsformtory są budowne i sprwdzne zgodnie z njnowszymi przepismi normy IEC/EN 61558. Dltego w zleżności od wykonni
11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej.
/22/24 Dwuosobowe gry o sume zero DO NAUCZENIA I ZAPAMIĘTANIA: Defnca zaps ger o sume zero, adaptaca ogólnych defnc. Punkt sodłowy Twerdzena o zwązkach punktu sodłowego z koncepcam rozwązań PRZYPOMNIENIE:
Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 Wykład 1
Mtemtyk II Bezpieczeństwo jądrowe i ochron rdiologiczn Semestr letni 2018/2019 Wykłd 1 Zsdy współprcy przypomnienie Wykłdy są nieobowiązkowe, le Egzmin: pytni teoretyczne z łtwymi ćwiczenimi (będzie list)
Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL
Złącznik 3 Krt oceny merytorycznej wniosku o dofinnsownie Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL INSTYTUCJA PRZYJMUJĄCA WNIOSEK:... NUMER KONKURSU:... NUMER WNIOSKU
TEORIA WAGNERA UTLENIANIA METALI
TEORIA WAGNERA UTLENIANIA METALI PROCES POWSTAWANIA ZGORZELIN W/G TAMANN A (90) Utlenz tl Utlenz Zgorzeln tl + SCHEMAT KLASYCZNEGO DOŚWIADCZENIA PFEILA (99) Powetrze Powetrze SO Zgorzeln SO Fe Fe TEORIA
PEWNIK DEDEKINDA i jego najprostsze konsekwencje
PEWNIK DEDEKINDA i jego njprostsze konsekwencje W rozdzile ósmym stwierdziliśmy, że z podnych tm pewników nie wynik istnienie pierwistków z liczb rzeczywistych. Uzupe lnimy terz liste pewników jeszcze
PN-EN :2008/AC
POPRAWKA do POLSKIEJ NORMY P o l s k K o m t e t N o r m l z c y j n y ICS 93.080.20 PN-EN 13108-21:2008/AC grudzeń 2008 Wprowdz EN 13108-21:2006/AC:2008, IDT Dotyczy PN-EN 13108-21:2008 Mesznk mnerlno-sfltowe
Regulamin promocji zimowa piętnastka
zmowa pętnastka strona 1/5 Regulamn promocj zmowa pętnastka 1. Organzatorem promocj zmowa pętnastka, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 grudna
WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW
WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW Zadania transportowe Zadania transportowe są najczęściej rozwiązywanymi problemami w praktyce z zakresu optymalizacji
Autor: Zbigniew Tuzimek Opracowanie wersji elektronicznej: Tomasz Wdowiak
DNIE UKŁDÓW LOKD UTOMTYCZNYCH uor: Zigniew Tuzimek Oprcownie wersji elekronicznej: Tomsz Wdowik 1. Cel i zkres ćwiczeni Celem ćwiczeni jes zpoznnie sudenów z udową orz dziłniem zezpieczeń i lokd sosownych
Stalowe bramy przesuwne
Stlowe brmy przesuwne Dne montżowe: stn n 06.2008 Powielnie, tkże częściowe, wyłącznie po uzyskniu nszej zgody. Chronione prwem utorskim. Wszystkie wymiry w mm. Zminy konstrukcyjne zstrzeżone. 2 Dne montżowe:
Zawór regulacyjny ZK210 z wielostopniową dyszą promieniową
Zwór regulcyjny z wielostopniową dyszą promieniową Zwór regulcyjny Opis Zwór regulcyjny służący do prcy przy wysokich ciśnienich różnicowych. Stosowny jest między innymi, w instlcjch przemysłowych i elektrownich,
Wspomaganie obliczeń za pomocą programu MathCad
Wprowdzenie do Mthcd' Oprcowł:M. Detk P. Stąpór Wspomgnie oliczeń z pomocą progrmu MthCd Definicj zmiennych e f g h 8 Przykłd dowolnego wyrŝeni Ay zdefinowc znienną e wyierz z klwitury kolejno: e: e f
OCHRONA PRZECIWPOśAROWA TABORU KOLEJOWEGO WYMAGANIA PRZECIWPOśAROWE DLA MATERIAŁÓW I KOMPONENTÓW
Ktedr Technicznego Zbezpieczeni Okrętów Lbortorium Bdń Cech PoŜrowych Mteriłów OCHRONA PRZECIWPOśAROWA TABORU KOLEJOWEGO WYMAGANIA PRZECIWPOśAROWE DLA MATERIAŁÓW I KOMPONENTÓW Metody bdń 1 pren 45545-2:
Raport Przeliczenie punktów osnowy wysokościowej III, IV i V klasy z układu Kronsztadt60 do układu Kronsztadt86 na obszarze powiatu krakowskiego
Rport Przelczene punktów osnowy wysokoścowej III, IV V klsy z ukłdu Kronsztdt60 do ukłdu Kronsztdt86 n oszrze powtu krkowskego Wykonł: dr h. nż. Potr Bnsk dr nż. Jcek Kudrys dr nż. Mrcn Lgs dr nż. Bogdn
DZIAŁANIE III.6 ROZWÓJ MIKRO- I MAŁYCH PRZEDSIĘBIORSTW
DZIAŁANIE III.6 ROZWÓJ MIKRO- I MAŁYCH PRZEDSIĘBIORSTW 1 Nzw progrmu opercyjnego Regionlny Progrm Opercyjny Województw Łódzkiego n lt 2007-2013. 2 Numer i nzw osi priorytetowej Oś priorytetow III: Gospodrk,
Środek masy i geometryczne momenty bezwładności figur płaskich 1
Środek ms geometrzne moment bezwłdnoś fgur płskh Środek ms fgur płskej Zleżnoś n współrzędne środk ms, fgur płskej złożonej z fgur regulrnh rs.. możem zpsć w nstępują sposób: gdze:. pole powerzhn -tej
Wykład 6 Dyfrakcja Fresnela i Fraunhofera
Wykłd 6 Dyfrkcj Fresnel i Frunhofer Zjwisko dyfrkcji (ugięci) świtł odkrył Grimldi (XVII w). Poleg ono n uginniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny). Wyjśnienie
Sterownik swobodnie programowalny. Dokumentacja techniczna. Dokumentacja techniczna
Sterownik swobodnie progrmowlny Dokumentcj techniczn Dokumentcj techniczn Spis treści 1. Informcję ogólne... 2 2. Podstwowe prmetry... 2 3. Wejści / wyjści... 2 4. Schemt blokowy... 5 5. Łącz komunikcyjne...
Profile z falistym œrodnikiem
z flistym œrodnikiem Rozwi¹zni konstrukcyjne rys. 1.1 Rysunek systemowy profili SIN mx d³. dostwy = 20.00 m bg(o) H 43 t = 3,0 mm 40 t = 2,0 mm z w bg(u) tg(u) hs tg(o) 155 155 155 155 155 Wysokoœæ œrodnik:
Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010
Egzamn ze statystyk/ Studa Lcencjacke Stacjonarne/ Termn /czerwec 2010 Uwaga: Przy rozwązywanu zadań, jeśl to koneczne, naleŝy przyjąć pozom stotnośc 0,01 współczynnk ufnośc 0,99 Zadane 1 PonŜsze zestawene
Uszczelnienie przepływowe w maszyn przepływowych oraz sposób diagnozowania uszczelnienia przepływowego zwłaszcza w maszyn przepływowych
Uszczelnienie przepływowe w mszyn przepływowych orz sposób dignozowni uszczelnieni przepływowego zwłszcz w mszyn przepływowych Przedmiotem wynlzku jest uszczelnienie przepływowe mszyn przepływowych orz
Układ elektrohydrauliczny do badania siłowników teleskopowych i tłokowych
TDUSZ KRT TOMSZ PRZKŁD Ukłd elektrohydruliczny do bdni siłowników teleskopowych i tłokowych Wprowdzenie Polsk Norm PN-72/M-73202 Npędy i sterowni hydruliczne. Cylindry hydruliczne. Ogólne wymgni i bdni
Dominacja stochastyczna a użyteczność
Domncj stochstyczn użyteczność Jonn Dys 16 lpc 21 Streszczene W ponższej prcy bdny jest zwązek pomędzy domncją stochstyczną użytecznoścą konsument. Zostne wykzne, że porządek częścowy wyznczony przez domncję
Macierz. Wyznacznik macierzy. Układ równań liniowych
Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: żółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk Zgdnieni. Pojęci. Dziłni n mcierzch.
Rozwiązanie niektórych zadań treningowych do I kolokwium sem. zimowy, 2018/19
Rozwąze ektóryh zdń tregowyh do I kolokwum sem. zmowy, 8/9 Zd.. V = ost, = 98 K W wrukh dtyzyh Q = ΔU =. Końową temperturę zjdzemy rozwązują rówe ΔU =. Zm eerg wewętrzej zhodz wskutek rekj hemzej jlepej
R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10
Zdnie. Zkłd ubezpieczeń n życie plnuje zbudownie portfel ubezpieczeniowego przy nstępujących złożenich: ozwiąznie. Przez P k będę oznczł wrtość portfel n koniec k-tego roku. Szukm P 0 tkie by spełnił:
Karta oceny merytorycznej wniosku o dofinansowanie projektu innowacyjnego testującego składanego w trybie konkursowym w ramach PO KL
Złącznik nr 5 Krt oceny merytorycznej Krt oceny merytorycznej wniosku o dofinnsownie projektu innowcyjnego testującego skłdnego w trybie konkursowym w rmch PO KL NR WNIOSKU KSI: WND-POKL. INSTYTUCJA PRZYJMUJĄCA
symbol dodatkowy element graficzny kolorystyka typografia
Identyfikcj wizuln Fundcji n rzecz Nuki Polskiej 1/00 Elementy podstwowe symbol dodtkowy element grficzny kolorystyk typogrfi Identyfikcj wizuln Fundcji n rzecz Nuki Polskiej 1/01 Elementy podstwowe /
Sprawozdanie powinno zawierać:
Sprawozdane pownno zawerać: 1. wypełnoną stronę tytułową (gotowa do ćw. nr 0 na strone drugej, do pozostałych ćwczeń zameszczona na strone 3), 2. krótk ops celu dośwadczena, 3. krótk ops metody pomaru,
STYLE. TWORZENIE SPISÓW TREŚCI
STYLE. TWORZENIE SPISÓW TREŚCI Ćwiczenie 1 Tworzenie nowego stylu n bzie istniejącego 1. Formtujemy jeden kpit tekstu i zznczmy go (stnowi on wzorzec). 2. Wybiermy Nrzędzi główne, rozwijmy okno Style (lub
OPTYMALIZACJA INFORMACJI NAWIGACYJNYCH W SYSTEMACH MAP ELEKTRONICZNYCH
PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 70 Trnsport 2009 Mciej GUCMA, Zbigniew PIETRZYKOWSKI Akdemi Morsk w Szczecinie Wły Chrobrego ½ 70-500 Szczecin m.gucm@m.szczecin.pl z.pietrzykowski@m.szczecin.pl
Konkurs dla gimnazjalistów Etap szkolny 9 grudnia 2016 roku
Konkurs dl gimnzjlistów Etp szkolny 9 grudni 016 roku Instrukcj dl uczni 1. W zdnich o numerch od 1. do 1. są podne cztery wrinty odpowiedzi: A, B, C, D. Dokłdnie jedn z nich jest poprwn. Poprwne odpowiedzi
Wykªad 1. Macierze i wyznaczniki Macierze podstawowe okre±lenia
Wykªd 1 Mcierze i wyznczniki 11 Mcierze podstwowe okre±leni Denicj 1 Mcierz (rzeczywist ) wymiru m n, gdzie m, n N, nzywmy prostok tn tblic zªo»on z m n liczb rzeczywistych ustwionych w m wierszch i n
INSTRUKCJA. - Jak rozwiązywać zadania wysoko punktowane?
INSTRUKCJA - Jk rozwiązywć zdni wysoko punktowne? Mturzysto! Zdni wysoko punktowne to tkie, z które możesz zdobyć 4 lub więcej punktów. Zdni z dużą ilość punktów nie zwsze są trudniejsze, często ich punktcj
Kodowanie liczb. Kodowanie stałopozycyjne liczb całkowitych. Niech liczba całkowita a ma w systemie dwójkowym postać: Kod prosty
Kodownie licz Kodownie stłopozycyjne licz cłkowitych Niech licz cłkowit m w systemie dwójkowym postć: nn 0 Wtedy może yć on przedstwion w postci ( n+)-itowej przy pomocy trzech niżej zdefiniownych kodów
Nazwa projektu/tytuł wydarzenia. Maksymalnie 3 wiersze, wielkość fontu 160 pt.
Roll Up 1 x 2 m - opcj 1 1,5 mrgines lewy 1,5 mrgines prwy 2 2 Nzw projektu/tytuł wydrzeni. Mksymlnie 3 wiersze, Opis projektu/wydrzeni. www.tylkojedendreswww.com = wysokość logotypu Swiss Contribution
Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane
Porównanie dostępności różnych, nadmiarowych konfiguracji zasilania szaf przemysłowych
Porównne dotępnośc różnych, ndmrowych konfgurcj zln zf przemyłowych Whte Pper 48 Strezczene Przełącznk źródeł zln orz dwutorow dytrybucj zln przętu IT łużą zwękzenu dotępnośc ytemów oblczenowych. Sttytyczne
) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4
Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =
MATEMATYKA Wykład 4 (Funkcje) przyporządkowany został dokładnie jeden element
MATEMATYKA Wykłd 4 (Funkcje) Pisząc f : (,b) R rozumiemy Ŝe kŝdemu (, b) przyporządkowny zostł dokłdnie jeden element y R. Wykresem funkcji nzywmy zbiór pr (,f()) n płszczyźnie skłdjącej się ze wszystkich
EKONOMETRIA wykład 4. Prof. dr hab. Eugeniusz Gatnar.
EKONOMETRIA wykłd 4 Prof. dr hb. Eugenusz Gtnr egtnr@ml.wz.uw.edu.pl Wykorzystne modelu W zleżnośc od rodzju: modele sttyczne - do symulcj, modele dynmczne - do predykcj. Symulcj pozwl wyznczyć wrtość
Legenda. Optymalizacja wielopoziomowa Inne typy bramek logicznych System funkcjonalnie pełny
Dr Glin Criow Legend Optymlizcj wielopoziomow Inne typy brmek logicznych System funkcjonlnie pełny Optymlizcj ukłdów wielopoziomowych Ukłdy wielopoziomowe ukłdy zwierjące więcej niż dw poziomy logiczne.
Zaokrąglanie i zapisywanie wyników obliczeń przybliżonych
Edwrd Musił Oddził Gdński SEP Zokrąglnie i zpisywnie wyników obliczeń przybliżonych Inżynier wykonuje nieml wyłącznie obliczeni przybliżone i powinien mieć nieustnnie n względzie dokłdność, jką chce uzyskć