FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE
|
|
- Ludwika Stasiak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa, przesunięcie równoległe o wektor, obrót potrafię wykonać konstrukcję figury symetrycznej do danej względem prostej i względem punktu, rysuję obraz figury w translacji, w obrocie o dany kąt rozpoznaję figury osiowosymetryczne i środkowosymetryczne znam pojęcie wektora, wektorów przeciwnych, wektorów równych znam i stosuję w zadaniach wzór na współrzędne środka odcinka wyznaczam współrzędne punktu symetrycznego do danego względem: osi układu współrzędnych, punktu (0,0), prostej równoległej do jednej z osi układu współrzędnych, dowolnego punktu wyznaczam współrzędne punktu symetrycznego do danego względem danej prostej obliczam współrzędne i długość wektora obliczam współrzędne końca wektora, gdy dane są współrzędne wektora i jego początku obliczam współrzędne początku wektora, gdy dane są współrzędne wektora i jego końca wyznaczam współrzędne obrazu punktu w przesunięciu równoległym o wektor wyznaczam współrzędne czwartego wierzchołka równoległoboku, gdy dane są trzy pozostałe wierzchołki znam postać kierunkową i ogólną prostej sprawdzam, czy dany punkt należy do prostej przekształcam równanie prostej z postaci ogólnej do postaci kierunkowej i odwrotnie potrafię wyznaczyć równanie prostej przechodzącej przez dany punkt i nachylonej do osi x pod danym kątem rozpoznaję równania prostych równoległych i prostych prostopadłych potrafię wyznaczyć równanie prostej przechodzącej przez dany punkt i równoległej do danej prostej potrafię wyznaczyć równanie prostej przechodzącej przez dany punkt i prostopadłej do danej prostej stosuję warunek równoległości i prostopadłości prostych w zadaniach geometrycznych potrafię wyznaczyć równanie prostej przechodzącej przez dwa punkty potrafię sprawdzić, czy trzy dane punkty należą do jednej prostej znam związek pomiędzy liczbą rozwiązań układu dwóch równań liniowych z dwiema niewiadomymi a wzajemnym położeniem prostych potrafię wyznaczyć współrzędne punktu przecięcia się dwóch prostych analitycznie i graficznie Uwagi
2 Umiejętności opracowanie: Maria Lampert potrafię ustalić, ile rozwiązań ma podany układ równań, korzystając z jego interpretacji geometrycznej potrafię wyznaczyć współrzędne punktu przecięcia się prostej z osiami układu współrzędnych obliczam odległość dwóch punktów, odległość punktu od prostej, odległość dwóch prostych równoległych potrafię sprawdzić, czy trójkąt o danych wierzchołkach jest prostokątny obliczam obwód i pole trójkąta, gdy dane są współrzędne jego wierzchołków obliczam obwód i pole czworokąta, gdy dane są współrzędne jego wierzchołków potrafię zaznaczyć w układzie współrzędnych zbiór punktów spełniających warunki zapisane za pomocą nierówności liniowych opisuję za pomocą nierówności zaznaczony w układzie współrzędnych zbiór punktów płaszczyzny
3 ZESTAW ZADAŃ PRZYGOTOWUJĄCYCH DO SPRAWDZIANU FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Symbolem (P) oznaczono zadania z poziomu podstawowego, czyli na ocenę co najwyżej dostateczną, a symbolem (PP) zadania z poziomu ponadpodstawowego, czyli na ocenę dobrą i bardzo dobrą. Zad.1 (P) Narysuj dowolny prostokąt, a następnie znajdź jego obraz w symetrii osiowej względem: a) jednego z boków, b) przekątnej, c) prostej przechodzącej przez wierzchołek i równoległej do przekątnej. Zad.2 (P) Narysuj dowolny romb, a następnie znajdź jego obraz w symetrii osiowej względem: a) jednego z boków, b) przekątnej, c) prostej przechodzącej przez wierzchołek i równoległej do przekątnej. Zad.3 (P) Narysuj dowolny trójkąt, a następnie znajdź jego obraz w symetrii środkowej względem: a) jednego z wierzchołków, b) środka jednego z boków, c) punktu leżącego poza trójkątem. Zad.4 (P) Narysuj dowolny okrąg, a następnie znajdź jego obraz w symetrii środkowej względem punktu leżącego: a) na okręgu, b) wewnątrz okręgu, c) punktu leżącego na zewnątrz okręgu. Zad.5 (P) Podaj współrzędne punktu P, który jest symetryczny do punktu P względem osi x. a) P=( 3, 4) b) P=(5, 6) c) P=( 2, 8) d) P=(0, 7) Zad.6 (P) Podaj współrzędne punktu P, który jest symetryczny do punktu P względem osi y. a) P=( 4, 8) b) P=(5, 2) c) P=( 12, 6) d) P=(3, 7) Zad.7 (a, b P; c PP) Podaj współrzędne punktu P, który jest symetryczny do punktu P względem podanej prostej. a) P=( 4, 8), prosta y = 5 b) P=(5, 2), prosta x = 6 c) P=( 5 3, 6), prosta y = Zad.8 (P) Podaj współrzędne punktu P, który jest obrazem punktu P w symetrii względem punktu S=(-4, 5). a) P=(0, 2) b) P=(3, 4) c) P=( 1, 6) d) P=( 2, 4) Zad.9 (P) Punkty A i B są symetryczne względem punktu S. Znajdź współrzędne punktu S. a) A=(5, 2), B=(8, 4) b) A=(6, 4), B=( 7, 9) c) A=(15, 9), B=(4, 4) Zad.10 (P) Punkt P jest obrazem punktu P w symetrii względem punktu S=( 6, 2). Podaj współrzędne punktu P a) P =( 1, 6) b) P =(0, 3) c) P =( 2, 5) d) P =(4, 0).
4 Zad.11 (PP) Punkt P jest symetryczny do punktu K=(2, 4) względem punktu S=( 3, 6). Podaj współrzędne punktu P, który jest symetryczny do punktu P względem prostej x = 5. Zad.12 (PP) Punkt P jest symetryczny do punktu K=( 5, 3) względem prostej y = 2. Podaj współrzędne punktu P, który jest symetryczny do punktu P względem punktu S=(2, 1). Zad.13 (P) Dany jest równoległobok ABCD o wierzchołkach A=( 3, 2), B=(6, 4), C=(9, 8). Znajdź współrzędne środka symetrii tego równoległoboku oraz współrzędne wierzchołka D. Zad.14 (P) Punkty A=( 6, 4) i B=(3, 5) są sąsiednimi wierzchołkami równoległoboku ABCD, a punkt S=( 1,2) jest środkiem symetrii tego równoległoboku. Oblicz współrzędne wierzchołków C i D. Zad.15 (P) Trójkąt ABC o wierzchołkach A=( 1, 4), B=(1, 2), C=(0,3) przekształcono symetrycznie względem punktu B. Wyznacz współrzędne wierzchołków trójkąta A B C. Zad.16 (P) Znajdź obraz punktu P w przesunięciu o wektor u. a) P=(5, 2) u = [ 4, 3] b) P=( 2 4 2, 2 3) u = [ 3 + 2, 5] Zad.17 (P) Znajdź obraz punktu P=(7, 8) w przesunięciu o wektor AB jeżeli A=(2, 6), B=( 3, 5). Zad.18 (P) Dane są punkty A=( 3, 12), B=(5, 4), C=( 9, 8). Oblicz współrzędne wektorów AB, BA, AC, CB, BC. Zad.19 (P) Oblicz długość wektora AB jeżeli: a) A=(7, 3), B=(9, 2) b) AB = [8, 5]. Zad.20 (PP) Dla jakich wartości m oraz n wektory u = [ 4, 3] i AB są równe, jeżeli: A=(4m + 2, 3), B=(5, 2n m)? Zad.21 (P) Dany jest wektor AB =[3, 2] oraz punkt A=( 8, 5). Wyznacz współrzędne punktu B. Zad.22 (P) Dany jest wektor AB =[1, 5] oraz punkt B=(2, 3). Wyznacz współrzędne punktu A. Zad.23 (P) Sprawdź rachunkowo, czy trójkąt ABC jest prostokątny, jeśli: a) A=( 5, 3), B=(0, 6), C=(2, 1), b) A=( 5, 6), B=(3, 4), C=( 2, 1).
5 Zad.24 (P) Znajdź równanie prostej przechodzącej przez punkt P i nachylonej do osi x pod kątem α. a) P=(3, 0), α = 30 o, b) P=( 2, 5), α = 60 o, c) P=( 4, 3), α = 135 o. Zad.25 (P) Wśród podanych prostych wskaż proste równoległe oraz proste prostopadłe: k: 3x y + 1 = 0, l: 4x + y + 5 = 0, m: 1,5x + 0,5y =0, n: x + 3y = 0, p: 6x + 2y +1 = 0, r: 2x 0,5y +5 =0 Zad.26 (P) Sprawdź rachunkowo, czy punkt P należy do prostej k. a) P=(3, 1), k: 4x + 2y 5 = 0, b) P=( 2, 4), k: 3x + 2y 2 = 0, c) P=( 5, 2), k: y = 2x Zad.27 (PP) Sprawdź rachunkowo, czy punkty A, B, C należą do jednej prostej. a) A=(6, 1), B=( 2, 3), C=(8, 2), b) A=( 1, 2), B=(0, 3), C=(3, 2). Zad.28 (P) Oblicz współrzędne punktu przecięcia się prostych o równaniach: a) x 2y +3 = 0 i 3x +6y 2 = 0, b) 3x 2y 8 = 0 i 3x + 5y 4 = 0. Zad.29 (P) Oblicz współrzędne punktów przecięcia się prostej k z osiami układu współrzędnych. a) k: y = 4x + 5, b) k: 5x + 2y +3 = 0. Zad.30 (PP) Oblicz pole trójkąta ograniczonego prostą k: 2x 4y 4 =0 oraz osiami układu współrzędnych. Zad.31 (a, b P; c PP) Wyznacz równanie prostej przechodzącej przez punkty A i B, jeżeli: a) A=(5, 2), B=(0, 4) b) A=(6, 4), B=(1, 9) c) A=( 4 2, 3 ), B=( 2, 4 ). Zad.32 (P) Znajdź równanie prostej równoległej do danej prostej i przechodzącej przez punkt P. a) P=(0, 2), y = 3x +8 b) P=(3, 4), 2x 6y + 5 = 0. Zad.33 (P) Znajdź równanie prostej prostopadłej do danej prostej i przechodzącej przez punkt P. a) P=(3, 0) y = 5x +4 b) P=( 2, 1), 4x + 3y 2 = 0. Zad.34 (PP) Wyznacz równanie prostej zawierającej wysokość trójkąta ABC poprowadzoną z wierzchołka C, jeżeli: A=( 1, 4), B=(1, 2), C=(0, 3). Zad.35 (PP) Wyznacz równania obu osi symetrii odcinka AB, jeżeli: A=(8, 1), B=(2, 4). Zad.36 (PP) Wyznacz równanie prostej zawierającej środkową trójkąta ABC poprowadzoną z wierzchołka B, jeżeli: A=( 5, 3), B=(0, 6), C=(2, 1). Zad.37 (P) Oblicz odległość punktu P od podanej prostej. a) P=( 3, 2), y = 5x + 4, b) P=(4, 0), 3x + 2y 1 = 0.
6 Zad.38 (P) Oblicz odległość między dwiema równoległymi prostymi o równaniach: a) 6x + 8y 11 =0 i 6x + 8y 1 = 0, b) 3x + 2y 5 = 0 i 6x + 4y +7 = 0. Zad.39 (PP) Oblicz długości wysokości w trójkącie o wierzchołkach A=( 4, 1), B=(1, 3), C=(8, 1). Zad.40 (a, b P; c PP) W układzie współrzędnych zaznacz zbiór punktów, których współrzędne spełniają warunki: a) 2 < x 5 b) y 2x 3 2x + y < 0 y 0 c) lub y > 3 1 x 3 x 3y < 0 2x + y 0 Zad.41 (PP) Zapisz warunek, który spełniają współrzędne punktów tworzących: a) trójkąt o wierzchołkach A=( 2, 4), B=(6, 0), C=(5, 4), b) trapez o wierzchołkach A=( 1, 1), B=(7, 1), C=(9, 5), D=( 3, 2). Zad.42 (PP) Oblicz współrzędne punktu symetrycznego do punktu P=( 6, 5) względem prostej y = 2x +4. Zad.43 (PP) Boki trójkąta zawierają się w prostych o równaniach: 4x +3y 21 = 0, x +2y 4 = 0, 3x + y 7 = 0. Oblicz współrzędne wierzchołków trójkąta oraz jego pole. Zad.44 (PP) Oblicz pole trójkąta o wierzchołkach A=(0, 2), B=( 4, 5), C=(1, 8). Zad.45 (PP) Oblicz pole równoległoboku o wierzchołkach A=( 2, 1), B=(0, 4), C=( 2, 7), D=( 4, 2). Zad.46 (PP) Oblicz pole czworokąta o wierzchołkach A=(2, 3), B=(3, 1), C=( 2, 4), D=( 5, 0). Rozwiąż poza tym zadania z podręcznika na stronie 156, 157 (Matematyka z plusem II zakres podstawowy)
Odległośc w układzie współrzędnych. Środek odcinka.
GEOMETRIA ANALITYCZNA ZADANIA. Odległośc w układzie współrzędnych. Środek odcinka. Zad. 1 Wyznacz odległość między punktami A i B (długość odcinka AB) jeżeli: d = Zad. 2 a) A=(5,-3) B=(-2,3) b) A=(-2,2)
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2017/2018 Przedmiot: MATEMATYKA Klasa: III 60 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
Skrypt 24. Geometria analityczna: Opracowanie L5
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 24 Geometria analityczna:
11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).
1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: II 96 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
Równania prostych i krzywych; współrzędne punktu
Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej
Dział I FUNKCJE I ICH WŁASNOŚCI
MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: II Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE I ICH WŁASNOŚCI Lp. Zagadnienie Osiągnięcia ucznia. 1. Podstawowe własności funkcji.. Podaje określenie
Skrypt 23. Geometria analityczna. Opracowanie L7
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Geometria analityczna 1.
FUNKCJA LINIOWA, OKRĘGI
FUNKCJA LINIOWA, OKRĘGI. Napisz równanie prostej przechodzącej przez początek układu i prostopadłej do prostej 3x-y+=0.. Oblicz pole trójkąta ograniczonego osiami układy i prostą x+y-6=0. 3. Odcinek o
Geometria analityczna
Geometria analityczna Wektory Zad Dane są wektory #» a, #» b, #» c Znaleźć długość wektora #» x (a #» a = [, 0, ], #» b = [0,, 3], #» c = [,, ], #» x = #» #» a b + 3 #» c ; (b #» a = [,, ], #» b = [,,
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania
Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015
Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 2 6 + 3 1. Oblicz 3. 3 x 1 3x 2. Rozwiąż nierówność > x. 2 3 3. Funkcja f przyporządkowuje każdej
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Funkcja i jej własności POZIOM PODSTAWOWY Pojęcie
KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ
KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające (W).
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność
GEOMETRIA ANALITYCZNA. Poziom podstawowy
GEOMETRIA ANALITYCZNA Poziom podstawowy Zadanie (4 pkt.) Dana jest prosta k opisana równaniem ogólnym x + y 6. a) napisz równanie prostej k w postaci kierunkowej. b) podaj współczynnik kierunkowy prostej
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM
Potęgi, pierwiastki i logarytmy 23 h DZIAŁ PROGRAMOWY JEDNOSTKA LEKCYJNA Matematyka z plusem dla szkoły ponadgimnazjalnej 1 WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH:
WYMAGANIA na poszczególne oceny-klasa I Gimnazjum
WYMAGANIA na poszczególne oceny-klasa I Gimnazjum Oceny z plusem lub minusem otrzymują uczniowie, których wiadomości i umiejętności znajdują się na pograniczu wymagań danej oceny głównej. (Znaki + i -
Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II
Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie podstawowym dla uczniów technikum część II Figury na płaszczyźnie kartezjańskiej L.p. Temat lekcji Uczeń demonstruje opanowanie
WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM
WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM na rok szkolny 2014/2015 Wymagania edukacyjne na poszczególne oceny: (na każdą wyższą ocenę obowiązują również wiadomości na oceny niższe oraz wiadomości
DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki
MATEMATYKA KLASA I I PÓŁROCZE -wyróżnia liczby naturalne, całkowite, wymierne -zna kolejność wykonywania działań -rozumie poszerzenie osi liczbowej na liczby ujemne -porównuje liczby wymierne -zaznacza
SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016
SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 Ocenę dopuszczającą otrzymuje uczeń, który: (Liczby i działania) zna pojęcie liczby naturalnej, całkowitej, wymiernej
Wymagania edukacyjne z matematyki Klasa I. LICZBY I DZIAŁANIA Dopuszczający (K) Dostateczny (P) Dobry (R) bardzo dobry (D) Celujący (W) Uczeń:
zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne umie zaznaczać liczbę wymierną na osi liczbowej umie zamieniać ułamek
I. Potęgi. Logarytmy. Funkcja wykładnicza.
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Potęgi. Logarytmy. Funkcja wykładnicza. dobrą, bardzo - oblicza potęgi o wykładnikach wymiernych; - zna
Kryteria oceniania z matematyki Klasa III poziom podstawowy
Kryteria oceniania z matematyki Klasa III poziom podstawowy Potęgi Zakres Dopuszczający Dostateczny Dobry Bardzo dobry oblicza potęgi o wykładnikach wymiernych; zna prawa działań na potęgach i potrafi
Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum
Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum DZIAŁ 1. LICZBY I DZIAŁANIA HASŁO PROGRAMOWE WIADOMOŚCI I UMIEJĘTNOŚCI PODSTAWOWE WIADOMOŚCI
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM NA OCENĘ DOPUSZCZJĄCĄ UCZEN: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie
Skrypt dla ucznia. Geometria analityczna część 3: Opracowanie L3
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt dla ucznia Geometria analityczna
WYMAGANIA EDUKACYJNE
GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie I gimnazjum str. 1 Wymagania edukacyjne niezbędne
ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy)
1 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku:
Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP. Kryteria oceny
Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP Przygotowane w oparciu o propozycję Wydawnictwa Nowa Era 2017/2018 Kryteria oceny Znajomość pojęć, definicji, własności
WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM
WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM OPRACOWANO NA PODSTAWIE PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI Matematyka 1 Podręcznik do gimnazjum Nowa wersja, praca zbiorowa
Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =
/9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n
KLASA I LICZBY dopuszczający dostateczny
KLASA I LICZBY 1) zna pojęcie liczby naturalnej, całkowitej, wymiernej, 2) rozumie rozszerzenie osi liczbowej na liczby ujemne, 3) umie porównywać liczby wymierne, 4) umie zaznaczać liczbę wymierną na
Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem
Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem pojęcie liczby naturalnej, całkowitej, wymiernej rozszerzenie osi liczbowej na liczby ujemne sposób i potrzebę zaokrąglania
I. Liczby i działania
I. Liczby i działania porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na dziesiętne i odwrotnie, zaokrąglać liczby do danego rzędu, szacować wyniki działań,
Wymagania edukacyjne z matematyki dla klasy I gimnazjum opracowane na podstawie programu Matematyka z plusem
mgr Mariola Jurkowska mgr Barbara Pierzchała Gimnazjum Zgromadzenia Sióstr Najświętszej Rodziny z Nazaretu w Krakowie Wymagania edukacyjne z matematyki dla klasy I gimnazjum opracowane na podstawie programu
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM OCENA DOPUSZCZAJĄCA I DZIAŁ; LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby
WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I
WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I Ocenę dopuszczającą otrzymuje uczeń, który: 1. Zna pojęcie liczby naturalnej, całkowitej, wymiernej 2. Rozumie rozszerzenie osi liczbowej na liczby ujemne 3. Umie
KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie
KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie
Geometria analityczna
Wydział Matematyki Stosowanej Zestaw zadań nr 10 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus maja 018r. 1 Działania na wektorach Zadanie 1. Oblicz długość wektorów: Geometria
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" LICZBY I DZIAŁANIA POZIOM KONIECZNY - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;
Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1
Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające
Przedmiotowe Zasady Oceniania
Strona tytułowa Przedmiotowe Zasady Oceniania Matematyka Liceum podstawa Krzysztof Pietrasik Podręcznik: 1. Prosto do matury 2 2. M. Antek, K. Belka, P. Grabowski 3. Nowa era Forma 1. Formy sprawdzania
Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające
Geometria analityczna
Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem
1. Potęgi. Logarytmy. Funkcja wykładnicza
1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności
Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO DZIAŁ 1. LICZBY I DZIAŁANIA
Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna
DZIAŁ 1. LICZBY I DZIAŁANIA
DZIAŁ 1. LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne umie zaznaczać liczbę wymierną na osi
Wymagania eduka cyjne z matematyki
Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POLITECHNICZNEJ KLASA 2
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POLITECHNICZNEJ KLASA 2 I. GEOMETRIA ANALITYCZNA: Wektor w układzie współrzędnych.
Kształcenie w zakresie podstawowym. Klasa 2
Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Klasa I: DZIAŁ 1. LICZBY I DZIAŁANIA
Klasa I: DZIAŁ 1. LICZBY I DZIAŁANIA Lekcja organizacyjna. Zapoznanie uczniów z wymaganiami edukacyjnymi i PSO. Liczby. Rozwinięcia dziesiętne liczb wymiernych Zaokrąglanie. Szacowanie wyników. Dodawanie
7. PLANIMETRIA.GEOMETRIA ANALITYCZNA
7. PLANIMETRIA.GEOMETRIA ANALITYCZNA ZADANIA ZAMKNIĘTE 1. Okrąg o równaniu : A) nie przecina osi, B) nie przecina osi, C) przechodzi przez początek układu współrzędnych, D) przechodzi przez punkt. 2. Stosunek
WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM
WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM OCENA DOPUSZCZAJĄCA pojęcie liczby naturalnej, całkowitej, wymiernej, pojęcia: rozwinięcie dziesiętne skończone, nieskończone, okres, algorytm zaokrąglania
POZIOM WYMAGAŃ NA POSZCZEGÓLNE OCENY Z MATEMATYKA KLASA I
POZIOM WYMAGAŃ NA POSZCZEGÓLNE OCENY Z MATEMATYKA KLASA I POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca P - podstawowy ocena dostateczna R - rozszerzający ocena dobra D - dopełniający
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A05 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Ułamek 5+2 5 2 ma wartość: A.
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową
Wymagania przedmiotowe z matematyki w klasie I gimnazjum w roku szkolnym 2011/2012 opracowane dla programu Matematyka z plusem GWO
Wymagania przedmiotowe z matematyki w klasie I gimnazjum w roku szkolnym 2011/2012 opracowane dla programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P
ocena dopuszczająca ( K)
Szczegółowe wymaganiach edukacyjnych niezbędnych do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki w klasie I na podstawie programu nauczania Matematyka z plusem ocena
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/1/2015/z1
I. Funkcja kwadratowa
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy w roku szkolnym 2018/2019 w CKZiU nr 3 Ekonomik w Zielonej Górze KLASA III fl POZIOM PODSTAWOWY I. Funkcja kwadratowa narysować wykres funkcji
Przedmiotowy system oceniania
Przedmiotowy system oceniania gimnazjum - matematyka Opracowała mgr Katarzyna Kukuła 1 MATEMATYKA KRYTERIA OCEN Kryteria oceniania zostały określone przez podanie listy umiejętności, którymi uczeń musi
WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA I GIMNAZJUM (Ian1, Ian2, Ib) Na rok szkolny 2015/2016
WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA I GIMNAZJUM (Ian1, Ian2, Ib) Na rok szkolny 2015/2016 OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/1/2015/z1 POZIOMY WYMAGAŃ
Dopuszczający. Opracowanie: mgr Michał Wolak 2
Dopuszczający zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne proste przypadki umie zaznaczać liczbę wymierną na
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji
Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. I poziom rozszerzony
Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. LICZBY RZECZYWISTE Kl. I poziom rozszerzony podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych,
Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych
Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczająca (2) P podstawowy ocena dostateczna (3) R rozszerzający ocena dobra
KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY
1 KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA I LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM
Zespól Szkół Ogólnokształcących i Zawodowych w Ciechanowcu 23 czerwca 2017r. Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM Strona 1 z 9 1. Geometria płaska trójkąty zna
PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM
PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM Zad.1. (0-1) Liczba 3 8 3 3 9 2 A. 3 3 Zad.2. (0-1) jest równa: Liczba log24 jest równa: B. 3 32 9 C. 3 4 D. 3 5 A. 2log2 + log20 B. log6 + 2log2
SPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania
SPIS TREŚCI Do Nauczyciela... 6 Regulamin konkursu... 7 Zadania Liczby i działania... 9 Procenty... 14 Figury geometryczne... 19 Kąty w kole... 24 Wyrażenia algebraiczne... 29 Równania i nierówności...
WYMAGANIA PROGRAMOWE DLA KLASY I GIMNAZJUM
WYMAGANIA PROGRAMOWE DLA KLASY I GIMNAZJUM Wymagania podstawowe(k- ocena dopuszczająca, P ocena dostateczna), wymagania ponadpodstawowe( R ocena dobra, D ocena bardzo dobra, W ocena celująca) DZIAŁ 1:
Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016
Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 1) Liczby - zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane, - zapisuje ułamek zwykły w postaci ułamka
Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016
Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 opracowały: mgr Agnieszka Łukaszyk, mgr Magdalena Murawska, mgr inż. Iwona Śliczner Ocenę dopuszczającą otrzymuje uczeń, który:
KRYTERIA OCENY Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM
KRYTERIA OCENY Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D - dopełniający
Matematyka klasy IA i IB gimnazjum - rok szkolny 2016/2017
Matematyka klasy IA i IB gimnazjum - rok szkolny 2016/2017 Wymagania edukacyjne na ocenę roczną Każda wyższa ocena zawiera wymagania dotyczące ocen niższych Uczeń otrzymuje na koniec roku ocenę dopuszczającą
Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1
Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje
Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1
Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje
Plan wynikowy z matematyki dla klasy I liceum ogólnokształcącego, liceum profilowanego i technikum
Kształcenie ogólne w zakresie podstawowym Program nauczania:dkos-4015-21/02 Liczby i ich zbiory Plan wynikowy z matematyki dla klasy I liceum ogólnokształcącego, liceum profilowanego i technikum Pojęcie
klasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności
I. FIGURY I PRZEKSZTAŁCENIA - zna i rozumie pojęcia, zna własności figur: ogólne równanie prostej, kierunkowe równanie prostej okrąg, równanie okręgu - oblicza odległość dwóch punktów na płaszczyźnie -
Przedmiotowy system oceniania z matematyki kl.i
I Matematyka klasa I - wymagania programowe DZIAŁ 1. LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej (K) rozumie rozszerzenie osi liczbowej na liczby ujemne (K) umie porównywać
Wymagania edukacyjne na poszczególne oceny Matematyka klasa I Gimnazjum
Wymagania edukacyjne na poszczególne oceny Matematyka klasa I Gimnazjum Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których
KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE- MATEMATYKA klasa 1g
KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE- MATEMATYKA klasa 1g POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena
Kryteria oceniania z matematyki Klasa III poziom rozszerzony
Kryteria oceniania z matematyki Klasa III poziom rozszerzony Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja potęgowa - zna i stosuje tw. o potęgach - zna wykresy funkcji potęgowej o dowolnym
Troszkę przypomnienia
Troszkę przypomnienia Przesunięcie o wektor Przesunięcie funkcji o wektor polega na przesunięciu jej w układzie współrzędnych o określoną ilośc jednostek w poziomie oraz w pionie. Pierwsza współrzędna
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM" w roku szkolnym 2015/2016
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM" w roku szkolnym 2015/2016 Litery w nawiasach oznaczają kolejno: K - ocena dopuszczająca P - ocena dostateczna
Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1
klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje ułamki dziesiętne zna kolejność
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM DZIAŁ 1. LICZBY I DZIAŁANIA (17 h) TEMAT ZAJĘĆ CELE PODSTAWOWE CELE PONADPODSTAWOWE 1. Lekcja organizacyjna. Uczeń: Uczeń: Zapoznanie uczniów
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z POZIOMEM WYMAGAŃ EDUKACYJNYCH
Matematyka z plusem dla gimnazjum PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z POZIOMEM WYMAGAŃ EDUKACYJNYCH POZIOMY WYMAGAŃ EDUKACYJNYCH: ocena dopuszczająca (2)
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć
Wymagania na poszczególne oceny w klasie I gimnazjum do programu nauczania MATEMATYKA NA CZASIE
Wymagania na poszczególne oceny w klasie I gimnazjum do programu nauczania MATEMATYKA NA CZASIE I.LICZBY - zaznacza na osi liczbowej punkty odpowiadające liczbom całkowitym, wymiernym(np. 1 2, 2 1 1 ),