1 Elementy logiki i teorii mnogości

Wielkość: px
Rozpocząć pokaz od strony:

Download "1 Elementy logiki i teorii mnogości"

Transkrypt

1 1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz (0) Definicja Funkcją zdaniową nazywamy każde wyrażenie mające postać zdania oznajmującego, które zawiera zmienne o tej własności, że po wstawieniu w miejsce zmiennych nazw odpowiednich przedmiotów otrzymujemy zdanie logiczne Wartości logiczne dla negacji i funktorów dwuargumentowych: p p p q p q p q p q p q Kwantyfikatorem ogólnym (dużym) nazywamy zwrot dla każdego x należącego do X zachodzi, wiążącym zmienną x o zakresie X, co zapisujemy w postaci lub Kwantyfikatorem szczegółowym (małym) nazywamy zwrot istnieje takie x należące do X, że (dla pewnego x należącego do X), wiążącym zmienną x o zakresie X, co zapiszemy w postaci lub Uwaga 11 Zdanie α(x) jest prawdziwe, gdy każdy element x X spełnia funkcję zdaniową α(x), czyli gdy dla każdego x X zdanie α(x) jest prawdziwe Zdanie α(x) jest prawdziwe, gdy istnieje (co najmniej jeden) element x 0 X spełniający funkcję zdaniową α(x 0 ), czyli taki element x 0 X, że zdanie α(x 0 ) jest prawdziwe 12 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu do zbioru W rachunku zbiorów używamy następujących symboli: przynależność: x A ( x A x / A), zbiór pusty oraz przestrzeń X, zbiory skończone: {x}, {a, b, c}, {1,, n}, {a 1,, a n } 121 Zawieranie i równość zbiorów Definicja Niech A, B X Wtedy A B (x A x B), Wniosek 11 Dla dowolnych zbiorów A, B X mamy Definicja Zbiory A, B X są rozłączne, jeśli A B = A = B (A B B A) (x A x B) A B [ (A B) (B A)] 1

2 122 Działania na zbiorach Definicja Niech A, B X Działania mnogościowe sumy, iloczynu, różnicy i dopełnienia definiujemy następująco: A B = {x X : x A x B}, A \ B = {x X : x A x / B}, A B = {x X : x A x B}, A = X \ A = {x X : x / A} Wniosek 12 Dla zbiorów A, B X mamy A \ B = A B 123 Zbiory liczbowe Zbiory liczbowe: zbiór liczb naturalnych N = {1, 2, 3, }, zbiór liczb całkowitych Z = {, 2, 1, 0, 1, 2, }, { zbiór liczb wymiernych Q = p q }, : p Z, q N zbiór liczb rzeczywistych R (uzupełnienie Q, aksjomat ciągłości) 124 Przedziały w zbiorze R Niech a, b R, a < b 1) (a, b) = {x R : a < x < b} przedział otwarty, 2) [a, b) = {x R : a x < b} przedział prawostronnie otwarty, 3) (a, b] = {x R : a < x b} przedział lewostronnie otwarty, 4) [a, b] = {x R : a x b} przedział domknięty 125 Iloczyn kartezjański zbiorów Definicja Iloczynem kartezjańskim zbiorów X oraz Y nazywamy zbiór X Y wszystkich uporządkowanych par (x, y), gdzie x X oraz y Y, tzn X Y = {(x, y) : x X y Y } 2 Elementy algebry 21 Działania, struktury algebraiczne Definicja Niech A Działaniem wewnętrznym w A nazywamy każdą funkcję odwzorowującą iloczyn A A w A Uwaga 21 Działania wewnętrzne będziemy z reguły oznaczali symbolami +,, które z kolei nie muszą mieć wiele wspólnego ze znanymi działaniami dodawania i mnożenia liczb Ponadto, zamiast pisać +(a, b) na oznaczenie działania + wykonywanego na parze (a, b) będziemy używali konwencjonalnego zapisu a + b Definicja Działanie wewnętrzne : A A A nazywamy: - łącznym, jeśli a (b c) = (a b) c dla dowolnych a, b, c A, - przemiennym, a b = b a dla dowolnych a, b A Mówimy, że element e A jest elementem neutralnym działania wewnętrznego : A A A, jeśli dla każdego a A zachodzi a e = e a = a Jeśli działanie wewnętrzne : A A A posiada element neutralny e, to będziemy mówili, że element a A jest inwersem dla element a A, jeśli a a = a a = e Definicja Parę (G, ) nazywamy grupą, jeśli G oraz : G G G jest takim działaniem wewnętrznym w G, które jest łączne, ma element neutralny oraz każdy element zbioru G ma inwers w G Grupę (G, ) nazywamy przemienną, jeśli działanie jest przemienne Definicja Strukturę (P, +, ) nazywamy pierścieniem, jeśli P jest niepustym zbiorem, odwzorowania + : P P P i : P P P są działaniami wewnętrznymi w P oraz 2

3 1 para (P, +) jest grupą abelową (element neutralny oznaczymy przez 0); 2 działanie jest łączne w P ; 3 (a + b) c = a c + b c oraz a (b + c) = a b + a c dla wszystkich a, b, c P (działanie jest rozdzielne względem działania +) Pierścień P nazywamy przemiennym, jeśli działanie jest przemienne Pierścień P nazywamy pierścieniem z jedynką, jeśli działanie posiada element neutralny w P (oznaczamy przez 1) Definicja Ciałem nazywamy taki pierścień (P, +, ) przemienny z jedynką (0 1), w którym każdy różny od zera element posiada inwers względem działania 22 Ciało liczb zespolonych Twierdzenie 21 Niech i będzie takim elementem, że i 2 = 1 Zbiór liczb z = x + yi, gdzie x, y R, z działaniami dodawania i mnożenia jest ciałem Definicja Ciało opisane w Tw 21 nazywamy ciałem liczb zespolonych Uwaga 22 Liczbę zespoloną z = x + yi można utożsamić z parą (x, y) R 2 Liczbę zespoloną z = x + 0i = x utożsamiamy z liczbą rzeczywistą Definicja Dla liczby zespolonej z = x + yi liczbę rzeczywistą x nazywamy częścią rzeczywistą liczby z i oznaczamy przez Re z, zaś liczbę rzeczywistą y nazywamy częścią urojoną liczby z i oznaczamy przez Im z Sprzężeniem liczby zespolonej z = x+yi nazywamy liczbę z = x yi Liczbę rzeczywistą z = x 2 + y 2 nazywamy modułem liczby zespolonej z = x+yi Twierdzenie 22 Niech z 1, z 2 C, n N Wówczas (i) z 1 + z 2 z 1 + z 2 oraz z 1 z 2 = z 1 z 2, (ii) z1 n = z 1 n ; (iii) jeśli z 2 0, to z 1 z 2 = z 1 z Postać trygonometryczna liczby zespolonej* Twierdzenie 23 Każdą liczbę zespoloną z = x + yi można przedstawić w postaci z pewnym takim kątem ϕ R, że cos ϕ = x z z = z (cos ϕ + i sin ϕ), (21) oraz sin ϕ = y z Definicja Każdą taką liczbę rzeczywistą ϕ taką, że zachodzi (21) nazywamy argumentem liczby zespolonej z i oznaczamy arg z Twierdzenie 24 Niech z 1 = r 1 (cos φ 1 + i sin φ 1 ), z 2 = r 2 (cos φ 2 + i sin φ 2 ), gdzie r 1, r 2, φ 1, φ 2 R są takie, że r 1, r 2 0 Wówczas (i) z 1 z 2 = r 1 r 2 (cos(φ 1 + φ 2 ) + i sin(φ 1 + φ 2 )); (ii) z n 1 = r n 1 (cos(nφ 1 ) + i sin(nφ 1 )) (iii) jeśli z 2 0 (tzn r 2 > 0), to z 1 z 2 = r 1 r 2 (cos(φ 1 φ 2 ) + i sin(φ 1 φ 2 )) 23 Pierścień wielomianów Definicja Niech P będzie pierścieniem Wielomianem nad P nazywamy sumę n a jx j, gdzie n N {0} oraz c j P dla j {0,, n} Jeśli a n 0, to liczbę n nazywamy stopniem wielomianu ( n a n ) jx j (co zapiszemy deg a jx j = n) Przyjmuje się, że stopień wielomianu zerowego jest równy Zbiór wszystkich wielomianów zmiennej x nad pierścieniem P oznaczymy symbolem P [x], zaś zbiór wszystkich wielomianów stopnia co najwyżej n przez P [x] n 3

4 Twierdzenie 25 Jeśli P jest pierścieniem przemiennym z jedynką, to zbiór P [x] wielomianów nad pierścieniem P z działaniami a j x j + b j x j = (a j + b j )x j, a j x j b j x j = k=0 ( j ) a k b j k x j, jest pierścieniem przemiennym z jedynką Twierdzenie 26 Niech P będzie pierścieniem całkowitym (bez dzielników zera), to deg(f(x) g(x)) deg f(x) + deg g(x) dla f(x), g(x) P [x] 231 Podzielność wielomianów, pierwiastki wielomianów Twierdzenie 27 Jeśli g(x) R[x], deg g(x) 1, to dla każdego wielomianu f(x) R[x] istnieją jedyne takie wielomiany q(x), r(x) R[x], że f(x) = g(x)q(x) + r(x) (dzielenie z resztą) oraz deg r(x) < deg g(x) Definicja Niech P będzie pierścieniem Element c P nazywamy pierwiastkiem wielomianu f(x) P [x], jeśli f(c) = 0 Twierdzenie 28 (Bezout) Niech P będzie pierścieniem Element c P jest pierwiastkiem wielomianu f(x) P [x] wtedy i tylko wtedy, gdy istnieje taki wielomian h(x) P [x], że lub inaczej, jeśli wielomian (x c) dzieli wielomian f(x) f(x) = (x c)h(x), Twierdzenie 29 Jeśli liczba k Z jest pierwiastkiem wielomianu f(x) = n a jx j Z[x], to k a 0 Twierdzenie 210 Jeśli liczba p q Q, gdzie p Z oraz q N są takie, że nwd(p, q) = 1, jest pierwiastkiem wielomianu f(x) = n a jx j Z[x], to p a 0 oraz q a n 232 Pierwiastki wielokrotne* Definicja Niech P będzie pierścieniem Element c P nazywamy k-krotnym pierwiastkiem wielomianu f(x) P [x], jeśli 1) f(x) = (x c) k h 1 (x) dla pewnego h 1 (x) P [x], 2) nie istnieje taki wielomian h 2 (x) P [x], że f(x) = (x c) k+1 h 2 (x) Twierdzenie 211 Niech P będzie pierścieniem Element c P jest k-krotnym pierwiastkiem wielomianu f(x) P [x] wtedy i tylko wtedy, gdy istnieje taki wielomian h(x) P [x], że 233 Istnienie pierwiastków wielomianów** f(x) = (x c) k h(x) oraz h(c) 0 Twierdzenie 212 (zasadnicze twierdzenie algebry) Każdy wielomian f(x) C[x] dodatniego stopnia ma pierwiastek zespolony Wniosek 21 Wielomian f(x) C[x] stopnia k ma dokładnie k pierwiastków z uwzględnieniem ich krotności Twierdzenie 213 Każdy rzeczywisty wielomian stopnia dodatniego można rozłożyć na iloczyn wielomianów stopnia co najwyżej drugiego 4

5 24 Pojęcie przestrzeni liniowej Definicja Przestrzenią liniową nad ciałem (R, +, ) nazywamy niepusty zbiór V z działaniami + : V V V oraz : R V V spełniającymi następujące warunki: 1) (x + y) + z = x + (y + z) dla x, y, z V, 2) x + y = y + x dla x, y V, 3) x + 0 = x dla x V, 4) x + ( x) = 0 dla x V, 5) α (x + y) = α x + α y dla x, y V oraz α R, 6) (α + β) x = α x + β x dla x V oraz α, β R, 7) (αβ) x = α (β x) dla x V oraz α, β R, 8) 1 x = x dla x V Przykład 21 1 Zbiór R n z działaniami [x 1,, x n ] + [y 1,, y n ] = [x 1 + y 1,, x n + y n ], α [x 1,, x n ] = [αx 1,, αx n ], dla [x 1,, x n ], [y 1,, y n ] R n oraz α R, jest przestrzenią liniową 2 Zbiór R[x] wielomianów o współczynnikach rzeczywistych z działaniami ( n ) ( n ) a k x k + b k x k = (a k + b k )x k, k=0 ( k=0 k=0 n ) ( n ) α a k x k = (α a k )x k, k=0 k=0 dla n k=0 a kx k, n k=0 b kx k R[x], α R, jest przestrzenią liniową 25 Funkcje, odwzorowanie liniowe* Definicja Niech X, Y, Z i niech f : X Y oraz g : Y Z będą funkcjami Odwzorowanie g f : X Y zadane wzorem (g f)(x) = g(f(x)) dla x X nazywamy złożeniem (kompozycją, superpozycją) funkcji f oraz g Definicja Niech V 1 oraz V 2 będą przestrzeniami liniowymi nad tym samym ciałem R Funkcję L : V 1 V 2 nazywamy odwzorowaniem liniowym, jeśli : 1) L(u 1 + u 2 ) = L(u 1 ) + L(u 2 ) dla u 1, u 2 V 1, 2) L(α u) = α L(u) dla α R, u V 1 Zbiór wszystkich odwzorowań liniowych z przestrzeni liniowej V 1 do V 2 oznaczymy przez L(V 1, V 2 ) Definicja Niech V 1, V 2 oraz V 3 będą przestrzeniami liniowymi nad tym samym ciałem R, α R, L 1, L 2 L(V 1, V 2 ) oraz L 3 L(V 2, V 3 ) Wówczas odwzorowania (αl 1 ), (L 1 + L 2 ) L(V 1, V 2 ) oraz odwzorowanie (L 3 L 1 ) L(V 1, V 3 ) zdefiniowane są wzorami: (αl 1 )(x) = α L(x) dla x V 1, (L 1 + L 2 )(x) = L 1 (x) + L 2 (x) dla x V 1, (L 3 L 1 )(x) = L 3 (L 1 (x)) dla x V 1 26 Liniowa zależność i liniowa niezależność* Definicja Niech v = (v 1,, v n ) będzie układem wektorów przestrzeni liniowej (V, +, R, ) Wektor w = α 1 v 1 + α 2 v 2 + α n v n nazywamy liniową kombinacją układu wektorów (v 1,, v n ) o współczynnikach α 1,, α n R Definicja Niech v = (v 1,, v n ) będzie układem wektorów przestrzeni liniowej (V, +, R, ) Mówimy, że układ v jest liniowo zależny, jeśli istnieją takie skalary α 1,, α n R nie wszystkie równe 0, że Układ v jest liniowo niezależny, jeśli nie jest liniowo zależny α 1 v 1 + α 2 v α n v n = 0 5

6 Twierdzenie 214 Układ v = (v 1,, v n ) wektorów przestrzeni liniowej V nad ciałem R jest liniowo niezależny wtedy i tylko wtedy, gdy dla każdego układu skalarów α 1,, α n R prawdziwa jest implikacja 27 Baza i wymiar przestrzeni* α 1 v 1 + α 2 v α n v n = 0 = α 1 = = α n = 0 Definicja Układ v = (v 1,, v n ) wektorów przestrzeni V nad ciałem R jest bazą przestrzeni V, jeśli każdy wektor w V można jednoznacznie przedstawić w postaci kombinacji wektorów układu v, tzn dla każdego w V istnieje jedyny taki układ skalarów (α 1,, α n ), że w = α 1 v 1 + α 2 v α n v n = α j v j Twierdzenie 215 Układ v = (v 1,, v n ) jest bazą przestrzeni V wtedy i tylko wtedy gdy jest liniowo niezależny i każdy wektor w V można przedstawić w postaci kombinacji wektorów układu v Przykład 22 Układ (e 1, e 2,, e n ), e 1 = [1, 0,, 0], e 2 = [0, 1,, 0],, e n = [0, 0,, 1], jest bazą (bazą kanoniczną) przestrzeni R n Twierdzenie 216 Każda nietrywialna przestrzeń liniowa posiada bazę Jeśli b = (b) b B oraz c = (c) c C są bazami pewnej przestrzeni, to card B = card C Definicja Wymiarem przestrzeni V nad R nazywamy liczbę wektorów dowolnej bazy tej przestrzeni (ozn dim V ) Przykład 23 Mamy dim R n = n dla n N 28 Macierze Definicja Macierzą o wymiarach m n nazywamy prostokątną tablicę liczb a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn Zbiór wszystkich macierzy wymiaru m n o wyrazach z ciała R oznaczymy przez M m n (R) Macierz A M m n (R) nazywamy kwadratową, jeśli m = n Twierdzenie 217 Zbiór M m n (R) jest przestrzenią liniową z działaniami a 11 a 1n b 11 b 1n + a m1 a mn b m1 b mn oraz = a 11 α a 1n a m1 a mn 281 Mnożenie macierzy, macierz odwracalna j=1 a 11 + b 11 a 1n + b 1n a m1 + b m1 a mn + b mn = α a 11 α a 1n α a m1 α a mn Definicja Macierz C = [c ik ] M m l nazywamy iloczynem macierzy A = [a ij ] M m n oraz B = [b jk ] M n l, jeśli c ik = a ij b jk j=1 dla (i, k) {1,, m} {1,, l} 6

7 Definicja Macierz nazywamy macierzą jednostkową I := M n n Twierdzenie 218 Dla dowolnego A M n n zachodzi A I = I A = A Definicja Macierz A M n n nazywamy odwracalną, jeśli istnieje taka macierz A M n n, że A A = I = A A Macierz A, jeśli taka istnieje, nazywamy macierzą odwrotną dla macierzy A i oznaczamy przez A Macierz transponowana Definicja Transponowaniem nazywamy taką operację T : M m n M n m, że A T = [a ij ] T = [a ji ] dla A = [a ij ] M m n Twierdzenie 219 Operacja transponowania ma następujące własności: (i) ( A T ) T = A, (ii) (A + B) T = A T + B T, (α A) T = α A T oraz (A B) T = B T A T, (iv) jeśli istnieje A 1, to (A 1 ) T = ( A T ) Rząd macierzy Definicja Rzędem macierzy A M m n nazywamy maksymalną liczbę jej liniowo niezależnych wierszy (kolumn) (ozn rza) Twierdzenie 220 Rząd macierzy A nie zmieni się, jeśli - przestawimy dwa wybrane wiersze (kolumny), - wybrany wiersz (kolumnę) pomnożymy przez liczbę różną od zera, - do wiersza (kolumny) dodamy inny wiersz (kolumnę) pomnożony przez liczbę 284 Wyznacznik macierzy kwadratowej Definicja Wyznacznikiem z macierzy kwadratowej A M n n nazywamy funkcję det : M n n R określoną indukcyjnie w następujący sposób: 1) jeśli A = [a] M 1 1, to det A = a, 2) dla n 2 oraz A M n n definiujemy det A = ( 1) j+1 a 1j det A 1j, (22) j=1 gdzie macierz A kl M (n 1) (n 1) powstaje z macierzy A przez wykreślenie k-tego wiersza oraz l-tej kolumny Uwaga 23 Wzór (22) nosi nazwę wzoru Laplace a dla pierwszego wiersza Twierdzenie 221 (wzór Laplace a) Jeśli A M n n, to (i) det A = ( 1) k+j a kj det A kj (wzór Laplace a dla k-tego wiersza), (ii) det A = j=1 ( 1) i+k a ik det A ik (wzór Laplace a dla k-tej kolumny) i=1 Twierdzenie 222 Wyznacznik macierzy kwadratowej A M n n nie zmieni się, jeśli do dowolnego wiersza (kolumny) dodamy inny wiersz (kolumnę) pomnożony przez dowolną liczbę Twierdzenie 223 (tw Cauchy ego) Jeśli A, B M n n, to det(a B) = (det A) (det B) Twierdzenie 224 Macierz A M n n jest odwracalna wtedy i tylko wtedy, gdy det A 0 Wówczas A 1 = [a ij ], gdzie a ij = (det A) 1 ( 1) i+j det A ji dla (i, j) {1,, n} 2 7

8 285 Macierz odwzorowania liniowego* Twierdzenie 225 Niech V 1, V 2 będą przestrzeniami liniowymi nad R z ustalonymi bazami v = (v 1,, v n ) oraz w = (w 1,, w m ) Jeśli L L(V 1, V 2 ), to istnieje dokładnie jedna taka macierz A = [a ij ] M m n (R), że L(v j ) = m a ij w i dla j {1,, n} (23) i=1 Na odwrót, dla każdej macierzy A = [a ij ] M m n (R) istnieje dokładnie jedno takie odwzorowanie liniowe L A L(V 1, V 2 ), że spełniony jest warunek (23) Definicja Macierz A z powyższego twierdzenia nazywamy macierzą odwzorowania L w bazach v oraz w i oznaczać będziemy przez M w v (L) (M L ) Twierdzenie 226 Niech (V i, +, R, ) dla i {1, 2, 3} będą przestrzeniami liniowymi z ustalonymi bazami b i (i) Jeśli M L1 oraz M L2 są macierzami odwzorowań L 1, L 2 L(V 1, V 2 ) w bazach b 1 oraz b 2, to M αl1 = α M L1 oraz M L1+L 2 = M L1 + M L2 (ii) jeśli M L1 jest macierzą odwzorowania L 1 L(V 1, V 2 ) w bazach b 1 oraz b 2 oraz M L2 jest macierzą odwzorowania L 2 L(V 2, V 3 ) w bazach b 2 oraz b 3, to M L3 L 1 = M L3 M L1 286 Postać macierzowa odwzorowań liniowych w przestrzeniach R n * Twierdzenie 227 Funkcja L : R n R m jest odwzorowaniem liniowym wtedy i tylko wtedy, gdy istnieje taka macierz A = [a ij ] M m n (R), że L x 1 x n = a 11 a 1n a m1 a mn x 1 x n dla x 1 x n R n 29 Układy równań liniowych Rozważymy układy równań liniowych A x T = b T zapisany równoważnie w postaci a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 a m1 x 1 + a m2 x a mn x n = b m, (U) gdzie A = [a ij ] M m n jest macierzą tego układu, x = [x 1,, x n ] R n jest niewiadomą oraz b = [b 1,, b m ] R m jest stałą Definicja Układ (U) nazywamy jednorodnym, jeśli b = 0 R m W przeciwnym przypadku mówimy, że układ (U) jest układem niejednorodnym Twierdzenie 228 (Kroneckera-Capelliego) Jeśli A = [a ij ] M m n, b R m, to układ (U) jest niesprzeczny wtedy i tylko wtedy, gdy rza = rz [ A, b T ] Twierdzenie 229 (Cramera) Niech w układzie (U) zachodzi m = n oraz det A 0 Wówczas jedyne rozwiązanie układu (U) dane jest wzorem x j = det A j dla j {1,, n}, det A gdzie A j jest macierzą powstałą z macierzy A przez zastąpienie j-tej kolumny macierzy A kolumną wyrazów wolnych b 8

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

Matematyka liczby zespolone. Wykład 1

Matematyka liczby zespolone. Wykład 1 Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.

Bardziej szczegółowo

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a); Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Zastosowania wyznaczników

Zastosowania wyznaczników Zastosowania wyznaczników Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 7.wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa, listopad 2012 1 / 17

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

Spis treści Wstęp Liczby zespolone Funkcje elementarne zmiennej zespolonej Wielomiany Macierze i wyznaczniki

Spis treści Wstęp Liczby zespolone Funkcje elementarne zmiennej zespolonej Wielomiany Macierze i wyznaczniki Spis treści Wstęp ii 1 Liczby zespolone 1 1.1 Definicja i działania, liczby sprzężone......................... 1 1.2 Moduł, argument, postać trygonometryczna..................... 2 1.3 Działania na liczbach

Bardziej szczegółowo

Macierz o wymiarach m n. a 21. a 22. A =

Macierz o wymiarach m n. a 21. a 22. A = Macierze 1 Macierz o wymiarach m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Mat m n (R) zbiór macierzy m n o współczynnikach rzeczywistych Analogicznie określamy Mat m n (Z), Mat m n (Q) itp 2

Bardziej szczegółowo

Pierścień wielomianów jednej zmiennej

Pierścień wielomianów jednej zmiennej Rozdział 1 Pierścień wielomianów jednej zmiennej 1.1 Definicja pierścienia wielomianów jednej zmiennej Definicja 1.1 Niech P będzie dowolnym pierścieniem. Ciąg nieskończony (a 0, a 1,..., a n,...) elementów

Bardziej szczegółowo

Grupy, pierścienie i ciała

Grupy, pierścienie i ciała Grupy, pierścienie i ciała Definicja: Niech A będzie niepustym zbiorem. Działaniem wewnętrznym (lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. Niech ponadto B będzie niepustym zbiorem.

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią

Bardziej szczegółowo

1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny)

1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny) Rozdział 1 Pierścienie i ideały Definicja 1.1 Pierścieniem nazywamy trójkę (R, +, ), w której R jest zbiorem niepustym, działania + : R R R i : R R R są dwuargumentowe i spełniają następujące warunki dla

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze

Bardziej szczegółowo

1. Wielomiany Podstawowe definicje i twierdzenia

1. Wielomiany Podstawowe definicje i twierdzenia 1. Wielomiany Podstawowe definicje i twierdzenia Definicja wielomianu. Wielomianem stopnia n zmiennej rzeczywistej x nazywamy funkcję w określoną wzorem w(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, przy

Bardziej szczegółowo

Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013

Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013 Wyznaczniki Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 6. Wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa, listopad 2013 1 / 13 Terminologia

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Wyrażenia algebraiczne, indukcja matematyczna 2 II Geometria analityczna w R 2 4 III Liczby zespolone 5

Bardziej szczegółowo

1 Określenie pierścienia

1 Określenie pierścienia 1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące

Bardziej szczegółowo

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1 LICZBY ZESPOLONE 1. Wiadomości ogólne DEFINICJA 1. Liczba zespolona z nazywamy liczbę taką, że a, b R oraz i jest jednostka urojona, definiowaną następująco: z = a + bi (1 i = 1 lub i = 1 Powyższą postać

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 1. Ciała Definicja 1. Układ { ; 0, 1; +, } złożony ze zbioru, dwóch wyróżnionych elementów 0, 1 oraz dwóch działań +:, : nazywamy ciałem

Bardziej szczegółowo

1 Przestrzeń liniowa. α 1 x α k x k = 0

1 Przestrzeń liniowa. α 1 x α k x k = 0 Z43: Algebra liniowa Zagadnienie: przekształcenie liniowe, macierze, wyznaczniki Zadanie: przekształcenie liniowe, jądro i obraz, interpretacja geometryczna. Przestrzeń liniowa Już w starożytności człowiek

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

Algebra liniowa z geometrią. wykład I

Algebra liniowa z geometrią. wykład I Algebra liniowa z geometrią wykład I 1 Oznaczenia N zbiór liczb naturalnych, tutaj zaczynających się od 1 Z zbiór liczb całkowitych Q zbiór liczb wymiernych R zbiór liczb rzeczywistych C zbiór liczb zespolonych

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści 0 Wyrażenia algebraiczne, indukcja matematyczna 2 2 2 1 Geometria analityczna w R 2 3 3 3 2 Liczby zespolone 4 4 4 3

Bardziej szczegółowo

= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4 " 5 3$ 7&=0 5$+7&=4

= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4  5 3$ 7&=0 5$+7&=4 17. Układ równań 17.1 Co nazywamy układem równań liniowych? Jak zapisać układ w postaci macierzowej (pokazać również na przykładzie) Co to jest rozwiązanie układu? Jaki układ nazywamy jednorodnym, sprzecznym,

Bardziej szczegółowo

Przestrzeń liniowa i przekształcenie liniowe

Przestrzeń liniowa i przekształcenie liniowe opracował Maciej Grzesiak Przestrzeń liniowa i przekształcenie liniowe W algebrze rozpatruje się zbiory abstrakcyjne Natura elementów zbioru się nie liczy Na elementach rozpatruje się działania spełniające

Bardziej szczegółowo

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne

Bardziej szczegółowo

5. Równania różniczkowe zwyczajne pierwszego rzędu

5. Równania różniczkowe zwyczajne pierwszego rzędu 5. Równania różniczkowe zwyczajne pierwszego rzędu 5.1. Wstęp. Definicja 5.1. Niech V R 3 będzie obszarem oraz F : V R. Równaniem różniczkowym zwyczajnym rzędu pierwszego nazywamy równanie postaci Równanie

Bardziej szczegółowo

0.1 Pierścienie wielomianów

0.1 Pierścienie wielomianów 0.1 Pierścienie wielomianów Zadanie 1. Znaleźć w pierścieniu Z 5 [X] drugi wielomian określający tę samą funkcję, co wielomian X 2 X + 1. (Odp. np. X 5 + X 2 2X + 1). Zadanie 2. Znaleźć sumę i iloczyn

Bardziej szczegółowo

Zadania z Algebry liniowej 3 semestr zimowy 2008/2009

Zadania z Algebry liniowej 3 semestr zimowy 2008/2009 Zadania z Algebry liniowej 3 semestr zimowy 2008/2009 1. Niech V będzie przestrzenią wektorową nad ciałem K i niech 0 K oraz θ V będą elementem zerowym ciała K i wektorem zerowym przestrzeni V. Posługując

Bardziej szczegółowo

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Wektory

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

wszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów

wszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów KOINACJA LINIOWA UKŁADU WEKTORÓW Definicja 1 Niech będzie przestrzenią liniową (wektorową) nad,,,, układem wektorów z przestrzeni, a,, współczynnikami ze zbioru (skalarami). Wektor, nazywamy kombinacją

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

1 Podstawowe oznaczenia

1 Podstawowe oznaczenia Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

Wyk lad 11 Przekszta lcenia liniowe a macierze

Wyk lad 11 Przekszta lcenia liniowe a macierze Wyk lad 11 Przekszta lcenia liniowe a macierze 1 Izomorfizm przestrzeni L(V ; W ) i M m n (R) Twierdzenie 111 Niech V i W bed a przestrzeniami liniowymi o bazach uporzadkowanych (α 1,, α n ) i (β 1,, β

Bardziej szczegółowo

1 Pierścienie i ich homomorfizmy. Ideał, pierścień ilorazowy. Ideały pierwsze i maksymalne, dziedziny i ciała - definicje i przykłady

1 Pierścienie i ich homomorfizmy. Ideał, pierścień ilorazowy. Ideały pierwsze i maksymalne, dziedziny i ciała - definicje i przykłady Tekst ten jest dostępny na stronie http://www-usersmatumkpl/ cstefan/ W razie potrzeby tam będą znajdowały się ewentualne poprawki i uzupełnienia 1 Pierścienie i ich homomorfizmy Ideał, pierścień ilorazowy

Bardziej szczegółowo

Grupy i cia la, liczby zespolone

Grupy i cia la, liczby zespolone Rozdzia l 1 Grupy i cia la, liczby zespolone Dla ustalenia uwagi, b edziemy używać nast epuj acych oznaczeń: N = { 1, 2, 3,... } - liczby naturalne, Z = { 0, ±1, ±2,... } - liczby ca lkowite, W = { m n

Bardziej szczegółowo

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Logika Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Często słowu "logika" nadaje się szersze znaczenie niż temu o czym będzie poniżej: np. mówi się "logiczne myślenie"

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Przestrzenie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 2 wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 10 Przestrzenie

Bardziej szczegółowo

Kombinacje liniowe wektorów.

Kombinacje liniowe wektorów. Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =

Bardziej szczegółowo

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi. Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element

Bardziej szczegółowo

Matematyka dyskretna. 1. Relacje

Matematyka dyskretna. 1. Relacje Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli

Bardziej szczegółowo

Zestaw 12- Macierz odwrotna, układy równań liniowych

Zestaw 12- Macierz odwrotna, układy równań liniowych Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami Załóżmy, że macierz jest macierzą kwadratową stopnia n. Mówimy, że macierz tego samego wymiaru jest macierzą odwrotną

Bardziej szczegółowo

Wielomiany podstawowe wiadomości

Wielomiany podstawowe wiadomości Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s = a n s n + a n s n + + a s + a 0, gdzie n N, a i R i = 0,, n, a n 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i

Bardziej szczegółowo

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2017

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2017 Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2017 Mirosław Sobolewski (UW) Warszawa, 2017 1 / 10 Definicja Funkcja

Bardziej szczegółowo

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011 Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2011 Mirosław Sobolewski (UW) Warszawa, 2011 1 / 16 Definicja Niech V,

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1 Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry B Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

Zbiory, relacje i funkcje

Zbiory, relacje i funkcje Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację

Bardziej szczegółowo

WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE

WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE Definicja 1 Algebra abstrakcyjna nazywamy teorie, której przedmiotem sa dzia lania na

Bardziej szczegółowo

Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ).

Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ). Odwzorowania n-liniowe; formy n-liniowe Definicja 1 Niech V 1,..., V n, U będą przestrzeniami liniowymi nad ciałem K. Odwzorowanie G: V 1 V n U nazywamy n-liniowym, jeśli dla każdego k [n] i wszelkich

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 1. wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 1

Bardziej szczegółowo

Skończone rozszerzenia ciał

Skończone rozszerzenia ciał Skończone rozszerzenia ciał Notkę tę rozpoczniemy od definicji i prostych własności wielomianu minimalnego, następnie wprowadzimy pojecie rozszerzenia pojedynczego o element algebraiczny, udowodnimy twierdzenie

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 4. wykład z algebry liniowej Warszawa, październik 2010 Mirosław Sobolewski (UW) Warszawa, wrzesień 2006 1 / 7

Bardziej szczegółowo

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy

Bardziej szczegółowo

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

Relacje binarne. Def. Relację ϱ w zbiorze X nazywamy. antysymetryczną, gdy x, y X (xϱy yϱx x = y) spójną, gdy x, y X (xϱy yϱx x = y)

Relacje binarne. Def. Relację ϱ w zbiorze X nazywamy. antysymetryczną, gdy x, y X (xϱy yϱx x = y) spójną, gdy x, y X (xϱy yϱx x = y) Relacje binarne Niech X będzie niepustym zbiorem. Jeśli ϱ X X to mówimy, że ϱ jest relacją w zbiorze X. Zamiast pisać (x, y) ϱ będziemy stosować zapis xϱy. Def. Relację ϱ w zbiorze X nazywamy zwrotną,

Bardziej szczegółowo

13. Cia la. Rozszerzenia cia l.

13. Cia la. Rozszerzenia cia l. 59 13. Cia la. Rozszerzenia cia l. Z rozważań poprzedniego paragrafu wynika, że jeżeli wielomian f o wspó lczynnikach w ciele K jest nierozk ladalny, to pierścień ilorazowy K[X]/(f) jest cia lem zawieraja

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego) 27 lutego 2007

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego)  27 lutego 2007 Liczby zespolone P. F. Góra (w zastępstwie prof. K. Rościszewskiego) http://th-www.if.uj.edu.pl/zfs/gora/ 27 lutego 2007 Definicja C zbiór par liczb rzeczywistych w którym określono następujace działania:

Bardziej szczegółowo

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017)

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Funkcje analityczne Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Paweł Mleczko Uniwersytet im. Adama Mickiewicza w Poznaniu 1. Sprawy organizacyjne

Bardziej szczegółowo

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.

Bardziej szczegółowo

1. Określenie pierścienia

1. Określenie pierścienia 1. Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią prof. dr hab. Andrzej Szczepański Wydział MFI UG Instytut Matematyki 14 czerwca 2017 rof. dr hab. Andrzej Szczepański (Wydział MFI UG Algebra Instytut liniowa Matematyki) z

Bardziej szczegółowo

Wykład 5. Ker(f) = {v V ; f(v) = 0}

Wykład 5. Ker(f) = {v V ; f(v) = 0} Wykład 5 Niech f : V W będzie przekształceniem liniowym przestrzeni wektorowych Wtedy jądrem przekształcenia nazywamy zbiór tych elementów z V, których obrazem jest wektor zerowy w przestrzeni W Jądro

Bardziej szczegółowo

1. Wykład NWD, NWW i algorytm Euklidesa.

1. Wykład NWD, NWW i algorytm Euklidesa. 1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.

Bardziej szczegółowo

Zestaw zadań 14: Wektory i wartości własne. ) =

Zestaw zadań 14: Wektory i wartości własne. ) = Zestaw zadań 4: Wektory i wartości własne () Niech V = V V 2 będzie przestrzenią liniową nad ciałem K, w którym + 0 Znaleźć wszystkie podprzestrzenie niezmiennicze rzutu V na V wzdłuż V 2 oraz symetrii

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

D1. Algebra macierzy. D1.1. Definicje

D1. Algebra macierzy. D1.1. Definicje D1. Algebra macierzy W niniejszym dodatku podamy podstawowe operacje macierzowe oraz niektóre techniki algebry macierzowej nie dbając szczególnie o formalizm matematyczny. Zakres jest wystarczający dla

Bardziej szczegółowo

Algorytm Euklidesa. ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90),

Algorytm Euklidesa. ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90), Algorytm Euklidesa ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90), (d) NWD(120, 168, 280), (e) NWD(30, 42, 70, 105), (f) NWW[120, 195], (g)

Bardziej szczegółowo

= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i

= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i 15. Wykład 15: Rozszerzenia pierwiastnikowe. Elementy wyrażające się przez pierwiastniki. Rozwiązalność równań przez pierwiastniki. Równania o dowolnych współczynnikach. 15.1. Rozszerzenia pierwiastnikowe.

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

Układy równań liniowych, macierze, Google

Układy równań liniowych, macierze, Google Układ równań linowych { x+2y = 6, 3x y = 4 (0) Spotkania z Matematyka Układy równań liniowych, macierze, Google Aleksander Denisiuk denisjuk@matman.uwm.edu.pl Uniwersytet Warmińsko-Mazurski w Olsztynie

Bardziej szczegółowo

1 Działania na macierzach

1 Działania na macierzach 1 Działania na macierzach Dodawanie macierzy Dodawać można tylko macierze o tych samych wymiarach i robi to się następująco: [ 1 3 4 5 6 ] + [ 0 3 1 3 7 8 ] = [1 + 0 + 3 3 + 1 4 3 5 + 7 6 + 8 ] = [1 5

Bardziej szczegółowo

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu

Bardziej szczegółowo