Zapis pochodnej. Modelowanie dynamicznych systemów biocybernetycznych. Dotychczas rozważane były głownie modele biocybernetyczne typu statycznego.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zapis pochodnej. Modelowanie dynamicznych systemów biocybernetycznych. Dotychczas rozważane były głownie modele biocybernetyczne typu statycznego."

Transkrypt

1 owanie dynamicznych systemów biocybernetycznych Wykład nr 9 z kursu Biocybernetyki dla Inżynierii Biomedycznej rowadzonego rzez Prof. Ryszarda Tadeusiewicza Dotychczas rozważane były głownie modele biocybernetyczne tyu statycznego. Obecnie zajmiemy się modelami dynamicznymi. Równanie różniczkowe to takie, które korzysta z ochodnej Przy modelu dynamicznym trzeba koniecznie użyć równań różniczkowych. Kilka słów wrowadzenia zatem. Pochodna jako granica ilorazu różnicowego Zais ochodnej dy dx = f (x) 1

2 Równanie różniczkowe to formuła, w której wartość ochodnej oblicza się za omocą jakiegoś wyrażenia. Rozwiązanie równania różniczkowego wymaga odania warunku oczątkowego. Dlaczego równanie różniczkowe musi być użyte? dy 5y 1 y( t 0 ) 0.4 Dlaczego równanie różniczkowe musi być użyte? Rozwiązanie tego równania ma ostać: Objętość wody, która wyływa V w jednostce czasu, jest zależna od wysokości słua cieczy H. Ale wysokość słua cieczy H się stale zmienia na skutek wyływu! Trzeba więc rozważać w oisie nieskończenie mały ubytek słua cieczy dh w nieskończenie małym odcinku czasu. V Symulacja daje wartości dyskretne Ale w rozważaniach bierzemy od uwagę roces ciągły 2

3 Jako rzykład rozważymy model rozwoju i leczenia raka oarty na zjawiskach dynamicznych Podstawowe wiadomości na temat raka Jeśli nie zadziała mechanizm destrukcji komórki nastąi rozwój raka Przykładowy rozwój raka Wrowadzimy oznaczenie: P(t) jest liczbą (zmienną w czasie) komórek rakowych. Litera P jest tu użyta, onieważ są to komórki roliferujące. Leczenie nowotworu za omocą leku niszczącego wybiórczo komórki raka P(10) P(20) P(50) Miarą stonia zaawansowania raka jest liczba komórek zmienionych nowotworowo. Oznaczymy ja P onieważ te komórki roliferują (mnożą się w sosób nieograniczony) Ponieważ ilość komórek nowotworowych zmienia się z czasem będziemy rozważali funkcję P(t) htt://o.elobot.l/s/bot6/6811.jg 3

4 dp X Zmienność P(t) oisuje model dynamiczny tyu 1 P Y( t) P( t) X dynamiczny 1 Y(t) Rozwiązaniem równania jest funkcja wykładnicza Ten rosty system dynamiczny może być rozatrywany jako system z dodatnim srzężeniem zwrotnym Δ P(t) Ilość komórek rakowych P(t+1) = P(t) + Δ P(t) Przyrost komórek rakowych Δ P(t) = γ P(t) P(t) Jest to srzężenie zwrotne dodatnie niestabilne P(t) W ierwszym rzybliżeniu jest to model dynamiczny tyu 1 o 3 wejściach i 2 wyjściach Sróbujemy oznać dokładniej roces rozwoju raka, żeby dowiedzieć się, jak go leczyć 4

5 ten uwzględnia dwie gruy komórek wewnątrz guza nowotworowego Ois matematyczny dp dq P Q P Q Można teraz wskazać, co jest na wejściach i wyjściach modelu Zachowanie modelu X 1 = α X 2 = β X 3 = γ Y 1 (t) = P(t) Y 2 (t) = Q(t) dynamiczny tyu 2 Leczenie raka dożylnie odawany jest lek o nazwie Tootecan (TPT) y 1 (t) X(t) dynamiczny tyu2 Y(t) x(t) y 2 (t) x(t) dynamiczny tyu2 y 1 (t) y 2 (t) 5

6 Ois modelu Wynik rzykładowej symulacji rzebiegu choroby w okresie dwóch tygodni (lek odawany w 3 7 i 8 14 dobie) dp x( t P Q ) dq P Q Liczba komórek nowotworowych 10 x P Q y c x stezenie TPT w osoczu [ng/ml] czas [h] Narzędzie do symulacji Wydaje się, że roblem został rozwiązany: rak został zniszczony Jest to jednak zwycięstwo ozorne. Lek niszczący raka niszczy bowiem także ważne dla życie systemy organizmu. Najbardziej oszkodowany jest system krwiotwórczy Dla ełnego oisu leczenia raka otrzebny jest więc model trzech srzężonych rocesów biologicznych narastania guza nowotworowego (oznaczmy go skrótowo rzez G), wytwarzania komórek krwi w sziku kostnym (K), transferu (rzemieszczania się) leku w organizmie (L). 6

7 Orientacyjna struktura modelu Dokładna struktura modelu Część związana ze wzrostem guza była już wcześniej omówiona Ten model ozostaje więc nie zmieniony x(t) y 1 (t) y 2 (t) Część związana z transferem leku Najbardziej uroszczony model w farmakokinetyce nazywany jednokomartmentowym zakłada, że szybkość wchłaniania, metabolizmu i wydalania leku jest wrost roorcjonalna do jego stężenia w tkance, w której zachodzi dany roces. W naszym rzyadku, gdy rozważamy tylko jeden sosób odawania leku orzez iniekcję dożylną tkanką tą jest osocze krwi. 7

8 em matematycznym wiążącym rzebieg stężenia leku TPT w osoczu krwi x(t) z zewnętrznymi dostawami (iniekcjami) leku x z (t) jest roste równanie różniczkowe dx k e x x z (t) Jednokomartmentowy model transferu leku X z (t) k e dynamiczny tyu2 X(t) k e jest stałą oznaczającą temo usuwania leku z organizmu W raktyce częściej jest stosowany model dwukomartmentowy. Wyróżnia się w nim komartment centralny osocze krwi oraz komartment eryferyjny. Ten ostatni obejmuje wszystkie tkanki, do których cząsteczki leku mogą wnikać (i z niego owracać) orzez osocze krwi. W ten sosób uwzględnia się rocesy rzenikania leku omiędzy tkankami a osoczem krwi, co zbliża model do rzeczywistych zjawisk w organizmie. matematyczny dwukomartmentowy związany z rzekazywaniem odawanego z zewnątrz leku TPT najierw do osocza a otem do tkanek dx dx k k k x k x x (t) c e x k c c x x stężenie TPT w strefie centralnej osoczu (ten sygnał był uwzględniany we wcześniejszych modelach), x stężenie TPT w strefie eryferyjnej (w tkankach) c z Dwukomartmentowy model transferu leku Najważniejsza nowa część modelu związana jest z systemem krwiotwórczym k e k c k c k c k c X z (t) dynamiczny tyu2 X(t) dynamiczny tyu2 X (t) 8

9 Schemat rodukcji krwinek (neutrofili) bez udziału leku matematyczny kolejnych etaów wytwarzanie komórek roliferujących k in K m Km N k b N k Oznaczenia in K m Km N k b N matematyczny kolejnych etaów wytwarzanie komórek roliferujących N liczba komórek roliferujących, N liczba dojrzałych neutrofili krążących w krwi obwodowej, k in k b K m wsółczynnik szybkości wytwarzania komórek macierzystych iróżnicowania ich w kierunku neutrofili, wsółczynnik szybkości rzekształcania się zawiązków z jednej fazy wkolejną, arametr ołowicznego nasycenia określający ustalony oziom liczby neutrofili k in K m Km N k b N matematyczny kolejnych etaów wytwarzanie mielocytów matematyczny kolejnych etaów d1 k b N N d1 d 2 k b N d1 N d 2 9

10 matematyczny kolejnych etaów matematyczny wytwarzania i tracenia dojrzałych neutrofili d 3 k b N d 2 N d 3 kbn d 3 k out N Namnażanie krwinek rzy odawaniu leku chemoteraii na wyższym oziomie hierarchii X (t) k in Km K N m IC50 k IC x( t) 50 b N IC 50 arametr charakteryzujący wrażliwość mechanizmu krwiotwórczego na zmiany stężenia TPT we krwi Kształt finalnego modelu Przykładowy wynik symulacji rzebiegu leczenia w trzech cyklach x z (t) obejmujący 3 rocesy: Dwukomartmentowy transort leku Rozwój i niszczenie komórek raka oraz usokojonych komórek zajętego rzez rak narządu P(t) Q(t) N (t) P, Q u [ng/(ml h)] 1500 x x 108 Q 5 P x y c [ng/ml] Funkcjonowania systemu krwiotwórczego N czas [h] 10

11 Przedmiotem modelowania była neuroblastoma (nowotwór wieku dziecięcego). Zasadniczo rozwija się on w narządach wewnętrznych, ale daje też objawy na zewnątrz ciała owanie każdego innego raka będzie rzebiegać odobnie. 11

Entalpia swobodna (potencjał termodynamiczny)

Entalpia swobodna (potencjał termodynamiczny) Entalia swobodna otencjał termodynamiczny. Związek omiędzy zmianą entalii swobodnej a zmianami entroii Całkowita zmiana entroii wywołana jakimś rocesem jest równa sumie zmiany entroii układu i otoczenia:

Bardziej szczegółowo

Jest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 :

Jest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 : I zasada termodynamiki. Jest to zasada zachowania energii w termodynamice - równoważność racy i cieła. ozważmy roces adiabatyczny srężania gazu od do : dw, ad - wykonanie racy owoduje rzyrost energii wewnętrznej

Bardziej szczegółowo

TERMODYNAMIKA PROCESOWA I TECHNICZNA

TERMODYNAMIKA PROCESOWA I TECHNICZNA ERMODYNAMIKA PROCESOWA I ECHNICZNA Wykład II Podstawowe definicje cd. Podstawowe idealizacje termodynamiczne I i II Zasada termodynamiki Proste rzemiany termodynamiczne Prof. Antoni Kozioł, Wydział Chemiczny

Bardziej szczegółowo

II zasada termodynamiki.

II zasada termodynamiki. II zasada termodynamiki. Według I zasady termodynamiki nie jest do omyślenia roces, w którym energia wewnętrzna układu doznałaby zmiany innej, niż wynosi suma algebraiczna energii wymienionych z otoczeniem.

Bardziej szczegółowo

ĆWICZENIE 1. Farmakokinetyka podania dożylnego i pozanaczyniowego leku w modelu jednokompartmentowym

ĆWICZENIE 1. Farmakokinetyka podania dożylnego i pozanaczyniowego leku w modelu jednokompartmentowym ĆWICZENIE 1 Farmakokinetyka podania dożylnego i pozanaczyniowego leku w modelu jednokompartmentowym Celem ćwiczenia jest wyznaczenie parametrów farmakokinetycznych leków podanych w jednorazowych dawkach:

Bardziej szczegółowo

PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH

PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH ( Na przykładzie POWERSIM) M. Berndt-Schreiber 1 Plan Zasady modelowania Obiekty symbole graficzne Dyskretyzacja modelowania Predefiniowane

Bardziej szczegółowo

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ ELEMETY ELEKTRONIKI LABORATORIUM Kierunek NAWIGACJA Secjalność Transort morski Semestr II Ćw. 3 Badanie rzebiegów imulsowych Wersja oracowania Marzec 2005 Oracowanie:

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - podstawy matematyczne Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele

Bardziej szczegółowo

TERMODYNAMIKA PROCESOWA I TECHNICZNA

TERMODYNAMIKA PROCESOWA I TECHNICZNA ERMODYNAMIKA PROCESOWA I ECHNICZNA Wykład VIII Równania stanu tyu an der Waalsa Przyomnienie Na orzednim wykładzie omówiliśmy: 1. Równanie stanu gazu doskonałego.. Porawione RSGD za omocą wsółczynnika

Bardziej szczegółowo

TERMODYNAMIKA PROCESOWA. Wykład VI. Równania kubiczne i inne. Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej

TERMODYNAMIKA PROCESOWA. Wykład VI. Równania kubiczne i inne. Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej ERMODYNAMIKA PROCESOWA Wykład VI Równania kubiczne i inne Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej Komunikat Wstęne terminy egzaminu z ermodynamiki rocesowej : I termin środa 15.06.016

Bardziej szczegółowo

Wykład z Technologii Informacyjnych. Piotr Mika

Wykład z Technologii Informacyjnych. Piotr Mika Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem

Bardziej szczegółowo

Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie

Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie Pierwsza zasada termodynamiki 2.2.1. Doświadczenie Joule a i jego konsekwencje 2.2.2. ieło, ojemność cielna sens i obliczanie 2.2.3. Praca sens i obliczanie 2.2.4. Energia wewnętrzna oraz entalia 2.2.5.

Bardziej szczegółowo

Mam Haka na Raka. Chłoniak

Mam Haka na Raka. Chłoniak Mam Haka na Raka Chłoniak Nowotwór Pojęciem nowotwór określa się niekontrolowany rozrost nieprawidłowych komórek w organizmie człowieka. Nieprawidłowość komórek oznacza, że różnią się one od komórek otaczających

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech

Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech emeratura i cieło E=E K +E P +U Energia wewnętrzna [J] - ieło jest energią rzekazywaną między układem a jego otoczeniem na skutek istniejącej między nimi różnicy temeratur na sosób cielny rzez chaotyczne

Bardziej szczegółowo

1. Model procesu krzepnięcia odlewu w formie metalowej. Przyjęty model badanego procesu wymiany ciepła składa się z następujących założeń

1. Model procesu krzepnięcia odlewu w formie metalowej. Przyjęty model badanego procesu wymiany ciepła składa się z następujących założeń ROK 4 Krzenięcie i zasilanie odlewów Wersja 9 Ćwicz. laboratoryjne nr 4-04-09/.05.009 BADANIE PROCESU KRZEPNIĘCIA ODLEWU W KOKILI GRUBOŚCIENNEJ PRZY MAŁEJ INTENSYWNOŚCI STYGNIĘCIA. Model rocesu krzenięcia

Bardziej szczegółowo

Janusz Górczyński. Prognozowanie i symulacje w zadaniach

Janusz Górczyński. Prognozowanie i symulacje w zadaniach Wykłady ze statystyki i ekonometrii Janusz Górczyński Prognozowanie i symulacje w zadaniach Wyższa Szkoła Zarządzania i Marketingu Sochaczew 2009 Publikacja ta jest czwartą ozycją w serii wydawniczej Wykłady

Bardziej szczegółowo

Zakres zagadnienia. Pojęcia podstawowe. Pojęcia podstawowe. Do czego słuŝą modele deformowalne. Pojęcia podstawowe

Zakres zagadnienia. Pojęcia podstawowe. Pojęcia podstawowe. Do czego słuŝą modele deformowalne. Pojęcia podstawowe Zakres zagadnienia Wrowadzenie do wsółczesnej inŝynierii Modele Deformowalne Dr inŝ. Piotr M. zczyiński Wynikiem akwizycji obrazów naturalnych są cyfrowe obrazy rastrowe: dwuwymiarowe (n. fotografia) trójwymiarowe

Bardziej szczegółowo

D. II ZASADA TERMODYNAMIKI

D. II ZASADA TERMODYNAMIKI WYKŁAD D,E D. II zasada termodynamiki E. Konsekwencje zasad termodynamiki D. II ZAADA ERMODYNAMIKI D.1. ełnienie I Zasady ermodynamiki jest warunkiem koniecznym zachodzenia jakiegokolwiek rocesu w rzyrodzie.

Bardziej szczegółowo

BADANIA SYMULACYJNE PROCESU IMPULSOWEGO ZAGĘSZCZANIA MAS FORMIERSKICH. W. Kollek 1 T. Mikulczyński 2 D.Nowak 3

BADANIA SYMULACYJNE PROCESU IMPULSOWEGO ZAGĘSZCZANIA MAS FORMIERSKICH. W. Kollek 1 T. Mikulczyński 2 D.Nowak 3 VI KONFERENCJA ODLEWNICZA TECHNICAL 003 BADANIA SYMULACYJNE PROCESU IMPULSOWEGO ZAGĘSZCZANIA MAS FORMIERSKICH BADANIA SYMULACYJNE PROCESU IMPULSOWEGO ZAGĘSZCZANIA MAS FORMIERSKICH W. Kollek 1 T. Mikulczyński

Bardziej szczegółowo

Stabilność II Metody Lapunowa badania stabilności

Stabilność II Metody Lapunowa badania stabilności Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli

Bardziej szczegółowo

Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transform

Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transform Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. March 20, 2013 Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. Sygnał i system Sygnał jest opisem

Bardziej szczegółowo

WYKŁAD 3. DYNAMIKA ROZWOJU

WYKŁAD 3. DYNAMIKA ROZWOJU WYKŁAD 3. DYNAMIKA ROZWOJU POPULACJI MODELE Z CZASEM DYSKRETNYM DR WIOLETA DROBIK- CZWARNO MODELE ZMIAN ZAGĘSZCZENIA POPULACJI Wyróżniamy modele: z czasem dyskretnym wykorzystujemy równania różnicowe z

Bardziej szczegółowo

TERMODYNAMIKA. Termodynamika jest to dział nauk przyrodniczych zajmujący się własnościami

TERMODYNAMIKA. Termodynamika jest to dział nauk przyrodniczych zajmujący się własnościami TERMODYNAMIKA Termodynamika jest to dział nauk rzyrodniczych zajmujący się własnościami energetycznymi ciał. Przy badaniu i objaśnianiu własności układów fizycznych termodynamika osługuje się ojęciami

Bardziej szczegółowo

1. Parametry strumienia piaskowo-powietrznego w odlewniczych maszynach dmuchowych

1. Parametry strumienia piaskowo-powietrznego w odlewniczych maszynach dmuchowych MATERIAŁY UZUPEŁNIAJACE DO TEMATU: POMIAR I OKREŚLENIE WARTOŚCI ŚREDNICH I CHWILOWYCH GŁÓWNYCHORAZ POMOCNICZYCH PARAMETRÓW PROCESU DMUCHOWEGO Józef Dańko. Wstę Masa wyływająca z komory nabojowej strzelarki

Bardziej szczegółowo

3. Kinematyka podstawowe pojęcia i wielkości

3. Kinematyka podstawowe pojęcia i wielkości 3. Kinematya odstawowe ojęcia i wielości Kinematya zajmuje się oisem ruchu ciał. Ruch ciała oisujemy w ten sosób, że odajemy ołożenie tego ciała w ażdej chwili względem wybranego uładu wsółrzędnych. Porawny

Bardziej szczegółowo

Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne. 1. Badanie przelewu o ostrej krawędzi

Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne. 1. Badanie przelewu o ostrej krawędzi Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne 1. adanie rzelewu o ostrej krawędzi Wrowadzenie Przelewem nazywana jest cześć rzegrody umiejscowionej w kanale, onad którą może nastąić rzeływ.

Bardziej szczegółowo

Dynamiczne struktury danych: listy

Dynamiczne struktury danych: listy Dynamiczne struktury danych: listy Mirosław Mortka Zaczynając rogramować w dowolnym języku rogramowania jesteśmy zmuszeni do oanowania zasad osługiwania się odstawowymi tyami danych. Na rzykład w języku

Bardziej szczegółowo

Ćwiczenie 6. Symulacja komputerowa wybranych procesów farmakokinetycznych z uwzględnieniem farmakokinetyki bezmodelowej

Ćwiczenie 6. Symulacja komputerowa wybranych procesów farmakokinetycznych z uwzględnieniem farmakokinetyki bezmodelowej Ćwiczenie 6. Symulacja komputerowa wybranych procesów farmakokinetycznych z uwzględnieniem farmakokinetyki bezmodelowej Celem ćwiczenia jest wyznaczenie podstawowych parametrów farmakokinetycznych paracetamolu

Bardziej szczegółowo

WARUNKI RÓWNOWAGI UKŁADU TERMODYNAMICZNEGO

WARUNKI RÓWNOWAGI UKŁADU TERMODYNAMICZNEGO WARUNKI RÓWNOWAGI UKŁADU ERMODYNAMICZNEGO Proces termodynamiczny zachodzi doóty, doóki układ nie osiągnie stanu równowagi. W stanie równowagi odowiedni otencjał termodynamiczny układu osiąga minimum, odczas

Bardziej szczegółowo

Opis kształtu w przestrzeni 2D. Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej AGH

Opis kształtu w przestrzeni 2D. Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej AGH Ois kształtu w rzestrzeni 2D Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej AGH Krzywe Beziera W rzyadku tych krzywych wektory styczne w unkach końcowych są określane bezośrednio

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ NAPIĘCIE POWIERZCHNIOWE ROZTWORU WSTĘP Naięcie owierzchniowe jest zjawiskiem wystęującym na granicy faz. Cząstka znajdująca się wewnątrz fazy odlega jednakowym oddziaływaniom ze wszystkich stron, a wyadkowa

Bardziej szczegółowo

Rysunek 1 Przykładowy graf stanów procesu z dyskretnymi położeniami.

Rysunek 1 Przykładowy graf stanów procesu z dyskretnymi położeniami. Procesy Markowa Proces stochastyczny { X } t t nazywamy rocesem markowowskim, jeśli dla każdego momentu t 0 rawdoodobieństwo dowolnego ołożenia systemu w rzyszłości (t>t 0 ) zależy tylko od jego ołożenia

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Politechnia dańsa Wydział Eletrotechnii i Automatyi Katedra Inżynierii Systemów Sterowania Podstawy Automatyi Transmitancyjne schematy bloowe i zasady ich rzeształcania Materiały omocnicze do ćwiczeń termin

Bardziej szczegółowo

Cele farmakologii klinicznej

Cele farmakologii klinicznej Cele farmakologii klinicznej 1. Dążenie do zwiększenia bezpieczeństwa i skuteczności leczenia farmakologicznego, poprawa opieki nad pacjentem - maksymalizacja skuteczności i bezpieczeństwa (farmakoterapia

Bardziej szczegółowo

Wykład 2. Przemiany termodynamiczne

Wykład 2. Przemiany termodynamiczne Wykład Przemiany termodynamiczne Przemiany odwracalne: Przemiany nieodwracalne:. izobaryczna = const 7. dławienie. izotermiczna = const 8. mieszanie. izochoryczna = const 9. tarcie 4. adiabatyczna = const

Bardziej szczegółowo

Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika

Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika Ćwiczenia do wykładu Fizyka tatystyczna i ermodynamika Prowadzący dr gata Fronczak Zestaw 5. ermodynamika rzejść fazowych: równanie lausiusa-laeyrona, własności gazu Van der Waalsa 3.1 Rozważ tyowy diagram

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

Temat wykładu: Równania różniczkowe. Anna Rajfura, Matematyka na kierunku Biologia w SGGW 1

Temat wykładu: Równania różniczkowe. Anna Rajfura, Matematyka na kierunku Biologia w SGGW 1 Temat wykładu: Równania różniczkowe Anna Rajfura, Matematyka na kierunku Biologia w SGGW 1 Zagadnienia 1. Terminologia i oznaczenia 2. Definicje 3. Przykłady Anna Rajfura, Matematyka na kierunku Biologia

Bardziej szczegółowo

Prawa wzajemności Gaussa

Prawa wzajemności Gaussa Kamil Sikorski Prawa wzajemności Gaussa Pytanie 1. Dla jakich liczb ierwszych kongruencja x 2 a() ma rozwiązanie? 1. Theorema Aureum Celem tej części jest okazanie, że x 2 q() ma rozwiązanie ma je x 2

Bardziej szczegółowo

Podstawy Obliczeń Chemicznych

Podstawy Obliczeń Chemicznych Podstawy Obliczeń Chemicznych Korekta i uzuełnienia z dnia 0.10.009 Autor rozdziału: Łukasz Ponikiewski Rozdział. Prawa Gazowe.1. Warunki normalne.1.1. Objętość molowa gazów rawo Avogadro.1.. Stała gazowa..

Bardziej szczegółowo

= T. = dt. Q = T (d - to nie jest różniczka, tylko wyrażenie różniczkowe); z I zasady termodynamiki: przy stałej objętości. = dt.

= T. = dt. Q = T (d - to nie jest różniczka, tylko wyrażenie różniczkowe); z I zasady termodynamiki: przy stałej objętości. = dt. ieło właściwe gazów definicja emiryczna: Q = (na jednostkę masy) T ojemność cielna = m ieło właściwe zależy od rocesu: Q rzy stałym ciśnieniu = T dq = dt rzy stałej objętości Q = T (d - to nie jest różniczka,

Bardziej szczegółowo

J. Szantyr - Wykład nr 30 Podstawy gazodynamiki II. Prostopadłe fale uderzeniowe

J. Szantyr - Wykład nr 30 Podstawy gazodynamiki II. Prostopadłe fale uderzeniowe Proagacja zaburzeń o skończonej (dużej) amlitudzie. W takim rzyadku nie jest możliwa linearyzacja równań zachowania. Rozwiązanie ich w ostaci nieliniowej jest skomlikowane i rowadzi do nastęujących zależności

Bardziej szczegółowo

Elastyczność popytu. Rodzaje elastyczności popytu. e p = - Pamiętajmy, że rozpatrujemy wielkości względne!!! Wzory na elastyczność cenową popytu D

Elastyczność popytu. Rodzaje elastyczności popytu. e p = - Pamiętajmy, że rozpatrujemy wielkości względne!!! Wzory na elastyczność cenową popytu D lastyczność oytu Rodzaje elastyczności oytu > lastyczność cenowa oytu - lastyczność mieszana oytu - e m = < lastyczność dochodowa oytu - e i lastyczność cenowa oytu - lastyczność cenowa oytu jest to stosunek

Bardziej szczegółowo

Metody symulacji komputerowych Modelowanie systemów technicznych

Metody symulacji komputerowych Modelowanie systemów technicznych Metody symulacji komputerowych Modelowanie systemów technicznych dr inż. Ryszard Myhan Katedra Inżynierii Procesów Rolniczych Program przedmiotu Lp. Temat Zakres 1. Wprowadzenie do teorii systemów Definicje

Bardziej szczegółowo

Opis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk

Opis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk Opis systemów dynamicznych Mieczysław Brdyś 27.09.2010, Gdańsk Rozważmy układ RC przedstawiony na rysunku poniżej: wejscie u(t) R C wyjście y(t)=vc(t) Niech u(t) = 2 + sin(t) dla t t 0 gdzie t 0 to chwila

Bardziej szczegółowo

ZEROWA ZASADA TERMODYNAMIKI

ZEROWA ZASADA TERMODYNAMIKI ERMODYNAMIKA Zerowa zasada termodynamiki Pomiar temeratury i skale temeratur Równanie stanu gazu doskonałego Cieło i temeratura Pojemność cielna i cieło właściwe Cieło rzemiany Przemiany termodynamiczne

Bardziej szczegółowo

Równania różniczkowe. Dariusz Uciński. Wykład 7. Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski

Równania różniczkowe. Dariusz Uciński. Wykład 7. Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 7 Plan Model wzrostu populacji 1 Część 1: Równania pierwszego rzędu, jedna zmienna Model wzrostu populacji 2 Model skoku

Bardziej szczegółowo

Definicje i przykłady

Definicje i przykłady Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest

Bardziej szczegółowo

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 2

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 2 INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI Laboratorium z mechaniki łynów ĆWICZENIE NR OKREŚLENIE WSPÓLCZYNNIKA STRAT MIEJSCOWYCH PRZEPŁYWU POWIETRZA W RUROCIĄGU ZAKRZYWIONYM 1.

Bardziej szczegółowo

Ulotka dołączona do opakowania: informacja dla użytkownika. Bendamustine Kabi, 2,5 mg/ml, proszek do sporządzania koncentratu roztworu do infuzji

Ulotka dołączona do opakowania: informacja dla użytkownika. Bendamustine Kabi, 2,5 mg/ml, proszek do sporządzania koncentratu roztworu do infuzji Ulotka dołączona do opakowania: informacja dla użytkownika Bendamustine Kabi, 2,5 mg/ml, proszek do sporządzania koncentratu roztworu do infuzji Bendamustini hydrochloridum Należy uważnie zapoznać się

Bardziej szczegółowo

Dr inż. Marta Kamińska

Dr inż. Marta Kamińska Wykład 4 Nowe techniki i technologie dla medycyny Dr inż. Marta Kamińska Wykład 4 Tkanka to grupa lub warstwa komórek wyspecjalizowanych w podobny sposób i pełniących wspólnie pewną specyficzną funkcję.

Bardziej szczegółowo

TERMODYNAMIKA TECHNICZNA I CHEMICZNA

TERMODYNAMIKA TECHNICZNA I CHEMICZNA TERMODYNAMIKA TECHNICZNA I CHEMICZNA WYKŁAD IX RÓWNOWAGA FAZOWA W UKŁADZIE CIAŁO STAŁE-CIECZ (krystalizacja) ADSORPCJA KRYSTALIZACJA, ADSORPCJA 1 RÓWNOWAGA FAZOWA W UKŁADZIE CIAŁO STAŁE-CIECZ (krystalizacja)

Bardziej szczegółowo

WYBÓR FORMY OPODATKOWANIA PRZEDSIĘBIORSTW NIEPOSIADAJĄCYCH OSOBOWOŚCI PRAWNEJ

WYBÓR FORMY OPODATKOWANIA PRZEDSIĘBIORSTW NIEPOSIADAJĄCYCH OSOBOWOŚCI PRAWNEJ ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 667 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 40 2011 ADAM ADAMCZYK Uniwersytet Szczeciński WYBÓR FORMY OPODATKOWANIA PRZEDSIĘBIORSTW NIEPOSIADAJĄCYCH OSOBOWOŚCI

Bardziej szczegółowo

( n) Łańcuchy Markowa X 0, X 1,...

( n) Łańcuchy Markowa X 0, X 1,... Łańcuchy Markowa Łańcuchy Markowa to rocesy dyskretne w czasie i o dyskretnym zbiorze stanów, "bez amięci". Zwykle będziemy zakładać, że zbiór stanów to odzbiór zbioru liczb całkowitych Z lub zbioru {,,,...}

Bardziej szczegółowo

WYKŁAD 14 PROSTOPADŁA FALA UDERZENIOWA

WYKŁAD 14 PROSTOPADŁA FALA UDERZENIOWA WYKŁAD 4 PROSTOPADŁA FALA UDERZENIOWA PROSTOPADŁA FALA UDERZENIOWA. ADIABATA HUGONIOTA. S 0 normal shock wave S Gazodynamika doszcza istnienie silnych nieciągłości w rzeływach gaz. Najrostszym rzyadkiem

Bardziej szczegółowo

Wykład 3. Prawo Pascala

Wykład 3. Prawo Pascala 018-10-18 Wykład 3 Prawo Pascala Pływanie ciał Ściśliwość gazów, cieczy i ciał stałych Przemiany gazowe Równanie stanu gazu doskonałego Równanie stanu gazu van der Waalsa Przejścia fazowe materii W. Dominik

Bardziej szczegółowo

J. Szantyr Wykład nr 16 Przepływy w przewodach zamkniętych

J. Szantyr Wykład nr 16 Przepływy w przewodach zamkniętych J. Szantyr Wykład nr 6 Przeływy w rzewodach zamkniętych Przewód zamknięty kanał o dowolnym kształcie rzekroju orzecznego, ograniczonym linią zamkniętą, całkowicie wyełniony łynem (bez swobodnej owierzchni)

Bardziej szczegółowo

Ćwiczenie nr 1. Oznaczanie porowatości otwartej, gęstości pozornej i nasiąkliwości wodnej biomateriałów ceramicznych

Ćwiczenie nr 1. Oznaczanie porowatości otwartej, gęstości pozornej i nasiąkliwości wodnej biomateriałów ceramicznych Ćwiczenie nr 1 Oznaczanie orowatości otwartej, gęstości ozornej i nasiąkliwości wodnej biomateriałów ceramicznych Cel ćwiczenia: Zaoznanie się z metodyką oznaczania orowatości otwartej, gęstości ozornej

Bardziej szczegółowo

Wstęp do równań różniczkowych

Wstęp do równań różniczkowych Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe,

Bardziej szczegółowo

Niezawodność elementu nienaprawialnego. nienaprawialnego. 1. Model niezawodnościowy elementu. 1. Model niezawodnościowy elementu

Niezawodność elementu nienaprawialnego. nienaprawialnego. 1. Model niezawodnościowy elementu. 1. Model niezawodnościowy elementu Niezawodność elemenu nienarawialnego. Model niezawodnościowy elemenu nienarawialnego. Niekóre rozkłady zmiennych losowych sosowane w oisie niezawodności elemenów 3. Funkcyjne i liczbowe charakerysyki niezawodności

Bardziej szczegółowo

Mechanizm działania terapii fotodynamicznej w diagnozowaniu i leczeniu nowotworów. Anna Szczypka Aleksandra Tyrawska

Mechanizm działania terapii fotodynamicznej w diagnozowaniu i leczeniu nowotworów. Anna Szczypka Aleksandra Tyrawska Mechanizm działania terapii fotodynamicznej w diagnozowaniu i leczeniu nowotworów Anna Szczypka Aleksandra Tyrawska Metody fotodynamiczne PDT Technika diagnostyczna i terapeutyczna zaliczana do form fotochemioterapii

Bardziej szczegółowo

ĆWICZENIE 3. Farmakokinetyka nieliniowa i jej konsekwencje terapeutyczne na podstawie zmian stężenia fenytoiny w osoczu krwi

ĆWICZENIE 3. Farmakokinetyka nieliniowa i jej konsekwencje terapeutyczne na podstawie zmian stężenia fenytoiny w osoczu krwi ĆWICZENIE 3 Farmakokinetyka nieliniowa i jej konsekwencje terapeutyczne na podstawie zmian stężenia fenytoiny w osoczu krwi Celem ćwiczenia jest wyznaczenie podstawowych parametrów charakteryzujących kinetykę

Bardziej szczegółowo

Rachunek różniczkowy funkcji dwóch zmiennych

Rachunek różniczkowy funkcji dwóch zmiennych Rachunek różniczkowy funkcji dwóch zmiennych Definicja Spis treści: Wykres Ciągłość, granica iterowana i podwójna Pochodne cząstkowe Różniczka zupełna Gradient Pochodna kierunkowa Twierdzenie Schwarza

Bardziej szczegółowo

Głównym przedmiotem dzisiejszego wykładu będzie systemowe podejście do tworzenia modeli biocybernetycznych

Głównym przedmiotem dzisiejszego wykładu będzie systemowe podejście do tworzenia modeli biocybernetycznych Przykłady prostych modeli systemów biocybernetycznych Wykład nr 5 z kursu Biocybernetyki dla Inżynierii Biomedycznej prowadzonego przez Prof. Ryszarda Tadeusiewicza Motto na dziś:...myślenie ludzkie jest

Bardziej szczegółowo

WYKŁAD 5 TRANZYSTORY BIPOLARNE

WYKŁAD 5 TRANZYSTORY BIPOLARNE 43 KŁAD 5 TRANZYSTORY IPOLARN Tranzystor biolarny to odowiednie ołączenie dwu złącz n : n n n W rzeczywistości budowa tranzystora znacznie różni się od schematu okazanego owyżej : (PRZYKŁAD TRANZYSTORA

Bardziej szczegółowo

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0. FALE, ELEMENY ERMODYNAMIKI I HYDRODY- NAMIKI. 0.9. Podstawy termodynamiki i raw gazowych. Podstawowe ojęcia Gaz doskonały: - cząsteczki są unktami materialnymi, - nie oddziałują ze sobą siłami międzycząsteczkowymi,

Bardziej szczegółowo

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych Mechatronika i inteligentne systemy produkcyjne Modelowanie systemów mechatronicznych Platformy przetwarzania danych 1 Sterowanie procesem oparte na jego modelu u 1 (t) System rzeczywisty x(t) y(t) Tworzenie

Bardziej szczegółowo

Procedura modelowania matematycznego

Procedura modelowania matematycznego Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie

Bardziej szczegółowo

Mini-quiz 0 Mini-quiz 1

Mini-quiz 0 Mini-quiz 1 rawda fałsz Mini-quiz 0.Wielkości ekstensywne to: a rędkość kątowa b masa układu c ilość cząstek d temeratura e całkowity moment magnetyczny.. Układy otwarte: a mogą wymieniać energię z otoczeniem b mogą

Bardziej szczegółowo

Prawa gazowe- Tomasz Żabierek

Prawa gazowe- Tomasz Żabierek Prawa gazowe- Tomasz Żabierek Zachowanie gazów czystych i mieszanin tlenowo azotowych w zakresie użytecznych ciśnień i temperatur można dla większości przypadków z wystarczającą dokładnością opisywać równaniem

Bardziej szczegółowo

Ćwiczenie nr 3. Wyznaczanie współczynnika Joule a-thomsona wybranych gazów rzeczywistych.

Ćwiczenie nr 3. Wyznaczanie współczynnika Joule a-thomsona wybranych gazów rzeczywistych. Termodynamika II ćwiczenia laboratoryjne Ćwiczenie nr 3 Temat: Wyznaczanie wsółczynnika Joule a-tomsona wybranyc gazów rzeczywistyc. Miejsce ćwiczeń: Laboratorium Tecnologii Gazowyc Politecniki Poznańskiej

Bardziej szczegółowo

Wykład 4 Gaz doskonały, gaz półdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstępstwa gazów

Wykład 4 Gaz doskonały, gaz półdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstępstwa gazów Wykład 4 Gaz doskonały, gaz ółdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstęstwa gazów rzeczywistych od gazu doskonałego: stoień ściśliwości Z

Bardziej szczegółowo

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0.0. Podstawy hydrodynamiki. Podstawowe ojęcia z hydrostatyki Ciśnienie: F N = = Pa jednostka raktyczna (atmosfera fizyczna): S m Ciśnienie hydrostatyczne:

Bardziej szczegółowo

Metoda simpleks. Gliwice

Metoda simpleks. Gliwice Sprowadzenie modelu do postaci bazowej Sprowadzenie modelu do postaci bazowej Przykład 4 Model matematyczny z Przykładu 1 sprowadzić do postaci bazowej. FC: ( ) Z x, x = 6x + 5x MAX 1 2 1 2 O: WB: 1 2

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Teoria kinetyczna Kierunek Wyróżniony rzez PKA 1 Termodynamika klasyczna Pierwsza zasada termodynamiki to rosta zasada zachowania energii, czyli ogólna reguła

Bardziej szczegółowo

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 4 - algebra schematów blokowych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Schemat blokowy Schemat blokowy (strukturalny): przedstawia wzajemne powiązania pomiędzy poszczególnymi zespołami

Bardziej szczegółowo

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na

Bardziej szczegółowo

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Obóz Naukowy Olimiady Matematycznej Gimnazjalistów Liga zadaniowa 01/01 Seria VII styczeń 01 rozwiązania zadań 1. Udowodnij, że dla dowolnej dodatniej liczby całkowitej n liczba n! jest odzielna rzez n!

Bardziej szczegółowo

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23 Stany materii Masa i rozmiary cząstek Masą atomową ierwiastka chemicznego nazywamy stosunek masy atomu tego ierwiastka do masy / atomu węgla C ( C - izoto węgla o liczbie masowej ). Masą cząsteczkową nazywamy

Bardziej szczegółowo

1. Zadanie. Określmy zbiór A = {0, 1, 2, 3, 4}. Dla x, y A definiujemy: x jest w relacji R z y (zapisujemy xry, lub (x, y) R) x + y 3

1. Zadanie. Określmy zbiór A = {0, 1, 2, 3, 4}. Dla x, y A definiujemy: x jest w relacji R z y (zapisujemy xry, lub (x, y) R) x + y 3 1. Zadanie. Określmy zbiór A = {0, 1, 2, 3, 4}. Dla x, y A definiujemy: x jest w relacji R z y (zaisujemy xry, lub (x, y) R) x + y 3 (a) Ile ar (x, y) należy do relacji R? (b) Czy relacja R jest zwrotna?

Bardziej szczegółowo

Ć W I C Z E N I E N R C-5

Ć W I C Z E N I E N R C-5 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII ATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ECHANIKI I CIEPŁA Ć W I C Z E N I E N R C-5 WYZNACZANIE CIEPŁA PAROWANIA WODY ETODĄ KALORYETRYCZNĄ

Bardziej szczegółowo

Pochodną funkcji w punkcie (ozn. ) nazywamy granicę ilorazu różnicowego:

Pochodną funkcji w punkcie (ozn. ) nazywamy granicę ilorazu różnicowego: Podstawowe definicje Iloraz różnicowy funkcji Def. Niech funkcja będzie określona w pewnym przedziale otwartym zawierającym punkt. Ilorazem różnicowym funkcji w punkcie dla przyrostu nazywamy funkcję Pochodna

Bardziej szczegółowo

5. Jednowymiarowy przepływ gazu przez dysze.

5. Jednowymiarowy przepływ gazu przez dysze. CZĘŚĆ II DYNAMIKA GAZÓW 9 rzeływ gazu rzez dysze. 5. Jednowymiarowy rzeływ gazu rzez dysze. Parametry krytyczne. 5.. Dysza zbieżna. T = c E - back ressure T c to exhauster Rys.5.. Dysza zbieżna. Równanie

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Autoatyki Katedra Inżynierii Systeów Sterowania Metody otyalizacji Metody rograowania nieliniowego II Materiały oocnicze do ćwiczeń laboratoryjnych T7 Oracowanie:

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp Obiekty (procesy) rzeczywiste, a co za tym idzie układy regulacji, mają właściwości nieliniowe,

Bardziej szczegółowo

Równania różniczkowe metody numeryczne

Równania różniczkowe metody numeryczne Instytut Sterowania i Systemów Informatycznyc Universytet Zielonogórski Wykład 9 Metoda Eulera Rozważmy równanie różniczkowe dy(t) = f (t, y(t)), y(t 0 ) = y 0 którego rozwiazanie ccemy wyznaczyć w przedziale

Bardziej szczegółowo

Sposoby modelowania układów dynamicznych. Pytania

Sposoby modelowania układów dynamicznych. Pytania Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,

Bardziej szczegółowo

Warto wiedzieć więcej o swojej chorobie, aby z nią walczyć

Warto wiedzieć więcej o swojej chorobie, aby z nią walczyć Warto wiedzieć więcej o swojej chorobie, aby z nią walczyć Kilka ważnych porad dla kobiet chorych na raka piersi Konsultacja merytoryczna: dr hab. n. med. Lubomir Bodnar Warto wiedzieć więcej o swojej

Bardziej szczegółowo

nieciągłość parametrów przepływu przyjmuje postać płaszczyzny prostopadłej do kierunku przepływu

nieciągłość parametrów przepływu przyjmuje postać płaszczyzny prostopadłej do kierunku przepływu CZĘŚĆ II DYNAMIKA GAZÓW 4 Rozdział 6 Prostoadła fala 6. Prostoadła fala Podstawowe własności: nieciągłość arametrów rzeływu rzyjmuje ostać łaszczyzny rostoadłej do kierunku rzeływu w zbieżno - rozbieżnym

Bardziej szczegółowo

Mechanika cieczy. Ciecz jako ośrodek ciągły. 1. Cząsteczki cieczy nie są związane w położeniach równowagi mogą przemieszczać się na duże odległości.

Mechanika cieczy. Ciecz jako ośrodek ciągły. 1. Cząsteczki cieczy nie są związane w położeniach równowagi mogą przemieszczać się na duże odległości. Mecanika cieczy Ciecz jako ośrodek ciągły. Cząsteczki cieczy nie są związane w ołożeniac równowagi mogą rzemieszczać się na duże odległości.. Cząsteczki cieczy oddziałują ze sobą, lecz oddziaływania te

Bardziej szczegółowo

ĆWICZENIE 2. Farmakokinetyka wlewu dożylnego

ĆWICZENIE 2. Farmakokinetyka wlewu dożylnego ĆWICZENIE 2 Farmakokinetyka wlewu dożylnego Celem ćwiczenia jest wyznaczenie parametrów farmakokinetycznych leku podanego drogą wlewu dożylnego w modelu 1-kompartmentowym z wykorzystaniem programu TopFit

Bardziej szczegółowo

Co to jest cukrzyca?

Co to jest cukrzyca? Co to jest cukrzyca? Schemat postępowania w cukrzycy Wstęp Cukrzyca to stan, w którym organizm nie może utrzymać na odpowiednim poziomie stężenia glukozy (cukru) we krwi. Glukoza jest głównym źródłem energii

Bardziej szczegółowo

Wstęp do równań różniczkowych

Wstęp do równań różniczkowych Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych

Bardziej szczegółowo

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 1 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 30 Plan wykładu Podstawowe informacje Modele układów elektrycznych

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

BeStCAD - Moduł INŻYNIER 1

BeStCAD - Moduł INŻYNIER 1 BeStCAD - Moduł INŻYNIER 1 Ścianki szczelne Oblicza ścianki szczelne Ikona: Polecenie: SCISZ Menu: BstInżynier Ścianki szczelne Polecenie służy do obliczania ścianek szczelnych. Wyniki obliczeń mogą być

Bardziej szczegółowo