W ykład 4: Z m ienna losow a. Ciągła zmienna losowa. Zmienna losowa dyskretna. Dystrybuanta zmiennej X:
|
|
- Szymon Klimek
- 8 lat temu
- Przeglądów:
Transkrypt
1 W ykład 4: Z m ienna losow a Wartość zależna od wyniku eksperymentu. Przykład: Liczba orłów uzyskanych w jednym rzucie monetą. Zmienna losowa dyskretna Zbiór wartości, które może przyjąć zmienna losowa dyskretna jest skończony lub przeliczalny. Możliwe wartości będziemy oznaczali x 1,x, ozkład zmiennej dyskretnej X określamy podając prawdopodobieństwa p i =P(X=x i ). Np. w rzucie symetryczną kostką liczba oczek X ma rozkład P(X=i)=, i=1,...6. Ciągła zmienna losowa Prawdopodobieństwo przyjęcia każdej ustalonej wartości wynosi zero, np. P(X= )=0 Na tym kursie będziemy rozważać tylko zmienne losowe ciągłe opisane funkcją gęstości f(x). Dystrybuanta zmiennej X: Dla liczby definiujemy F X x) = Własności: F X (x) jest funkcją niemalejącą, ciągłą z prawej strony, oraz lim lim x x x ( P( X x) F( x) = F( x) = Narysuj dystrybuantę dyskretnej zmiennej losowej X takiej, że P(X=0)=1/3 oraz P(X=1)=/3. Narysuj dystrybuantę rozkładu jednostajnego na odcinku [a,b]. 1
2 Wartość oczekiwana i wariancja (wzory). Z mienna losow a dyskretna µ x :=E(X)= Σx i P(X= x i )=Σx i p i Var(X)= Σ(x i - µ x ) P(X= x i ) = Σx i p i - µ x Przykład 1 (rzut monetą, X=1, gdy orzeł, X=0, gdy reszka) E(X)= Var(X)= Przykład (X=wynik rzutu kostką) E(X)= Var(X)= ozkład dwupunktowy z parametrem P(Y=1)=p, P(Y=0)=1-p. blicz: EY= VarY= 0 p 1 Wartość oczekiwana i wariancja, cd. Z m ienna losow a ciągła Wartość oczekiwana jest środkiem ciężkości figury określonej przez krzywą gęstości. EX = Var(X) = x f(x) dx - (x - EX) f(x) dx = x f(x)dx (EX) Przykład: rozkład jednostajny na [0,1]. Własności wartości oczekiwanej i wariancji E(aX+b)=aEX+b Var(aX+b)=a Var(X)
3 Dla dwóch zmiennych losowych X i Y: E(X+Y)=EX+EY E(X-Y)=EX-EY E(aX+bY+c)= Niezależność zmiennych losowych: Jeżeli zmienne X i Y są niezależne to dla każdej pary zdarzeń A i B P( X A, Y B) = P( X A) P( Y B) Przykład1: Wybieramy (losowo) liczbę dwucyfrową; X:=liczba dziesiątek, Y:=liczba jedności, A={1, }, B={3, 4, 5}. Niezależność zmiennych losowych, cd. Przykład : Wybieramy (losowo) liczbę z zakresu 1,...,101; X:=cyfra dziesiątek, Y:=cyfra jedności, A={1, }, B={3, 4, 5}. Jeżeli X i Y są niezależne, to E(XY)=E(X) E(Y) i Var(X+Y)=Var(X)+Var(Y). Przykład 3: Liczby oczek, X, Y, w dwóch kolejnych rzutach kostką. Ćwiczenia: X i Y niezależne Var(X-Y)= Schemat Bernoulliego i rozkład dwumianowy Anita, Beata i Krystyna rzucają monetą i podają łączną liczbę orłów,y. Podaj rozkład zmiennej Y Var(X+X)= A B K P-stwo Zdarzenie 3 (0) (1) 1 () 0 (3) P-stwo 3
4 Histogram rozkładu w populacji. Populacja = wszystkie rzuty trzema monetami Pr(Y=y) 0,4 0,3 0, 0,1 0 ozkład dwumianowy (n=3,p=0.5) y Schemat Bernoulliego: n niezależnych powtórzeń tego samego eksperymentu dwa możliwe wyniki w każdej próbie - ``sukces i ``porażka (np. i, albo 1 i 0) w każdej próbie p-stwo sukcesu wynosi p ozkład dwumianowy: Y = łączna liczba sukcesów w schemacie Bernoulliego Przykłady: liczba orłów na 5 rzutów, liczba wyzdrowień wśród 10 pacjentów poddanych pewnej kuracji ozkład dwumianowy: P( Y = n y) = p y n gdzie = y y = 0,1,..., n y (1 p) n!, y!( n y)! n y, n Niektóre własności symbolu Newtona y Liczba możliwych ciągów y sukcesów i n-y porażek n n = = 0 n n n = = n 1 1 gólnie n n = y n y 3 = 0 P( Y = 0) = W przykładzie p=1/; 3 = 1 P( Y = 1) = 3 = P( Y = ) = Uwaga: ozkład dwumianowy jest symetryczny dla p=1/. 3 = 3 P( Y = 3) = Funkcje w pbinom(x,n,p) dystrybuanta w punkcie x dbinom(x,n,p) P(X=x) qbinom(q,n,p) kwantyl rzędu q - najmniejsza wartość x taka, że F(x) >= q, gdzie F jest dystrybuantą rbinom(m,n,p) generator losowy, m-liczba obserwacji 4
5 Przykład: Efekt uboczny lekarstwa 0% ludzi dostaje nudności po zażyciu pewnego lekarstwa Lekarz przepisał lekarstwo czterem nowym pacjentom Y liczba pacjentów w naszej próbie, którzy dostali nudności Podaj rozkład zmiennej Y P(co najmniej dwóch dostanie nudności) = P(co najwyżej jeden dostanie nudności) = Parametry rozkładu dwumianowego EY = np Przykład Jeden na ośmiu dorosłych mężczyzn ma podniesiony poziom cholesterolu. Losowo wybieramy 10 mężczyzn z populacji. Jakie jest p-stwo, że (dokładnie) spośród nich ma podniesiony poziom cholesterolu? Var Y=np(1-p) ozkład norm alny Jakie jest p-stwo, że co najmniej jeden z nich ma podniesiony poziom cholesterolu? Ilu średnio mężczyzn na dziesięciu ma podwyższony poziom cholesterolu? Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych Przykłady: Błąd pomiarowy Wzrost, wydajność Temperatura ciała Zawartość różnych składników we krwi 5
6 Funkcja gęstości Y ~ N(µ,σ) µ - wartość oczekiwana, σ - odchylenie standardowe f 1 ( y) = e σ π ( y µ ) σ Standardow y rozkład normalny N(0,1) Parametry: µ =0,σ=1 Do oznaczenia zmiennej losowej o rozkładzie N(0,1) będziemy używali litery Z Dystrybuanta rozkładu normalnego N(0,1): Test: Φ(0)= Φ(x)=P(Z < x). Tablica dystrybuanty Φ(x) (z Introduction to the Practice of Statistics, Moore, McCabe) Funkcja w pnorm(x) P(Z < 0.95) = P(Z <= 0.95) = P(Z > 0.75) = P(Z < - 1.5)= P(1.1 < Z <.4)= P(Z>1.96)= Pożyteczne wzory Φ(-x) = P(Z > z) = P(z 1 < Z < z ) = blicz: Pr( Z > 1.96) = 6
7 Dowolny rozkład normalny: N(µ, σ) Załóżmy, że poziomy cholesterolu w pewnej populacji mają rozkład normalny o średniej µ = 0 i odchyleniu standardowym σ = 40. Y ma rozkład N(0, 40) Jaka część populacji ma poziom cholesterolu powyżej 40? Y ~ N(µ,σ) Standardyzacja (Y-µ)/σ ma rozkład normalny! znaczmy Z= (Y-µ)/σ. Mamy: EZ= Var(Z)= Zatem Z~ N(0,1)! Przykład cd. P (Y > 40)=? P(Y>y), gdzie y=40. znaczamy z = (y-µ)/σ = (40-0)/40 = 0.5. P(Y > 40) = P(Z > 0.5)= Funkcja w : P(Y<t)=pnorm(t,mean,sd) Jakie jest p-stwo, że u losowo wybranej osoby cholesterol będzie pomiędzy 00 a 60? blicz P(Y < 170) P(00 < Y < 60) = 7
8 eguła 68% 95% 99.7% (reguła 3σ ) Jeżeli zmienna X ma rozkład normalny, to P(µ-σ<X<µ+σ)= P(µ-σ<X<µ+σ)= P(µ-3σ<X<µ+3σ)= Kwantyle W jakim punkcie y dystrybuanta osiąga zadaną wartość p? Przykłady: Mediana to kwantyl rzędu 50%. Trzeci kwartyl to kwantyl rzędu 75%? Funkcja w qnorm(q, mean,sd) Znajdź trzeci kwartyl rozkładu opisującego poziom cholesterolu. Znajdź kwantyl rzędu 0.1 dla rozkładu poziomów cholesterolu. cena normalności Znaczna część procedur statystycznych, które poznamy w dalszej części kursu wymaga założenia, że próba pochodzi z populacji o rozkładzie normalnym. Założenie to można sprawdzać np. wykonując proste obliczenia lub rysując wykres kwantyl-kwantyl. eguła 3σ Policzmy procent obserwacji, które znajdują się w odległości ± 1s, ± s and ± 3s od y. Przykład: poziomy serum CK n = 36, y = 98.8 i s = /36 = 7% obserwacji jest w przedziale y ± 1s 34/36 = 94% obserwacji jest w przedziale y ± s 36/36 = 100% obserwacji jest w przedziale y ± 3s To w przybliżeniu odpowiada wartościom dla rozkładu normalnego. K. 8
9 a Wykres kwantyl-kwantyl (QQ plot) [qqnorm, qqline w ] Data : Quantiles of Standard Normal Korekta na ciągłość Niekiedy używamy rozkładu normalnego dla opisu rozkładu danych, które nie są ciągłe. Powody: Dyskretyzacja pomiarów Niektóre rozkłady dyskretne można dobrze przybliżać rozkładem normalnym (np. rozkład dwumianowy) Korektę można zaniedbać, gdy zbiór możliwych do uzyskania wartości jest duży i rozmiar próby jest duży. Przykład: wyniki testu. Załóżmy, że µ = 100 i σ = 16. Wynik to liczba całkowita nie pochodzi z rozkładu ciągłego. Jak użyć rozkładu normalnego? Przypisujemy liczbie całkowitej y p-stwo odcinka od y-.5 do y+.5 Przybliżenie rozkładu dw um ianow ego rozkładem norm alnym Jakie jest p-stwo, że losowo wybrany student uzyska(ł) wynik pomiędzy 10 a 140 punktów. Po co? Gdy n jest duże, to mamy bardzo dużo możliwych wartości Y. Gdy n jest duże, to symbole Newtona są trudne do wyliczenia. Przybliżenie działa tym lepiej, im p jest bliższe 0.5, i im większe jest n. 9
10 ozkład dwumianowy z parametrami n i p przybliżamy rozkładem normalnym z parametrami µ=np i σ= np(1 p). Przybliżenie jest dość dobre, gdy np 5 i n(1-p) 5 Przybliżenie jest dość dokładne w centrum rozkładu i (względnie) gorsze w ogonach. Przykład Załóżmy, że Y ma rozkład dwumianowy z n=40 i p=0.5. Wtedy µ = np = i σ =. Sprawdzamy wielkość np oraz n(1-p). bliczmy p-stwo, że Y jest pomiędzy 10 i 15 (włącznie). P(10 Y 15)= Wynik dokładny = ozkłady próbkowe ozważmy populację o pewnym rozkładzie, np.: norm alnym N(µ, σ), lub dw upunktow ym, np. P(Y=sukces)=p, P(Y=porażka)=1-p Parametry populacji: µ i σ, lub p. Bierzemy próbę o rozmiarze n z populacji. Wynik: y 1, y n, lub y = sumaryczna liczba sukcesów. bliczamy estymatory y i s, lub Gdy n jest duże, estymatory są na ogół bliskie parametrom które estymują. ozkłady próbkowe, cd. Jak bardzo estymatory mogą sią różnić od prawdziwych parametrów? Co się stanie, jeżeli wylosujemy inną próbę? trzymamy inne wartości y i s, lub Interesuje nas rozkład (próbkowy) y,s,. Meta-eksperyment Wyobraźmy sobie, że powtarzamy eksperyment wiele razy Interesuje nas rozkład wszystkich możliwych do uzyskania wartości y, s lub. Taki rozkład będziemy nazywali rozkładem próbkowym estymatora. Zwykle próbkujemy tylko raz. ozkłady próbkowe można obliczyć teoretycznie. 10
11 ozkład próbkowy estymatora dla p w rozkładzie dwupunktowym Y = liczba sukcesów w n próbach y = zaobserwowana liczba sukcesów = Y/n jest estymatorem p Przykład: Producent ocenia, że % jego wyrobów jest wadliwych. Wyroby te paczkuje się po 40 w jednym opakowaniu. Y = liczba wadliwych wyrobów w losowo wybranej paczce. Y ma rozkład... Niech = Y/40 = frakcja elementów wadliwych. P( = r ) = Gdybyśmy otworzyli tysiące paczek, to rozkład frakcji liczby wadliwych elementów w paczce byłby zgodny z rozkładem wyliczonym na poprzedniej stronie. ozkład wyznaczamy przy pomocy (dwumianowego) rozkładu Y! ˆ = = = = = 0 40 Pr( p 0) Pr( Y 0) (1)(.0) (.98) 0.45 pˆ = = Y = = = 1 39 Pr( 0.05) Pr( 1) (40)(.0) (.98) 0.36 pˆ = = Y = = = 38 Pr( 0.05) Pr( ) (780)(.0) (.98) 0.14 pˆ = = Y = = = 3 37 Pr( 0.075) Pr( 3) (9880)(.0) (.98) 0.04 Pr( pˆ 0.1) = Pr( Y 4) 0.01 Prawdziwa wartość p jest 0.0 i nie jest nawet możliwa do zaobserwowania w pojedynczym eksperymencie, ale na ogół otrzymamy wartości bliskie 0.0. P-stwo, że = 0.05 wynosi 36%. P-stwo, że nasza ocena będzie różnić się nie więcej niż o 0.03 od prawdziwej wartości wynosi:... Zatem, jeżeli znajdziemy 3 lub więcej wyrobów wadliwych w jednej paczce mamy podstawy, żeby kwestionować twierdzenie producenta o p! Przykład n=40 i p = 0.0. Jakie jest p-stwo, że estymator częstości przekracza dwukrotnie (lub więcej) prawdziwą wartość? Zależność od rozmiaru próby Y ma rozkład Bernoulliego (n,p) µ Y =np Var (Y)=np(1-p) = µ = Var ( )= 11
12 Gdy n rośnie, to wariancja... i estymator staje się bardziej... Przykład; p=0.3. ozkład n (gdy p=0.3) P( )
R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych
R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych Przykłady: Błąd pomiarowy Wzrost, wydajność Temperatura ciała Zawartość różnych składników we
Diagramy Venna. Uwagi:
Wykład 3: Prawdopodobieństwopodstawowe pojęcia i modele Często modelujemy zmienność używając rachunku prawdopodobieństwa. Prawdopodobieństwo opadów deszczu wynosi 80%. (zinterpretuj) Prawdopodobieństwo
Diagramy Venna. Uwagi:
Wykład 3: Prawdopodobieństwopodstawowe pojęcia i modele Często modelujemy zmienność używając rachunku prawdopodobieństwa. Prawdopodobieństwo opadów deszczu wynosi 80%. (zinterpretuj) Prawdopodobieństwo
Wykład 3: Prawdopodobieństwopodstawowe
Wykład 3: Prawdopodobieństwopodstawowe pojęcia i modele Często modelujemy zmienność używając rachunku prawdopodobieństwa. Prawdopodobieństwo opadów deszczu wynosi 80%. (zinterpretuj) Prawdopodobieństwo
Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne
Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład
Rozkłady prawdopodobieństwa zmiennych losowych
Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.
Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X
Elementy Rachunek prawdopodobieństwa
Elementy rachunku prawdopodobieństwa Rachunek prawdopodobieństwa zajmuje się analizą praw rządzących zdarzeniami losowymi Pojęciami pierwotnymi są: zdarzenie elementarne ω oraz zbiór zdarzeń elementarnych
Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast
II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15
II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa
Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.
Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,
Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.
Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 2 i 3 1 / 19 Zmienna losowa Definicja Dana jest przestrzeń probabilistyczna
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład
Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2,
Wykład 4. Rozkłady i ich dystrybuanty 6 marca 2007 Jak opisać cały rozkład jedną funkcją? Aby znać rozkład zmiennej X, musimy umieć obliczyć P (a < X < b) dla dowolnych a < b. W tym celu wystarczy znać
Statystyka matematyczna
Statystyka matematyczna Wykład 5 Magdalena Alama-Bućko 1 kwietnia 2019 Magdalena Alama-Bućko Statystyka matematyczna 1 kwietnia 2019 1 / 19 Rozkład Poissona Po(λ), λ > 0 - parametr tzw. rozkład zdarzeń
Wykład 3 Jednowymiarowe zmienne losowe
Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej
WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady
WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena
Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia.
Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia. D A R I U S Z P I W C Z Y Ń S K I 2 2 ROZKŁAD ZMIENNEJ LOSOWEJ Polega na przyporządkowaniu
Rozkłady zmiennych losowych
Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli
Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =
Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x
Próbkowanie. Wykład 4 Próbkowanie i rozkłady próbkowe. Populacja a próba. Błędy w póbkowaniu, cd, Przykład 1 (Ochotnicy)
Wykład 4 Próbkowanie i rozkłady próbkowe µ = średnia w populacji, µ=ey, wartość oczekiwana zmiennej Y σ= odchylenie standardowe w populacji, σ =(Var Y) 1/2, pierwiastek kwadratowy wariancji zmiennej Y,
Metody Statystyczne. Metody Statystyczne.
gkrol@wz.uw.edu.pl #4 1 Sprawdzian! 5 listopada (ok. 45-60 minut): - Skale pomiarowe - Zmienne ciągłe i dyskretne - Rozkład teoretyczny i empiryczny - Miary tendencji centralnej i rozproszenia - Standaryzacja
P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)
Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści
Zmienna losowa. Rozkład skokowy
Temat: Zmienna losowa. Rozkład skokowy Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga * - materiał nadobowiązkowy Anna Rajfura, Matematyka i statystyka matematyczna na kierunku Rolnictwo SGGW 1 Zagadnienia
Zmienne losowe. Powtórzenie. Dariusz Uciński. Wykład 1. Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski
Powtórzenie Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 1 Podręcznik podstawowy Jacek Koronacki, Jan Mielniczuk: Statystyka dla studentów kierunków technicznych i przyrodnicznych,
1.1 Wstęp Literatura... 1
Spis treści Spis treści 1 Wstęp 1 1.1 Wstęp................................ 1 1.2 Literatura.............................. 1 2 Elementy rachunku prawdopodobieństwa 2 2.1 Podstawy..............................
Jednowymiarowa zmienna losowa
1 Jednowymiarowa zmienna losowa Przykład Doświadczenie losowe - rzut kostką do gry. Obserwujemy ilość wyrzuconych oczek. Teoretyczny model eksperymentu losowego - przestrzeń probabilistyczna (Ω, S, P ),
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka
Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład
Statystyka. Magdalena Jakubek. kwiecień 2017
Statystyka Magdalena Jakubek kwiecień 2017 1 Nauka nie stara się wyjaśniać, a nawet niemal nie stara się interpretować, zajmuje się ona głównie budową modeli. Model rozumiany jest jako matematyczny twór,
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Metody probabilistyczne
Metody probabilistyczne. Twierdzenia graniczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 20.2.208 / 26 Motywacja Rzucamy wielokrotnie uczciwą monetą i zliczamy
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Rachunek Prawdopodobieństwa i Statystyka
Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne
Estymacja punktowa i przedziałowa
Temat: Estymacja punktowa i przedziałowa Kody znaków: żółte wyróżnienie nowe pojęcie czerwony uwaga kursywa komentarz 1 Zagadnienia 1. Statystyczny opis próby. Idea estymacji punktowej pojęcie estymatora
PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH
PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH Szkic wykładu 1 Podstawowe rozkłady zmiennej losowej skokowej Rozkład dwupunktowy Rozkład dwumianowy Rozkład Poissona 2 Rozkład dwupunktowy Rozkład dwumianowy Rozkład
Estymacja parametrów w modelu normalnym
Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia
Centralne twierdzenie graniczne
Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 4 Ważne uzupełnienie Dwuwymiarowy rozkład normalny N (µ X, µ Y, σ X, σ Y, ρ): f XY (x, y) = 1 2πσ X σ Y 1 ρ 2 { [ (x ) 1
Statystyka matematyczna
Statystyka matematyczna Wykład 6 Magdalena Alama-Bućko 8 kwietnia 019 Magdalena Alama-Bućko Statystyka matematyczna 8 kwietnia 019 1 / 1 Rozkłady ciagłe Magdalena Alama-Bućko Statystyka matematyczna 8
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Magdalena Frąszczak Wrocław, 22.02.2017r Zasady oceniania Ćwiczenia 2 kolokwia (20 punktów każde) 05.04.2017 oraz 31.05.2017 2 kartkówki
Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n)
MODELE STATYSTYCZNE Punktem wyjścia w rozumowaniu statystycznym jest zmienna losowa (cecha) X i jej obserwacje opisujące wyniki doświadczeń bądź pomiarów. Zbiór wartości zmiennej losowej X (zbiór wartości
Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego
Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Podstawowe rozkłady zmiennych losowych Rozkłady zmiennych skokowych Rozkład zero-jedynkowy Rozpatrujemy doświadczenie, którego rezultatem może
Wykład 7 Testowanie zgodności z rozkładem normalnym
Wykład 7 Testowanie zgodności z rozkładem normalnym Wrocław, 05 kwietnia 2017 Rozkład normalny Niech X = (X 1, X 2,..., X n ) będzie próbą z populacji o rozkładzie normalnym określonym przez dystrybuantę
Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej
Statystyka i opracowanie danych Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne losowe Zmienna
Prawdopodobieństwo i statystyka
Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej
6. Zmienne losowe typu ciagłego ( ) Pole trapezu krzywoliniowego
6. Zmienne losowe typu ciagłego (2.04.2007) Pole trapezu krzywoliniowego Przypomnienie: figurę ograniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją ciągłą; proste x = a, x = b, a < b, oś OX
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa
Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014
Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe
Zmienne losowe ciągłe i ich rozkłady
Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości
b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:
ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań
Wybrane rozkłady zmiennych losowych. Statystyka
Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1
Laboratorium nr 7. Zmienne losowe typu skokowego.
Laboratorium nr 7. Zmienne losowe typu skokowego.. Zmienna losowa X ma rozkład dany tabelką: - 0 3 0, 0,3 0, 0,3 0, Naszkicować dystrybuantę zmiennej X. Obliczyć EX oraz VarX.. Zmienna losowa ma rozkład
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.1. Zmienne losowe dyskretne. Katarzyna Rybarczyk-Krzywdzińska Definicja/Rozkład Zmienne losowe dyskretne Definicja Zmienną losową, która skupiona
Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ
Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Zadanie 1. Zmienna losowa przyjmuje wartości -1, 0, 1 z prawdopodobieństwami równymi odpowiednio: ¼, ½, ¼. Należy: a. Wyznaczyć rozkład prawdopodobieństwa
12DRAP - parametry rozkładów wielowymiarowych
DRAP - parametry rozkładów wielowymiarowych Definicja.. Jeśli h : R R, a X, Y ) jest wektorem losowym o gęstości fx, y) to EhX, Y ) = hx, y)fx, y)dxdy. Jeśli natomiast X, Y ) ma rozkład dyskretny skupiony
Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F
Wybrane rozkłady zmiennych losowych. Statystyka
Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1
Zmienne losowe ciągłe i ich rozkłady
Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem
Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa
Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący
Lista 5. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym
Lista 5 Zadania na zastosowanie nierównosci Markowa i Czebyszewa. Zadanie 1. Niech zmienna losowa X ma rozkład jednostajny na odcinku [0, 1]. Korzystając z nierówności Markowa oszacować od góry prawdopodobieństwo,
Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap
Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap Magdalena Frąszczak Wrocław, 21.02.2018r Tematyka Wykładów: Próba i populacja. Estymacja parametrów z wykorzystaniem metody
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Przestrzeń probabilistyczna
Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:
Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: Własności dystrybuanty zmiennej losowej:
Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: F (t) P (X t) < t < Własności dystrybuanty zmiennej losowej: jest niemalejąca: 0 F (t) jest prawostronnie
Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015
Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Biostatystyka, # 3 /Weterynaria I/
Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 6 Wrocław, 7 listopada 2011 Temat. Weryfikacja hipotez statystycznych dotyczących proporcji. Test dla proporcji. Niech X 1,..., X n będzie próbą statystyczną z 0-1. Oznaczmy odpowiednio
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 7 i 8 1 / 9 EFEKTYWNOŚĆ ESTYMATORÓW, próba
L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 2 ZADANIA - ZESTAW 2
ZADANIA - ZESTAW 2 Zadanie 2.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 1 0 2 p k 1/ 1/6 1/2 a) wyznaczyć dystrybuantę tej zmiennej losowej i naszkicować jej wykres, b) obliczyć
Statystyka i eksploracja danych
Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,
Komputerowa analiza danych doświadczalnych
Komputerowa analiza danych doświadczalnych Wykład 4.03.06 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 05/06 Zmienne losowe, jednowymiarowe rozkłady zmiennych losowych Pomiar jako zdarzenie
Testowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych
METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład - Parametry i wybrane rozkłady zmiennych losowych Parametry zmiennej losowej EX wartość oczekiwana D X wariancja DX odchylenie standardowe inne, np. kwantyle,
Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl
Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów
Estymacja parametrów rozkładu cechy
Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe
Matematyka dla biologów Zajęcia nr 13.
Matematyka dla biologów Zajęcia nr 13. Dariusz Wrzosek 16 stycznia 2019 Matematyka dla biologów Zajęcia 13. 16 stycznia 2019 1 / 34 Plan: 1 Rachunek prawdopodobienstwa-zmienne losowe o rozkładzie ciagłym
7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej
7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach
STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA
STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;
Najczęściej spotykane rozkłady dyskretne:
I. Rozkład dwupunktowy: Najczęściej spotykane rozkłady dyskretne: Def. Zmienna X ma rozkład dwupunktowy z prawdopodobieostwem 1 przyjmuje tylko dwie wartości, tzn. P(X = x 1 ) = p i P(X = x 2 ) = 1 p =
Z poprzedniego wykładu
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne
Wykład 3 Momenty zmiennych losowych.
Wykład 3 Momenty zmiennych losowych. Wrocław, 19 października 2016r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną
Wykład 3 Momenty zmiennych losowych.
Wykład 3 Momenty zmiennych losowych. Wrocław, 18 października 2017r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną
Prawdopodobieństwo i statystyka
Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja
Metoda momentów i kwantyli próbkowych. Wrocław, 7 listopada 2014
Metoda momentów i kwantyli próbkowych Wrocław, 7 listopada 2014 Metoda momentów Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa. Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa.
WYKŁAD 3. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki
WYKŁAD 3 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Schemmat Bernouliego Rzucamy 10 razy moneta, próba Bernouliego jest pojedynczy
PODSTAWY BIOSTATYSTYKI ĆWICZENIA
PODSTAWY BIOSTATYSTYKI ĆWICZENIA FILIP RACIBORSKI FILIP.RACIBORSKI@WUM.EDU.PL ZAKŁAD PROFILAKTYKI ZAGROŻEŃ ŚRODOWISKOWYCH I ALERGOLOGII WUM PRZYPOMNIENIE ROZKŁAD NORMALNY http://www.zarz.agh.edu.pl/bsolinsk/statystyka.html
Wykład 3. Rozkład normalny
Funkcje gęstości Rozkład normalny Reguła 68-95-99.7 % Wykład 3 Rozkład normalny Standardowy rozkład normalny Prawdopodobieństwa i kwantyle dla rozkładu normalnego Funkcja gęstości Frakcja studentów z vocabulary
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Zmienna losowa i jej rozkład
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Zmienna losowa i jej rozkład ZMIENNA LOSOWA Funkcja X przyporządkowująca każdemu zdarzeniu elementarnemu jedną i tylko jedną liczbę x. zmienna losowa skokowa skończona
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3.
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. ZMIENNA LOSOWA JEDNOWYMIAROWA. Zmienną losową X nazywamy funkcję (praktycznie każdą) przyporządkowującą zdarzeniom elementarnym liczby rzeczywiste. X : Ω R (dokładniej: