TERMODYNAMIKA. Termodynamika jest to dział nauk przyrodniczych zajmujący się własnościami
|
|
- Maciej Baranowski
- 8 lat temu
- Przeglądów:
Transkrypt
1 TERMODYNAMIKA Termodynamika jest to dział nauk rzyrodniczych zajmujący się własnościami energetycznymi ciał. Przy badaniu i objaśnianiu własności układów fizycznych termodynamika osługuje się ojęciami makroskoowymi bez wnikania w obraz mikroskoowy zjawisk. U odstaw termodynamiki leżą zasady termodynamiki otrzymane w wyniku uogólnienia obserwacji doświadczalnych. Termodynamika rozważa zbiory ciał, które nazywane są układami termodynamicznymi. Układ jest w stanie równowagi termodynamicznej jeśli osiada dobrze określone arametry termodynamiczne. Parametry termodynamiczne takie jak temeratura, ciśnienie, objętość czy liczba cząstek układu określają stan układu. W równowadze termodynamicznej arametry te są stałe w dowolnie długim czasie ( mogą, ściśle mówiąc, odlegać niewielkim fluktuacjom ) rzy niezmiennych warunkach zewnętrznych. Proces rzechodzenia układu z stanu nierównowagowego do równowagowego nazywa się relaksacją. Przejście układu z jednego stanu do drugiego nazywamy rzemianą termodynamiczną. Jeśli rzemiana składa się z ciągłego zbioru kolejnych stanów równowagi to nosi nazwę równowagowej zakłada się, że taka rzemiana może zachodzić także w odwrotnym kierunku. Ważnym ojęciem termodynamiki jest energia wewnętrzna. Energia wewnętrzna jest równa całkowitej energii układu. Składa się z energii kinetycznej oszczególnych składników układu ( n. cząsteczek gazu ) i energii oddziaływań wzajemnych składników, a także z energii wewnętrznej cząstek układu. Nie uwzględnia się jednak energii kinetycznej układu jako całości oraz energii otencjalnej oddziaływań składników układu z olami zewnętrznymi. Energia wewnętrzna jest funkcją stanu, tzn. jej zmiana zależy tylko od wartości w stanach końcowym i oczątkowym rzemiany. Nie zależy od rodzaju rzemiany czyli od stanów ośrednich. 1
2 Energię wewnętrzną można zmienić w wyniku dwóch różnych rocesów. Pierwszy olega na wykonaniu racy rzez siły zewnętrzne i w ten sosób zmiany objętościowe dobrze izolowanego układu za ich ośrednictwem mogą dorowadzić do zmiany energii wewnętrznej. Taki sosób rzekazu energii może być zrealizowany n. za ośrednictwem tłoka oruszającego się wewnątrz izolowanego cielnie cylindra z gazem. Tak więc raca sił zewnętrznych za ośrednictwem uorządkowanego ruchu tłoka może zmienić energię wewnętrzną cząsteczek gazu. Drugi roces olega na rzekazie cieła do układu. Przekaz ten owoduje wzmożenie intensywności chaotycznego ruchu cząstek układu. Można go zrealizować w wyżej wsomnianym cylindrze; n. rzy stałej objętości cylindra usuwa się izolację cielną jego ścianek. ząsteczki gazu w cylindrze zderzając się z gorącymi ( zimnymi ) ściankami uzyskują większą ( mniejszą ) energię. Zasady termodynamiki Zerowa zasada termodynamiki Jeśli układy A i B mają tę samą wartość dowolnej funkcji stanu i odobnie jest w układach A i, to układy B i mają tę samą wartość tej funkcji stanu. Proste zastosowanie tej zasady to n. omiar temeratury za omocą sensora A. Powiedzmy, że sensor A zmierzył temeraturę ciała B i wynosiła ona T. Jeśli nastęnie sensor A wyznaczył temeraturę ciała także T, to na odstawie zerowej zasady termodynamiki twierdzimy, że temeratura ciał B i jest taka sama. Pierwsza zasada termodynamiki ieło Q obrane rzez układ jest zużywane na wzrost energii wewnętrznej układu ( U2 U1 ) i na wykonaną rzez układ racę W : Q= U2 U1 + W. (6.1) 2
3 Zasada ta wyraża rawo zachowania energii. Inne jej sformułowanie to: Nie jest możliwe eretuum mobile ierwszego rodzaju, tzn. nie można zbudować okresowo racującego silnika, który wykonywałby większą racę niż obierałby energii z zewnątrz. Pierwszą zasadę można odać w ostaci różniczkowej: dq = du + dw. (6.2) Pracę elementarną dw wygodnie jest rzedstawić w ostaci: A rzekrój tłoka, dx - rzesunięcie tłoka, d = Adx - zmiana objętości, - ciśnienie gazu, dw = Fds = Fdx = Adx = d, (6.3) W 2 = d. (6.4) 1 dq = du + d (6.5) ieło, racę i energię wewnętrzną mierzymy w dżulach. ieło i raca nie są funkcjami stanu w odróżnieniu od energii wewnętrznej. 3
4 Druga zasada termodynamiki O ile ierwsza zasada termodynamiki wyraża zasadę zachowania energii, to druga zasada ozwala określić kierunkowość rocesów termodynamicznych. Jedno ze sformułowań tej zasady stanowi, że: ieło rzeływa od ciała o wyższej temeraturze do ciała o niższej temeraturze. Inne znane sformułowanie tej zasady brzmi: Niemożliwe jest eretuum mobile drugiego rodzaju, tzn. racujący okresowo silnik, który obierałby cieło od jednego zbiornika i zamieniałby to cieło całkowicie na racę. Trzecia zasada termodynamiki twierdzenie Nersta Nie można za omocą skończonej liczby kroków srowadzić temeratury układu do temeratury zera bezwzględnego. Więcej na temat drugiej i trzeciej zasady termodynamiki owiemy na wykładzie z fizyki statystycznej. Gaz doskonały Przez gaz doskonały rozumiemy zbiór cząstek o znikomo małych rozmiarach nie oddziaływujących ze sobą oza momentami kiedy się zderzają. Gazy rzeczywiste osiadają własności gazu doskonałego rzy niskich ciśnieniach. Gaz doskonały stanowi najrostszy modelowy układ termodynamiczny. Emirycznie ustalono, że arametry termodynamiczne gazu doskonałego: ciśnienie, ob jętość i temeratura bezwzględna T sełniają związek const, T = (6.6) o ile masa gazu w zbiorniku jest stała. Gazy doskonałe sełniają rawo Avogadra, które stanowi, że w warunkach takiej samej temeratury i tego samego ciśnienia mol każdego gazu 4
5 zajmuje tę samą objętość. W tzw. warunkach normalnych: T = K( t = ) 273 0, 5 = 1Atm = 1, Pa ta objętość wynosi = 22, 4l = m , 4 10 m /mol. Na odstawie tych danych można wyznaczyć stałą w równaniu (6.6): m T , Pa 22, 4 10 m /mol J = = 8, 31 = R, 273K mol K gdzie R = 8, 31 J/ mol K ( ) to uniwersalna stała gazowa. W ogólnym rzyadku kiedy mamy n moli gazu, równanie (6.6) można zaisać w ostaci m = nrt = RT, (6.7) μ gdzie m to masa gazu, μ - masa molowa. Równanie (6.7) nosi nazwę równania stanu gazu doskonałego, lub równania laeyrona. Przyomnimy ojęcia, które będą stosowane w dalszym toku wykładu: 1 mol ilość substancji zawierająca taką samą liczbę cząstek ( atomów, cząsteczek, jonów, elektronów ) co 0,012 kg izotou 12. W jednym molu liczba cząstek wynosi N A = 6, i nosi nazwę liczba Avogadra mol 23 1 Masa molowa μ - masa jednego mola. Równanie stanu można zaisać w różnych ostaciach: mn A R = T = NkT, (6.8) μ N A gdzie k R 23 J = = 1,38 10 to stała Boltzmanna, a N to ilość cząsteczek gazu w naczyniu, N K A lub w ostaci = nkt, 5
6 N gdzie n = oznacza koncentrację ( ilość cząstek w jednostce objętości ) gazu, albo też m μ μ = ρ =, (6.9) RT RT gdzie ρ oznacza gęstość gazu. ieło molowe gazu doskonałego Pojemność cielna ciała K c K c dq, (6.10) dt jest to ilość cieła otrzebna do zmiany temeratury ciała o jednostkę. Powszechnie jednak używa się innej miary do określenia zdolności danego ciała do rzyjmowania czy też oddawania cieła cieła właściwego substancji c dq c, (6.11) mdt gdzie m jest masą ciała. Ta definicja ozwala określić rzyrost cieła dq wzorem dobrze znanym z równań bilansu cielnego dq = mcdt. (6.12) W rzyadku kiedy jako miara ilości materii używany jest mol, wygodnie jest oerować ojęciem cieła molowego, definiowanego jako ilość cieła otrzebna do zmiany temeratury 1 mola ciała o 1 Kelwin dq, (6.13) ndt gdzie n to ilość moli. ieło molowe łączy z ciełem właściwym c relacja 6
7 = cμ, (6.14) gdzie μ to masa molowa. Dla gazów wygodnie jest wrowadzić ojęcie cieła molowego rzy stałej objętości i cieła molowego rzy stałym ciśnieniu. dq ndt = const, (6.15) a onieważ z ierwszej zasady termodynamiki (6.5) wynika, że dla = const dw = 0 i du dq = du to =, i ndt du = n dt. (6.16) Z wzoru (6.16) wynika, że dla stałego : U = nt + const i Δ U = n Δ T, (6.17) czyli dla gazu doskonałego zmiana energii wewnętrznej stanie końcowym i oczątkowym rzemiany. Δ U zależy od różnicy temeratur w ieło molowe rzy stałym ciśnieniu jest definiowane równaniem dq ndt = const. (6.18) Między i istnieje związek, który wynika z ierwszej zasady termodynamiki oraz z równania laeyrona dq = du + d /( ndt ), dq du d = +, (6.19) ndt ndt ndt 7
8 = nrt, rzy stałym ciśnieniu otrzymamy d = nrdt i dq du nrdt = +, ndt ndt ndt = const du a onieważ, ndt = otrzymamy = + R. (6.20) Przemiany gazowe 1. Przemiana izotermiczna T = const. Z równania stanu (6.7) otrzymamy = const. (6.21) Pierwsza zasada termodynamiki ozwala obliczyć cieło i racę rzemiany dq = dw = d d Q = W = d = d = = ln = ln = nrt ln (6.22) 2. Przemiana izochoryczna = const. Z równania stanu otrzymamy const, T = (6.23) dq = du = n dt, dw = 0, Q=Δ U = n ( ), T2 T1 W = 0. (6.24) 3. Przemiana izobaryczna = const. Z równania stanu const T = (6.25) 8
9 2 ( 2 1), ( 2 1), ( 2 1). 1 W = d = Δ U = n T T Q = n T T (6.26) 4. Przemiana adiabatyczna dq = 0. Jest to rzemiana bez wymiany cieła z otoczeniem. Ma duże znaczenie rzy omawianiu modelowego cyklu zamkniętego cyklu arnota, a także rzy objaśnianiu mechanizmu rozchodzenia się fali dźwiękowej w gazach. Dla tej rzemiany z definicji dq = 0. Z ierwszej zasady termodynamiki otrzymamy 0 = du + dw, czyli n dt + d = 0. Po zróżniczkowaniu równania stanu mamy d + d = nrdt i dalej d + d n + d = 0, nr d + d + Rd = 0, ( ) ( ) + R d + d = 0, ( ) d + d = 0/ o oznaczeniu = κ mamy d d κ + = 0, κdln( ) + dln( ) = 0, κ ( ) κ ln ( ) = 0, d ln( ) + ln( ) = 0, d i ostatecznie κ = const. (6.27) 9
10 Równanie adiabaty (6.27) znane jest jako równanie Poissona. Korzystając z równania laeyrona można je także rzedstawić w ostaci κ 1 T = const, (6.28) lub 1 κ κ T = const. (6.29) Wykładnik adiabaty κ = dla gazów jednoatomowych wynosi 5, dla gazów 3 dwuatomowych 7 4 κ =, a dla gazów wieloatomowych κ =. Równanie Poissona 5 3 κ = const jest odobne do równania izotermy = const, jednak z uwagi na to, że wykładnik adiabaty κ > 1 adiabata jest bardziej stroma od izotermy. Uzasadnienie odanych wartości κ zostanie rzedstawione w części wykładu dotyczącej fizyki statystycznej. Z definicji rzemiany adiabatycznej dq = 0, cieło rzemiany Q = 0 oraz ( ) dw = du = n dt, W = Δ U = n T T. 2 1 (6.30) 10
11 Wzór barometryczny Otrzymamy teraz rawo, według którego zmienia się ciśnienie atmosferyczne w zależności od wysokości. iśnienie d wywierane rzez ionowy słu owietrza o rzekroju A zawarty między wysokościami h i h+ dh można obliczyć z zależności dmg ρ Adhg ( + d) = = A A d = ρ gdh. Z równania stanu (6.9): μ ρ = otrzymamy RT μ d μg d = gdh + dh = 0. RT RT Dalej założymy, że owietrze orócz tego, że jest gazem doskonałym, to jeszcze jego temeratura nie zmienia się z wysokością, wtedy μg μg d ln( ) + h = 0 ln( ) + h = const, RT RT i z warunku brzegowego: dla h = 0 ; = 0 otrzymamy μg μg ln( 0 ) + 0 = const ln = h, RT 0 RT i ostatecznie otrzymamy wzór barometryczny μgh RT 0. = e (6.31) 11
Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23
Stany materii Masa i rozmiary cząstek Masą atomową ierwiastka chemicznego nazywamy stosunek masy atomu tego ierwiastka do masy / atomu węgla C ( C - izoto węgla o liczbie masowej ). Masą cząsteczkową nazywamy
10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.
0. FALE, ELEMENY ERMODYNAMIKI I HYDRODY- NAMIKI. 0.9. Podstawy termodynamiki i raw gazowych. Podstawowe ojęcia Gaz doskonały: - cząsteczki są unktami materialnymi, - nie oddziałują ze sobą siłami międzycząsteczkowymi,
Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech
emeratura i cieło E=E K +E P +U Energia wewnętrzna [J] - ieło jest energią rzekazywaną między układem a jego otoczeniem na skutek istniejącej między nimi różnicy temeratur na sosób cielny rzez chaotyczne
Termodynamika 1. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Termodynamika Projekt wsółfinansowany rzez Unię Euroejską w ramach Euroejskiego Funduszu Sołecznego Układ termodynamiczny Układ termodynamiczny to ciało lub zbiór rozważanych ciał, w którym obok innych
= T. = dt. Q = T (d - to nie jest różniczka, tylko wyrażenie różniczkowe); z I zasady termodynamiki: przy stałej objętości. = dt.
ieło właściwe gazów definicja emiryczna: Q = (na jednostkę masy) T ojemność cielna = m ieło właściwe zależy od rocesu: Q rzy stałym ciśnieniu = T dq = dt rzy stałej objętości Q = T (d - to nie jest różniczka,
Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Procesów i Konstrukcji Inżynierskich Teoria kinetyczna Kierunek Wyróżniony rzez PKA 1 Termodynamika klasyczna Pierwsza zasada termodynamiki to rosta zasada zachowania energii, czyli ogólna reguła
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,
Wykład 2. Przemiany termodynamiczne
Wykład Przemiany termodynamiczne Przemiany odwracalne: Przemiany nieodwracalne:. izobaryczna = const 7. dławienie. izotermiczna = const 8. mieszanie. izochoryczna = const 9. tarcie 4. adiabatyczna = const
Jest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 :
I zasada termodynamiki. Jest to zasada zachowania energii w termodynamice - równoważność racy i cieła. ozważmy roces adiabatyczny srężania gazu od do : dw, ad - wykonanie racy owoduje rzyrost energii wewnętrznej
Termodynamika 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
ermodynamika Projekt wsółfinansowany rzez Unię Euroejską w ramach Euroejskiego Funduszu Sołecznego Siik ciey siikach (maszynach) cieych cieło zamieniane jest na racę. Elementami siika są: źródło cieła
termodynamika fenomenologiczna
termodynamika termodynamika fenomenologiczna własności termiczne ciał makroskoowych uogólnienie licznych badań doświadczalnych ois makro i mikro rezygnacja z rzyczynowości znaczenie raktyczne układ termodynamiczny
ZEROWA ZASADA TERMODYNAMIKI
ERMODYNAMIKA Zerowa zasada termodynamiki Pomiar temeratury i skale temeratur Równanie stanu gazu doskonałego Cieło i temeratura Pojemność cielna i cieło właściwe Cieło rzemiany Przemiany termodynamiczne
TERMODYNAMIKA FENOMENOLOGICZNA
TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N
prawa gazowe Model gazu doskonałego Temperatura bezwzględna tościowa i entalpia owy Standardowe entalpie tworzenia i spalania 4. Stechiometria 1 tość
5. Gazy, termochemia Doświadczalne rawa gazowe Model gazu doskonałego emeratura bezwzględna Układ i otoczenie Energia wewnętrzna, raca objęto tościowa i entalia Prawo Hessa i cykl kołowy owy Standardowe
Wykład 7: Przekazywanie energii elementy termodynamiki
Wykład 7: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ emperatura Fenomenologicznie wielkość informująca o tym jak ciepłe/zimne
= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A
Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),
Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie
Pierwsza zasada termodynamiki 2.2.1. Doświadczenie Joule a i jego konsekwencje 2.2.2. ieło, ojemność cielna sens i obliczanie 2.2.3. Praca sens i obliczanie 2.2.4. Energia wewnętrzna oraz entalia 2.2.5.
Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.
1 Ciepło jest sposobem przekazywania energii z jednego ciała do drugiego. Ciepło przepływa pod wpływem różnicy temperatur. Jeżeli ciepło nie przepływa mówimy o stanie równowagi termicznej. Zerowa zasada
Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne
TERMODYNAMIKA PROCESOWA I TECHNICZNA
ERMODYNAMIKA PROCESOWA I ECHNICZNA Wykład II Podstawowe definicje cd. Podstawowe idealizacje termodynamiczne I i II Zasada termodynamiki Proste rzemiany termodynamiczne Prof. Antoni Kozioł, Wydział Chemiczny
TERMODYNAMIKA. Przedstaw cykl przemian na wykresie poniższym w układach współrzędnych przedstawionych poniżej III
Włodzimierz Wolczyński 44 POWÓRKA 6 ERMODYNAMKA Zadanie 1 Przedstaw cykl rzemian na wykresie oniższym w układach wsółrzędnych rzedstawionych oniżej Uzuełnij tabelkę wisując nazwę rzemian i symbole: >0,
Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez
Wykład 4 Gaz doskonały, gaz półdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstępstwa gazów
Wykład 4 Gaz doskonały, gaz ółdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstęstwa gazów rzeczywistych od gazu doskonałego: stoień ściśliwości Z
Wykład 7. Energia wewnętrzna jednoatomowego gazu doskonałego wynosi: 3 R . 2. Ciepło molowe przy stałym ciśnieniu obliczymy dzięki zależności: nrt
W. Dominik Wydział Fizyki UW ermodynamika 08/09 /7 Wykład 7 Zasada ekwiartycji energii Stonie swobody ruchu cząsteczek ieło właściwe ciał stałych ównanie adiabaty w modelu kinetyczno-molekularnym g.d.
Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały
Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki
Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m
TERMODYNAMIKA Jednostki podstawowe Wielkość Nazwa Symbol Długość metr m Masa kilogramkg Czas sekunda s Natężenieprąduelektrycznego amper A Temperaturatermodynamicznakelwin K Ilość materii mol mol Światłość
Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 4 Procesy izoparametryczne Entropia Druga zasada termodynamiki Janusz Brzychczyk, Instytut Fizyki UJ Pierwsza zasada termodynamiki procesy kwazistatyczne Zgodnie z pierwszą zasadą termodynamiki,
WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami
WYKŁAD 2 TERMODYNAMIKA Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami Zasada zerowa Kiedy obiekt gorący znajduje się w kontakcie cieplnym z obiektem zimnym następuje
11. Termodynamika. Wybór i opracowanie zadań od 11.1 do Bogusław Kusz.
ermodynamia Wybór i oracowanie zadań od do 5 - Bogusław Kusz W zamniętej butelce o objętości 5cm znajduje się owietrze o temeraturze t 7 C i ciśnieniu hpa Po ewnym czasie słońce ogrzało butelę do temeratury
FIZYKA CZĄSTECZKOWA I TERMODYNAMIKA
FIZYKA CZĄSTECZKOWA I TERMODYNAMIKA Fizyka - cząsteczkowa Dział fizyki badający budowę i własności aterii przy założeniu, że każde ciało składa się z dużej liczby bardzo ałych cząsteczek. Cząsteczki te
Wykład 6: Przekazywanie energii elementy termodynamiki
Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak
Podstawy termodynamiki
Podstawy termodynamiki Temperatura i ciepło Praca jaką wykonuje gaz I zasada termodynamiki Przemiany gazowe izotermiczna izobaryczna izochoryczna adiabatyczna Co to jest temperatura? 40 39 38 Temperatura
Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).
Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo
Kinetyczna teoria gazów Termodynamika. dr Mikołaj Szopa Wykład
Kinetyczna teoria gazów Termodynamika dr Mikołaj Szopa Wykład 7.11.015 Kinetyczna teoria gazów Kinetyczna teoria gazów. Termodynamika Termodynamika klasyczna opisuje tylko wielkości makroskopowe takie
WYZNACZANIE STOSUNKU c p /c v
Uniwersytet Wrocławski, Instytut Fizyki Doświadczalnej, I Pracownia Ćwiczenie nr 33 WYZNACZANIE STOSUNKU c p /c v I WSTĘP Układ termodynamiczny Rozważania dotyczące przekazywania energii poprzez wykonywanie
Przemiany termodynamiczne
Przemiany termodynamiczne.:: Przemiana adiabatyczna ::. Przemiana adiabatyczna (Proces adiabatyczny) - proces termodynamiczny, podczas którego wyizolowany układ nie nawiązuje wymiany ciepła, lecz całość
Wykład 6: Przekazywanie energii elementy termodynamiki
Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak
TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku
TERMODYNAMIKA przykłady zastosowań I.Mańkowski I LO w Lęborku 2016 UKŁAD TERMODYNAMICZNY Dla przykładu układ termodynamiczny stanowią zamknięty cylinder z ruchomym tłokiem, w którym znajduje się gaz tak
Entalpia swobodna (potencjał termodynamiczny)
Entalia swobodna otencjał termodynamiczny. Związek omiędzy zmianą entalii swobodnej a zmianami entroii Całkowita zmiana entroii wywołana jakimś rocesem jest równa sumie zmiany entroii układu i otoczenia:
TERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska
1. Bilans cieplny 2. Przejścia fazowe 3. Równanie stanu gazu doskonałego 4. I zasada termodynamiki 5. Przemiany gazu doskonałego 6. Silnik cieplny 7. II zasada termodynamiki TERMODYNAMIKA Zajęcia wyrównawcze,
Podstawy fizyki sezon 1 X. Elementy termodynamiki
Podstawy fizyki sezon 1 X. Elementy termodynamiki Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Temodynamika
13) Na wykresie pokazano zależność temperatury od objętości gazu A) Przemianę izotermiczną opisują krzywe: B) Przemianę izobaryczną opisują krzywe:
) Ołowiana kula o masie kilograma sada swobodnie z wysokości metrów. Który wzór służy do obliczenia jej energii na wysokości metrów? ) E=m g h B) E=m / C) E=G M m/r D) Q=c w m Δ ) Oblicz energię kulki
Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika
Ćwiczenia do wykładu Fizyka tatystyczna i ermodynamika Prowadzący dr gata Fronczak Zestaw 5. ermodynamika rzejść fazowych: równanie lausiusa-laeyrona, własności gazu Van der Waalsa 3.1 Rozważ tyowy diagram
DRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych.
TERMODYNAMIKA GAZ DOSKONAŁY Gaz doskonały to abstrakcyjny, matematyczny model gazu, chociaż wiele gazów (azot, tlen) w warunkach normalnych zachowuje się w przybliżeniu jak gaz doskonały. Model ten zakłada:
Termodynamika fenomenologiczna i statystyczna
Termodynamika fenomenologiczna i statystyczna Termodynamika fenomenologiczna zajmuje się zwykle badaniem makroskoowych układów termodynamicznych złożonych z bardzo dużej ilości obiektów mikroskoowych.
Wykład Praca (1.1) c Całka liniowa definiuje pracę wykonaną w kierunku działania siły. Reinhard Kulessa 1
1.6 Praca Wykład 2 Praca zdefiniowana jest jako ilość energii dostarczanej przez siłę działającą na pewnej drodze i matematycznie jest zapisana jako: W = c r F r ds (1.1) ds F θ c Całka liniowa definiuje
16 GAZY CZ. I PRZEMIANY.RÓWNANIE CLAPEYRONA
Włodzimierz Wolczyński 16 GAZY CZ. PRZEMANY.RÓWNANE CLAPEYRONA Podstawowy wzór teorii kinetyczno-molekularnej gazów N ilość cząsteczek gazu 2 3 ś. Równanie stanu gazu doskonałego ż ciśnienie, objętość,
Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej
termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,
DRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
Termodynamika. Energia wewnętrzna ciał
ermodynamika Energia wewnętrzna ciał Cząsteczki ciał stałych, cieczy i gazów znajdują się w nieustannym ruchu oddziałując ze sobą. Sumę energii kinetycznej oraz potencjalnej oddziałujących cząsteczek nazywamy
Fizykochemiczne podstawy inżynierii procesowej
Fizykochemiczne podstawy inżynierii procesowej Wykład II Podstawowe definicje cd. Podstawowe idealizacje termodynamiczne I i II Zasada termodynamiki Proste przemiany termodynamiczne PRZYPOMNIENIE Z OSTATNIEGO
Podstawowe pojęcia 1
Tomasz Lubera Podstawowe pojęcia 1 Układ część przestrzeni wyodrębniona myślowo lub fizycznie z otoczenia Układ izolowany niewymieniający masy i energii z otoczeniem Układ zamknięty wymieniający tylko
Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kontakt,informacja i konsultacje. Co to jest chemia fizyczna?
Chemia Fizyczna Technologia Chemiczna II ro Wyład 1 Kierowni rzedmiotu: Dr hab. inż. Wojciech Chrzanowsi Kontat,informacja i onsultacje Chemia A ; oój 307 Telefon: 347-2769 E-mail: wojte@chem.g.gda.l tablica
WARUNKI RÓWNOWAGI UKŁADU TERMODYNAMICZNEGO
WARUNKI RÓWNOWAGI UKŁADU ERMODYNAMICZNEGO Proces termodynamiczny zachodzi doóty, doóki układ nie osiągnie stanu równowagi. W stanie równowagi odowiedni otencjał termodynamiczny układu osiąga minimum, odczas
Budowa materii Opis statystyczny - NAv= 6.022*1023 at.(cz)/mol Opis termodynamiczny temperatury -
ermoynamika Pojęcia i zaganienia ostawowe: Buowa materii stany skuienia: gazy, ciecze, ciała stale Ois statystyczny wielka liczba cząstek - N A 6.0*0 at.(cz)/mol Ois termoynamiczny Pojęcie temeratury -
FIZYKA STATYSTYCZNA. Liczne eksperymenty dowodzą, że ciała składają się z wielkiej liczby podstawowych
FIZYKA STATYSTYCZA Liczne eksperymenty dowodzą, że ciała składają się z wielkiej liczby podstawowych elementów takich jak atomy czy cząsteczki. Badanie ruchów pojedynczych cząstek byłoby bardzo trudnym
GAZ DOSKONAŁY W TERMODYNAMICE TO POJĘCIE RÓŻNE OD GAZU DOSKONAŁEGO W HYDROMECHANICE (ten jest nielepki)
Właściwości gazów GAZ DOSKONAŁY Równanie stanu to zależność funkcji stanu od jednoczesnych wartości parametrów koniecznych do określenia stanów równowagi trwałej. Jest to zwykle jednowartościowa i ciągła
Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski
Chemia Fizyczna Technologia Chemiczna II rok Wykład 1 Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski Kontakt,informacja i konsultacje Chemia A ; pokój 307 Telefon: 347-2769 E-mail: wojtek@chem.pg.gda.pl
Gaz rzeczywisty zachowuje się jak modelowy gaz doskonały, gdy ma małą gęstość i umiarkowaną
F-Gaz doskonaly/ GAZY DOSKONAŁE i PÓŁDOSKONAŁE Gaz doskonały cząsteczki są bardzo małe w porównaniu z objętością naczynia, które wypełnia gaz cząsteczki poruszają się chaotycznie ruchem postępowym i zderzają
D. II ZASADA TERMODYNAMIKI
WYKŁAD D,E D. II zasada termodynamiki E. Konsekwencje zasad termodynamiki D. II ZAADA ERMODYNAMIKI D.1. ełnienie I Zasady ermodynamiki jest warunkiem koniecznym zachodzenia jakiegokolwiek rocesu w rzyrodzie.
Podstawy termodynamiki
Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach
Równanie gazu doskonałego
Równanie gazu doskonałego Gaz doskonały to abstrakcyjny model gazu, który zakłada, że gaz jest zbiorem sprężyście zderzających się kulek. Wiele gazów w warunkach normalnych zachowuje się jak gaz doskonały.
Wykład 3. Entropia i potencjały termodynamiczne
Wykład 3 Entropia i potencjały termodynamiczne dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej
Termodynamika Część 3
Termodynamika Część 3 Formy różniczkowe w termodynamice Praca i ciepło Pierwsza zasada termodynamiki Pojemność cieplna i ciepło właściwe Ciepło właściwe gazów doskonałych Ciepło właściwe ciała stałego
termodynamika fenomenologiczna
termodynamika termodynamika fenomenologiczna własności termiczne ciał makroskopowych uogólnienie licznych badań doświadczalnych opis makro i mikro rezygnacja z przyczynowości znaczenie praktyczne p układ
Fizyka 14. Janusz Andrzejewski
Fizyka 14 Janusz Andrzejewski Egzaminy Egzaminy odbywają się w salach 3 oraz 314 budynek A1 w godzinach od 13.15 do 15.00 I termin 4 luty 013 poniedziałek II termin 1 luty 013 wtorek Na wykład zapisanych
S ścianki naczynia w jednostce czasu przekazywany
FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym
Wykład 4. Przypomnienie z poprzedniego wykładu
Wykład 4 Przejścia fazowe materii Diagram fazowy Ciepło Procesy termodynamiczne Proces kwazistatyczny Procesy odwracalne i nieodwracalne Pokazy doświadczalne W. Dominik Wydział Fizyki UW Termodynamika
Krótki przegląd termodynamiki
Wykład I Przejścia fazowe 1 Krótki przegląd termodynamiki Termodynamika fenomenologiczna oferuje makroskopowy opis układów statystycznych w stanie równowagi termodynamicznej bądź w stanach jemu bliskich.
Wykład 6 Ciepło właściwe substancji prostych Ciepło właściwe gazów doskonałych Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C )
Wykład 6 Ciepło właściwe substancji prostych Ciepło właściwe gazów doskonałych Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C ) ZaleŜność stosunku R od temperatury dla gazu doskonałego
Termodynamika Termodynamika
Termodynamika 1. Wiśniewski S.: Termodynamika techniczna, WNT, Warszawa 1980, 1987, 1993. 2. Jarosiński J., Wiejacki Z., Wiśniewski S.: Termodynamika, skrypt PŁ. Łódź 1993. 3. Zbiór zadań z termodynamiki
Stany skupienia materii
Stany skupienia materii Ciała stałe Ciecze Płyny Gazy Plazma 1 Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -
Wykład FIZYKA I. 15. Termodynamika statystyczna. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 15. Termodynamika statystyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html TERMODYNAMIKA KLASYCZNA I TEORIA
Materiały pomocnicze do ćwiczeń z przedmiotu: Termodynamika techniczna
Materiały omocnicze do ćwiczeń z rzedmiotu: Termodynamika techniczna Materiały omocnicze do rzedmiotu Termodynamika techniczna. Sis treści Sis treści... 3 Gaz jako czynnik termodynamiczny... 5. Prawa
Wykład 3. Prawo Pascala
018-10-18 Wykład 3 Prawo Pascala Pływanie ciał Ściśliwość gazów, cieczy i ciał stałych Przemiany gazowe Równanie stanu gazu doskonałego Równanie stanu gazu van der Waalsa Przejścia fazowe materii W. Dominik
1. PIERWSZA I DRUGA ZASADA TERMODYNAMIKI TERMOCHEMIA
. PIERWSZA I DRUGA ZASADA ERMODYNAMIKI ERMOCHEMIA Zadania przykładowe.. Jeden mol jednoatomowego gazu doskonałego znajduje się początkowo w warunkach P = 0 Pa i = 300 K. Zmiana ciśnienia do P = 0 Pa nastąpiła:
Temperatura. Zerowa zasada termodynamiki
Temperatura Istnieje wielkość skalarna zwana temperaturą, która jest właściwością wszystkich ciał izolowanego układu termodynamicznego pozostających w równowadze wzajemnej. Równowaga polega na tym, że
10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.
0. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0.0. Podstawy hydrodynamiki. Podstawowe ojęcia z hydrostatyki Ciśnienie: F N = = Pa jednostka raktyczna (atmosfera fizyczna): S m Ciśnienie hydrostatyczne:
Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny
Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Janusz Brzychczyk, Instytut Fizyki UJ Związek pomiędzy równaniem
Termodynamika Techniczna dla MWT, wykład 6. AJ Wojtowicz IF UMK
Wykład 6. Ciepło właściwe substancji prostych. Ciepło właściwe gazów doskonałych.. Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C )... ZaleŜność ciepła właściwego C od temperatury.. Molowe
Kontakt,informacja i konsultacje
Kontakt,informacja i konsultacje Chemia A ; pokój 307 elefon: 347-2769 E-mail: wojtek@chem.pg.gda.pl tablica ogłoszeń Katedry Chemii Fizycznej http://www.pg.gda.pl/chem/dydaktyka/ lub http://www.pg.gda.pl/chem/katedry/fizyczna
3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach?
1. Która z podanych niżej par wielkości fizycznych ma takie same jednostki? a) energia i entropia b) ciśnienie i entalpia c) praca i entalpia d) ciepło i temperatura 2. 1 kj nie jest jednostką a) entropii
Ciśnienie i temperatura model mikroskopowy
Ciśnienie i temperatura model mikroskopowy Mikroskopowy model ciśnienia gazu wzór na ciśnienie gazu Mikroskopowa interpretacja temperatury Średnia energia cząsteczki gazu zasada ekwipartycji energii Czy
ELEMENTY TERMODYNAMIKI
ELEMENTY TERMODYNAMIKI 8.1. Rozkład szybkości cząstek gazu Początkowo termodynamika zajmowała się badaniem właściwości cieplnych ciał i ich układów, bez analizowania ich mikroskopowej struktury. Obecnie
C V dla róŝnych gazów. Widzimy C C dla wszystkich gazów jest, zgodnie z przewidywaniami równa w
Wykład z fizyki, Piotr Posmykiewicz 7 P dt dt + nrdt i w rezultacie: nr 4-7 P + Dla gazu doskonałego pojemność cieplna przy stałym ciśnieniu jest większa od pojemności cieplnej przy stałej objętości o
WYBRANE ZAGADNIENIA Z TERMODYNAMIKI TECHNICZNEJ
Podstawowe pojęcia w termodynamice technicznej 1/1 WYBRANE ZAGADNIENIA Z TERMODYNAMIKI TECHNICZNEJ 1. WIADOMOŚCI WSTĘPNE 1.1. Przedmiot i zakres termodynamiki technicznej Termodynamika jest działem fizyki,
Wykład 6. Klasyfikacja przemian fazowych
Wykład 6 Klasyfikacja przemian fazowych JS Klasyfikacja Ehrenfesta Ehrenfest klasyfikuje przemiany fazowe w oparciu o potencjał chemiczny. nieciągłość Przemiany fazowe pierwszego rodzaju pochodne potencjału
II zasada termodynamiki
TERMODYNAMIKA: DRUGA ZAADA TERMODYNAMIKI ą rocesy zgodne z zasadą zachowania energii, tóre nigdy nie wystęują w rzyrodzie. Przyład: długois leżący na stole Druga zasada termodynamii odowiada na ytanie,
Ćwiczenie nr 3. Wyznaczanie współczynnika Joule a-thomsona wybranych gazów rzeczywistych.
Termodynamika II ćwiczenia laboratoryjne Ćwiczenie nr 3 Temat: Wyznaczanie wsółczynnika Joule a-tomsona wybranyc gazów rzeczywistyc. Miejsce ćwiczeń: Laboratorium Tecnologii Gazowyc Politecniki Poznańskiej
Kalorymetria paliw gazowych
Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cielnych W9/K2 Miernictwo energetyczne laboratorium Kalorymetria aliw gazowych Instrukcja do ćwiczenia nr 7 Oracowała: dr inż. Elżbieta Wróblewska Wrocław,
Elementy tworzące świat i ich wzajemne oddziaływanie: b) zjawiska cieplne
Joanna Sowińska: Elementy tworzące świat i ich wzajemne oddziaływanie: b) zjawiska cieplne Temperatura. Skale termometryczne. Przedmioty znajdujące się w naszym otoczeniu mogą być gorące, ciepłe, chłodne
Termodynamika. Cel. Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa. William Thomson 1. Baron Kelvin
Cel Termodynamika Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa Nicolas Léonard Sadi Carnot 1796 1832 Rudolf Clausius 1822 1888 William Thomson 1. Baron Kelvin 1824 1907 i inni...
Przegląd termodynamiki II
Wykład II Mechanika statystyczna 1 Przegląd termodynamiki II W poprzednim wykładzie po wprowadzeniu podstawowych pojęć i wielkości, omówione zostały pierwsza i druga zasada termodynamiki. Tutaj wykorzystamy
FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w
FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym
[1] CEL ĆWICZENIA: Identyfikacja rzeczywistej przemiany termodynamicznej poprzez wyznaczenie wykładnika politropy.
[1] CEL ĆWICZENIA: Identyfikacja rzeczywistej przemiany termodynamicznej poprzez wyznaczenie wykładnika politropy. [2] ZAKRES TEMATYCZNY: I. Rejestracja zmienności ciśnienia w cylindrze sprężarki (wykres
Śr Kin Ruchu Postępowego. V n R T R T. 3 3 R 3 E R T T k T, 2 N 2 B
Termodynamika Podstawowy wzór kinetyczno-molekularnej teorii budowy materii W oarciu o założenia dotyczące właściwości gazu doskonałego (molekuły to unkty materialne ozostające w ciągłym termicznym ruchu,
Mechanika płynów. Wykład 9. Wrocław University of Technology
Wykład 9 Wrocław University of Technology Płyny Płyn w odróżnieniu od ciała stałego to substancja zdolna do rzeływu. Gdy umieścimy go w naczyniu, rzyjmie kształt tego naczynia. Płyny od tą nazwą rozumiemy
Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36
Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną
Termodynamika Część 2
Termodynamika Część 2 Równanie stanu Równanie stanu gazu doskonałego Równania stanu gazów rzeczywistych rozwinięcie wirialne równanie van der Waalsa hipoteza odpowiedniości stanów inne równania stanu Równanie