b) [3 punkty] Jaka jest oczekiwana wartość doskonałej informacji? 0,875 (=3,625 2,75)

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "b) [3 punkty] Jaka jest oczekiwana wartość doskonałej informacji? 0,875 (=3,625 2,75)"

Transkrypt

1 Imię Metody Analizy Decyzji Nazwisko II termin: 7.9. (7:) Nr indeksu Wykładowca: dr M. Lewandowski Zadanie [ punktów] Michał L. wyjeżdża na weekend do Chałup, gdzie chciałby popływać na desce windsurfingowej. Michał nie wie, czy będzie wiać silny czy słaby wiatr, ale wie, że prawdopodobieństwo silnego wiatru jest o tej porze roku ¼ (a słabego ¾). Michał może wziąć swoją deskę ze sobą (dodatkowy koszt, dukatów) lub nie. Kiedy dojedzie na miejsce z deską lub bez okaże się, czy wiatr wieje mocno, czy słabo. Wówczas Michał ma do wyboru popływać na desce (jeśli przywiózł swoją deskę, to na swojej, a jeśli nie to musi wypożyczyć w wypożyczalni) lub pójść na plażę. Pływanie przy silnym wietrze i na swojej desce daje Michałowi satysfakcję, którą Michał wycenia na 7 dukatów. Jeśli Michał pływa przy silnym wietrze, ale na wypożyczonej desce jego satysfakcja jest równoważna dukatom (musi zapłacić za wypożyczenie, sprzęt nie jest do niego dopasowany, etc.). Jeśli wieje słaby wiatr pływanie na desce nie przynosi żadnej satysfakcji Michałowi ( dukatów). Siedzenie na plaży przy silnym wietrze Michał wycenia na dukat, natomiast siedzenie na plaży przy słabym wietrze Michał wycenia na dukaty. Michał woli więcej dukatów niż mniej. a) [ punkty] Czy Michał weźmie deskę ze sobą, czy też nie? NIE Jaką oczekiwaną wartość ma optymalny wybór Michała?,7 b) [ punkty] Jaka jest oczekiwana wartość doskonałej informacji?,87 (=,6,7)

2 c) [ punktów] Michał postanowił zasięgnąć więcej informacji na temat pogody w rejonie Zatoki Puckiej. Dowiedział się, że silne wiatry w 8% wieją z zachodu, a w % z innego kierunku, natomiast słabe wiatry w % wieją z zachodniego kierunku, natomiast w 6% z innego kierunku. Michał ma możliwość kupienia urządzenia METEO, które wskaże mu zawsze z jakiego kierunku wieje wiatr. Ile Michał jest skłonny zapłacić maksymalnie za owo urządzenie?, (=,7) Zadanie [8 punktów] Piotr i Paweł wolą więcej niż mniej (rosnąca funkcja użyteczności), a dodatkowo o Pawle wiemy, że zawsze, jak ma do wyboru daną loterię oraz kwotę równą wartości oczekiwanej tej loterii, zawsze wybiera to drugie (wklęsła funkcja użyteczności). W poniższych porównaniach wskaż, którą loterię preferowałby każdy z nich. Jeśli dla któregoś (lub obu) nie można podać odpowiedzi na podstawie posiadanych informacji, napisz to. Krótko uzasadnij wybór (FOSD, SOSD). a) [ punkty] Wypłata l l Piotr i Paweł wolą l (l FOSD l) b) [ punkty] Wypłata l l Piotr i Paweł wolą l (l FOSD l)

3 c) [ punkty] d) [ punkty] Wypłata l l...7. Paweł woli l (l SOSD l) Piotr nie może stwierdzić (nie ma dominacji FOSD) Wypłata l l Ani Paweł ani Piotr nie może stwierdzić (nie ma dominacji FOSD ani SOSD) Uwaga: Jeśli występuje dominacja stochastyczna pierwszego rzędu (FOSD), dominacja stochastyczna drugiego rzędu występuje również dlatego w pierwszych dwóch parach nie trzeba sprawdzać SOSD (Zostało to zrobione dla kompletności). W drugą stronę to nie działa: patrz para loterii powyżej. l l l l l l l l,,,,,,,,,,8,,,,,7,6,,,,,, SKUMULOWANA FUNKCJA PRAWDOPODOBIEŃSTWA DYSTRYBUANTA l l l l l l l l <,, <,, <,, >, <,, =,, <,, <,8, <,7,6 =,6 >, >,8 = = = = CAŁKA Z DYSTRYBUNATY l l l l l l l l = = = = <,, <,6 <,8 >, <,9,9 <,, <, <,, <,, <,7, =, = Poniżej przedstawiamy wykresy dla całki z dystrybuanty (badanie SOSD) (wykresy dystrybuanty można sobie narysować samemu):

4 Zadanie [ punktów] Rozważ następujący problem decyzyjny w sytuacji niepewności. Marcin ma do wyboru trzy strategie inwestowania: bezpieczną, średnią oraz antykryzysową. W zależności od tego, czy za rok sytuacja na rynku nadal będzie kryzysowa czy też nie poszczególne strategie dają różne wypłaty końcowe patrz tabelka: a) [ punktów] Która jest optymalna (czysta) strategia (B, Ś, A) na podstawie poniższych kryteriów: Strategia Kryzys Brak kryzysu Bezpieczna Średnia 6 Antykryzysowa 6 Wartość kryterium Maximin B Maximax A Laplace A Minimax regret B 6 l l b) [ punktów] Załóżmy, że Marcin może wybrać strategię mieszaną, tj. zamiast inwestować całą sumę w jedną strategię, może zainwestować część całej sumy w różne strategie. W szczególności, oznaczmy przez p część całej sumy (udział) zainwestowaną w strategię bezpieczną, przez p część sumy zainwestowaną w strategię średnią oraz przez p część sumy zainwestowaną w strategię ryzykowną. Która strategia jest teraz optymalna wg poszczególnych kryteriów?: p p p Wartość kryterium Maximin 6/ 9/ / Laplace W maximin trzeba rozwiązać zadanie max!!!!,!!,!!!! min p! + p! ; p! + 6p! 6p! p. w. p! + p! + p! = Od razu widać, że w optimum musi zachodzić warunek: p! + p! = p! + 6p! 6p! Widać również, że na przykład mieszanka strategii B z Ś nic nam nie da. Stąd w optimum obie te strategie na raz nie mogą mieć dodatnich prawdopodobieństw. Mamy więc tylko dwie opcje: Mieszanka B i A: (p!, p! >, p! = ) W tym wypadku mamy następujący układ równań:

5 p! = p! 6p! = p! + p!!" i wartość kryterium Co daje rozwiązanie w postaci p!, p!, p! =!,,!!! Mieszanka Ś i R: (p!, p! >, p! = ) W tym wypadku mamy następujący układ równań: p! + p! = 6p! 6p! = p! + p! Co daje rozwiązanie w postaci p!, p!, p! =,!",!!" i wartość kryterium!"!"!" Ponieważ druga opcja prowadzi do lepszej (wyższej) wartości kryterium, to jest to optymalne rozwiązanie. c) [ punkt] Czy kryterium Laplace może kiedykolwiek dawać lepsze rezultaty przy uwzględnieniu strategii mieszanych w porównaniu do sytuacji, gdzie tylko strategie czyste są uwzględnione? NIE!

Egzamin z Wstępu do Teorii Gier. 19 styczeń 2016, sala A9, g Wykładowca: dr Michał Lewandowski. Instrukcje

Egzamin z Wstępu do Teorii Gier. 19 styczeń 2016, sala A9, g Wykładowca: dr Michał Lewandowski. Instrukcje Egzamin z Wstępu do Teorii Gier 19 styczeń 2016, sala A9, g. 11.40-13.10 Wykładowca: dr Michał Lewandowski Instrukcje 1) Egzamin trwa 90 minut. 2) Proszę wyraźnie zapisać swoje imię, nazwisko oraz numer

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 5: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE NIESTAŁEJ

TEORIA GIER W EKONOMII WYKŁAD 5: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE NIESTAŁEJ TEORI GIER W EKONOMII WYKŁD 5: GRY DWUOSOOWE KOOPERCYJNE O SUMIE NIESTŁEJ dr Robert Kowalczyk Katedra nalizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwumacierzowe Skończoną grę dwuosobową o

Bardziej szczegółowo

11. Gry Macierzowe - Strategie Czyste i Mieszane

11. Gry Macierzowe - Strategie Czyste i Mieszane 11. Gry Macierzowe - Strategie Czyste i Mieszane W grze z doskonałą informacją, gracz nie powinien wybrać akcję w sposób losowy (o ile wypłaty z różnych decyzji nie są sobie równe). Z drugiej strony, gdy

Bardziej szczegółowo

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie

Bardziej szczegółowo

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym Ćwiczenia ZPI 1 Short Long Strategie (struktury opcyjne) mechanizm osiągnięcia zysku ze złożenia ze sobą prostych opcji. Zbudowanie odpowiedniej struktury pozwoli uszyć na miarę strategię dla inwestora,

Bardziej szczegółowo

Strategie opcyjne. Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym

Strategie opcyjne. Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym Strategie opcyjne Ćwiczenia ZPI 1 Strategie opcyjne cel stosowania Strategie (struktury opcyjne) mechanizm osiągnięcia zysku ze złożenia ze sobą prostych opcji. Zbudowanie odpowiedniej struktury pozwoli

Bardziej szczegółowo

7.2. Rozwiąż problem z zadania 7.1 stosując Twierdzenie 7.16.

7.2. Rozwiąż problem z zadania 7.1 stosując Twierdzenie 7.16. Rozdział 7 Funkcje użyteczności 7 Rozważ model dwumianowy z cenami akcji S0 R { S S = U = S0 + U z prawdopodobieństwem p S D = S0 + D z prawdopodobieństwem p oraz walorem wolnym od ryzyka A0 = A = + r

Bardziej szczegółowo

Gry o sumie niezerowej

Gry o sumie niezerowej Gry o sumie niezerowej Równowagi Nasha 2011-12-06 Zdzisław Dzedzej 1 Pytanie Czy profile równowagi Nasha są dobrym rozwiązaniem gry o dowolnej sumie? Zaleta: zawsze istnieją (w grach dwumacierzowych, a

Bardziej szczegółowo

Przedsiębiorczość i Podejmowanie Ryzyka. Zajęcia 2

Przedsiębiorczość i Podejmowanie Ryzyka. Zajęcia 2 Przedsiębiorczość i Podejmowanie Ryzyka Zajęcia 2 Reguły podejmowania decyzji w warunkach niepewności Wybór spośród A1, A2,, Am alternatyw (decyzji dopuszczalnych, opcji, działań), gdzie relatywna użyteczność

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

TEORIA GIER W NAUKACH SPOŁECZNYCH. Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą

TEORIA GIER W NAUKACH SPOŁECZNYCH. Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą TEORIA GIER W NAUKACH SPOŁECZNYCH Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą Przypomnienie Gry w postaci macierzowej i ekstensywnej Gry o sumie zerowej i gry o sumie niezerowej Kryterium dominacji

Bardziej szczegółowo

5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej

5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej 5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej Stopa inflacji, i, mierzy jak szybko ceny się zmieniają jako zmianę procentową w skali rocznej. Oblicza się ją za pomocą średniej ważonej cząstkowych

Bardziej szczegółowo

1 S t r o n a. Teoria Gier Praca domowa 1 - rozwiązania

1 S t r o n a. Teoria Gier Praca domowa 1 - rozwiązania 1 S t r o n a Teoria Gier Praca domowa 1 - rozwiązania Zadanie 1 Gdy korzystamy z toalet publicznych dominującą strategią jest: nie sprzątać po sobie. Skorzystanie z toalety przynosi dodatnią wypłatę,

Bardziej szczegółowo

PODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI

PODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 5 PODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI 5.2. Ćwiczenia komputerowe

Bardziej szczegółowo

Czym jest użyteczność?

Czym jest użyteczność? Czym jest użyteczność? W teorii gier: Ilość korzyści (czy też dobrobytu ), którą gracz osiąga dla danego wyniku gry. W ekonomii: Zdolność dobra do zaspokajania potrzeb. Określa subiektywną przyjemność,

Bardziej szczegółowo

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut

Bardziej szczegółowo

Badania operacyjne i teorie optymalizacji

Badania operacyjne i teorie optymalizacji Badania operacyjne i teorie optymalizacji dr Zbigniew Karwacki Wydział Ekonomiczno-Socjologiczny Katedra Badań Operacyjnych Centrum Informatyczno-Ekonometryczne pok. E-137 Środa, 16.30-18.00 zakarwacki@uni.lodz.pl

Bardziej szczegółowo

2010 W. W. Norton & Company, Inc. Oligopol

2010 W. W. Norton & Company, Inc. Oligopol 2010 W. W. Norton & Company, Inc. Oligopol Oligopol Monopol jedna firma na rynku. Duopol dwie firmy na rynku. Oligopol kilka firm na rynku. W szczególności decyzje każdej firmy co do ceny lub ilości produktu

Bardziej szczegółowo

a) Znajdź równowagi Nasha tej gry oraz wypłaty w równowadze obu tenisistek...

a) Znajdź równowagi Nasha tej gry oraz wypłaty w równowadze obu tenisistek... Egzamin z przedmiotu: Wstęp do Teorii Gier Zadanie 1 Prowadzący: dr Michał Lewandowski gnieszka Radwańska gra w tenisa z Karoliną Woźniacki. gnieszka może zaserwować na backhand lub na forehand Woźniacki.

Bardziej szczegółowo

Skrypt 16. Ciągi: Opracowanie L6

Skrypt 16. Ciągi: Opracowanie L6 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 16 Ciągi: 1. Ciągi liczbowe.

Bardziej szczegółowo

Wydział Nauk Ekonomicznych Uniwersytetu Warszawskiego Warszawa, Czerwiec 2002. Mała Giełda

Wydział Nauk Ekonomicznych Uniwersytetu Warszawskiego Warszawa, Czerwiec 2002. Mała Giełda Wydział Nauk Ekonomicznych Uniwersytetu Warszawskiego Warszawa, Czerwiec 2002 Mała Giełda Opis eksperymentu na zajęcia z Ekonomii Eksperymentalnej prowadzone przez dr Tomasza Kopczewskiego. Wykonali: Krzysztof

Bardziej szczegółowo

a) Znajdź równowagi Nasha tej gry oraz wypłaty w równowadze obu tenisistek.

a) Znajdź równowagi Nasha tej gry oraz wypłaty w równowadze obu tenisistek. Egzamin z przedmiotu: Wstęp do Teorii Gier Zadanie 1 Prowadzący: dr Michał Lewandowski Agnieszka Radwańska gra w tenisa z Karoliną Woźniacki. Agnieszka może zaserwować na backhand lub na forehand Woźniacki.

Bardziej szczegółowo

Instrukcje Obowiązuje zakaz rozmawiania z innymi uczestnikami, pod rygorem wykluczenia z eksperymentu!

Instrukcje Obowiązuje zakaz rozmawiania z innymi uczestnikami, pod rygorem wykluczenia z eksperymentu! Instrukcje Dziękujemy za udział w eksperymencie! Za samo przyjście na eksperyment otrzymasz 0 zł. Będziesz mógł zatrzymać tę kwotę niezależnie od wyników eksperymentu. Dodatkowe wynagrodzenie będzie zależało

Bardziej szczegółowo

Inne kryteria tworzenia portfela. Inne kryteria tworzenia portfela. Poziom bezpieczeństwa. Analiza i Zarządzanie Portfelem cz. 3. Dr Katarzyna Kuziak

Inne kryteria tworzenia portfela. Inne kryteria tworzenia portfela. Poziom bezpieczeństwa. Analiza i Zarządzanie Portfelem cz. 3. Dr Katarzyna Kuziak Inne kryteria tworzenia portfela Analiza i Zarządzanie Portfelem cz. 3 Dr Katarzyna Kuziak. Minimalizacja ryzyka przy zadanym dochodzie Portfel efektywny w rozumieniu Markowitza odchylenie standardowe

Bardziej szczegółowo

Ekonomia matematyczna - 1.2

Ekonomia matematyczna - 1.2 Ekonomia matematyczna - 1.2 6. Popyt Marshalla, a popyt Hicksa. Poruszać się będziemy w tzw. standardowym polu preferencji X,, gdzie X R n i jest relacją preferencji, która jest: a) rosnąca (tzn. x y x

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO D. Miszczyńska, M.Miszczyński KBO UŁ GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata,

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, Biomatematyka

EGZAMIN MAGISTERSKI, Biomatematyka Biomatematyka 90...... Zadanie 1. (8 punktów) Załóżmy, że w diploidalnej populacji, dla której zachodzi prawo Hardy ego- Weinberga dla loci o dwóch allelach A i a proporcja osobników o genotypie AA wynosi

Bardziej szczegółowo

TEORIA GIER W NAUKACH SPOŁECZNYCH. Drzewka gry, indukcja wsteczna, informacja

TEORIA GIER W NAUKACH SPOŁECZNYCH. Drzewka gry, indukcja wsteczna, informacja TEORIA GIER W NAUKACH SPOŁECZNYCH Drzewka gry, indukcja wsteczna, informacja Czym się dzisiaj zajmiemy? Rozwiązywaniem gier w postaci ekstensywnej (drzewka) Historią najnowszą Indukcją wsteczną Preferencjami

Bardziej szczegółowo

Szkoła Główna Handlowa Symulacje w arkuszu kalkulacyjnym 131900-0139 SAMOCHÓD CIOCI

Szkoła Główna Handlowa Symulacje w arkuszu kalkulacyjnym 131900-0139 SAMOCHÓD CIOCI Szkoła Główna Handlowa Symulacje w arkuszu kalkulacyjnym 131900-0139 SAMOCHÓD CIOCI Katarzyna Groblewska, 45879 (podsumowanie, opis organizacji, problemu, metody) Angelika Ojdana, 46243 (analiza wrażliwości,

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ

TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Definicja gry o sumie zerowej Powiemy, że jest grą o

Bardziej szczegółowo

Plan. Prosty model aukcji: Aukcja drugiej ceny - równowaga Nasha w strategiach słabo dominujących Aukcja pierwszej ceny - równowaga Nasha

Plan. Prosty model aukcji: Aukcja drugiej ceny - równowaga Nasha w strategiach słabo dominujących Aukcja pierwszej ceny - równowaga Nasha Plan Przypomnienie: Dominacja oraz równowaga Nasha Model konkurencji ilościowej Cournot Model konkurencji cenowej Bertranda jednakowe produkty produkty zróżnicowane Prosty model aukcji: Aukcja drugiej

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.2. Niezależność zdarzeń Katarzyna Rybarczyk-Krzywdzińska Niezależność dwóch zdarzeń Intuicja Zdarzenia losowe

Bardziej szczegółowo

Egzamin XXVII dla Aktuariuszy z 12 października 2002 r.

Egzamin XXVII dla Aktuariuszy z 12 października 2002 r. Komisja Egzaminacyjna dla Aktuariuszy Egzamin XXVII dla Aktuariuszy z 12 października 2002 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Ośrodek Doskonalenia

Bardziej szczegółowo

Matematyka finansowa w pakiecie Matlab

Matematyka finansowa w pakiecie Matlab Matematyka finansowa w pakiecie Matlab Wykład 5. Wycena opcji modele dyskretne Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na kierunku Matematyka

Bardziej szczegółowo

3.1 Analiza zysków i strat

3.1 Analiza zysków i strat 3.1 Analiza zysków i strat Zakładamy że firma decyduje czy ma wdrożyć nowy produkt lub projekt. Firma musi rozważyć czy przyszłe zyski (dyskontowane w czasie) z tego projektu są większe niż koszty poniesione

Bardziej szczegółowo

Mikroekonomia. O czym dzisiaj?

Mikroekonomia. O czym dzisiaj? Mikroekonomia Joanna Tyrowicz jtyrowicz@wne.uw.edu.pl http://www.wne.uw.edu.pl/~jtyrowicz 1.12.2007r. Mikroekonomia WNE UW 1 O czym dzisiaj? Macierze wypłat, czyli ile trzeba mieć w razie się straci...

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ

TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwuosobowe z kooperacją Przedstawimy

Bardziej szczegółowo

STRATEGIA PRZYBLIŻONA. Inna propozycja: szukanie optymalnej strategii metodą iteracyjną.

STRATEGIA PRZYBLIŻONA. Inna propozycja: szukanie optymalnej strategii metodą iteracyjną. STRATEGIA PRZYBLIŻONA Ogólna strategia rozwiązywania gier NxN może być trudna obliczeniowo. Np. sprawdzenie otrzymanej mieszanej strategii wyrównującej : czy wszystkie strategie przeciwnika dają te same

Bardziej szczegółowo

STRATEGIE NA RYNKU OPCJI. KUPNO OPCJI KUPNA (Long Call)

STRATEGIE NA RYNKU OPCJI. KUPNO OPCJI KUPNA (Long Call) STRATEGIE NA RYNKU OPCJI KUPNO OPCJI KUPNA (Long Call) * * * Niniejsza broszura ma charakter jedynie edukacyjny i nie stanowi oferty kupna ani oferty sprzedaży żadnych instrumentów finansowych ani usług

Bardziej szczegółowo

STRATEGIE NA RYNKU OPCJI. KUPNO OPCJI SPRZEDAŻY (Long Put)

STRATEGIE NA RYNKU OPCJI. KUPNO OPCJI SPRZEDAŻY (Long Put) STRATEGIE NA RYNKU OPCJI KUPNO OPCJI SPRZEDAŻY (Long Put) * * * Niniejsza broszura ma charakter jedynie edukacyjny i nie stanowi oferty kupna ani oferty sprzedaży żadnych instrumentów finansowych ani usług

Bardziej szczegółowo

Inwestor musi wybrać następujące parametry: instrument bazowy, rodzaj opcji (kupna lub sprzedaży, kurs wykonania i termin wygaśnięcia.

Inwestor musi wybrać następujące parametry: instrument bazowy, rodzaj opcji (kupna lub sprzedaży, kurs wykonania i termin wygaśnięcia. Opcje na GPW (II) Wbrew ogólnej opinii, inwestowanie w opcje nie musi być trudne. Na rynku tym można tworzyć strategie dla doświadczonych inwestorów, ale również dla początkujących. Najprostszym sposobem

Bardziej szczegółowo

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pan

Bardziej szczegółowo

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,

Bardziej szczegółowo

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie: Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11

Bardziej szczegółowo

Jak rozwiązywać zadania z treścią pracując z uczniem słabym?

Jak rozwiązywać zadania z treścią pracując z uczniem słabym? Jak rozwiązywać zadania z treścią pracując z uczniem słabym? Agnieszka Kozak Zakład Dydaktyki Matematyki Instytut Matematyki Uniwersytet Marii Curie-Skłodowskiej w Lublinie e-mail: akozak@hektor.umcs.lublin.pl

Bardziej szczegółowo

Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I

Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Aukcje groszowe. Podejście teoriogrowe

Aukcje groszowe. Podejście teoriogrowe Aukcje groszowe Podejście teoriogrowe Plan działania Aukcje groszowe Budowa teorii Sprawdzenie teorii Bibliografia: B. Platt, J. Price, H. Tappen, Pay-to-Bid Auctions [online]. 9 lipca 2009 [dostęp 3.02.2011].

Bardziej szczegółowo

1940, 17 = K 4 = K 2 (1, 05)(1 + x 200 )3. Stąd, po wstawieniu K 2 dostaję:

1940, 17 = K 4 = K 2 (1, 05)(1 + x 200 )3. Stąd, po wstawieniu K 2 dostaję: Poniższe rozwiązania są jedynie przykładowe. Każde z tych zadań da się rozwiązać na wiele sposobów, ale te na pewno są dobre (i prawdopodobnie najprostsze). Komentarze (poza odpowiedziami) są zbędne -

Bardziej szczegółowo

Zadanie A. Pestycydy. Wejście. Wyjście. Przykłady. Techniki optymalizacyjne Sosnowiec, semestr zimowy 2016/2017

Zadanie A. Pestycydy. Wejście. Wyjście. Przykłady. Techniki optymalizacyjne Sosnowiec, semestr zimowy 2016/2017 Zadanie A. Pestycydy Aby uprawiać pewną roślinę musimy ją nawozić mieszanką zawierającą wszystkie potrzebne składniki odżywcze w ilości (podawanej w gramach) nie mniejszej niż przewiduje norma. Taką mieszankę

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona

Bardziej szczegółowo

Konkurs Potyczki informatyczno matematyczne VI edycja 2009r. Zespół Szkół w Dobrzeniu Wielkim

Konkurs Potyczki informatyczno matematyczne VI edycja 2009r. Zespół Szkół w Dobrzeniu Wielkim Zad 1. (5pkt/12min) W prognozie pogody podano, że obecnie nad morzem jest piękna, bezwietrzna pogoda, ale za ponad pięć godzin, wiatr może osiągnąć tam prędkość 90km/h, a w górach może wiać nawet z prędkością

Bardziej szczegółowo

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut

Bardziej szczegółowo

Quantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński

Quantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński czyli jak tanio i dobrze zabezpieczyć opcję Michał Krawiec Piotr Piestrzyński Koło Naukowe Probabilistyki i Statystyki Matematycznej Uniwersytet Wrocławski Niedziela, 19 kwietnia 2015 Przykład (opis problemu)

Bardziej szczegółowo

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA DYNAMICZNYCH LOKAT KAPITAŁOWYCH Krzysztof Gąsior Uniwersytet Rzeszowski Streszczenie Celem referatu jest zaprezentowanie praktycznego zastosowania

Bardziej szczegółowo

Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego

Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego Instytut Informatyki Uniwersytetu Śląskiego Wykład 2 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 00 minut . Inwestorzy

Bardziej szczegółowo

9 Funkcje Użyteczności

9 Funkcje Użyteczności 9 Funkcje Użyteczności Niech u(x) oznacza użyteczność wynikającą z posiadania x jednostek pewnego dobra. Z założenia, 0 jest punktem referencyjnym, czyli u(0) = 0. Należy to zinterpretować jako użyteczność

Bardziej szczegółowo

3.1 Analiza zysków i strat

3.1 Analiza zysków i strat 3.1 Analiza zysków i strat Zakładamy że firma decyduje czy ma wdrożyć nowy produkt lub projekt. Firma musi rozważyć czy przyszłe zyski (dyskontowane w czasie) z tego projektu są większe niż koszty podniesione.

Bardziej szczegółowo

Całka nieoznaczona, podstawowe wiadomości

Całka nieoznaczona, podstawowe wiadomości Całka nieoznaczona, podstawowe wiadomości Funkcją pierwotną funkcji w przedziale nazywamy funkcję taką, że dla każdego punktu z tego przedziału zachodzi Różnica dwóch funkcji pierwotnych w przedziale danej

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów Pochodne wyższych rzędów Pochodną rzędu drugiego lub drugą pochodną funkcji y = f(x) nazywamy pochodną pierwszej pochodnej tej funkcji. Analogicznie definiujemy pochodne wyższych rzędów, jako pochodne

Bardziej szczegółowo

ZADANIE 1/GRY. Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

ZADANIE 1/GRY. Modele i narzędzia optymalizacji w systemach informatycznych zarządzania ZADANIE 1/GRY Zadanie: Dwaj producenci pewnego wyrobu sprzedają swe wyroby na rynku, którego wielkość jest stała. Aby zwiększyć swój udział w rynku (przejąć część klientów konkurencyjnego przedsiębiorstwa),

Bardziej szczegółowo

Ile można pozyskać prądu z wiatraka na własnej posesji? Cz. II

Ile można pozyskać prądu z wiatraka na własnej posesji? Cz. II Ile można pozyskać prądu z wiatraka na własnej posesji? Cz. II Autorzy: Michał Mrozowski, Piotr Wlazło - WIATROMETR.PL, Gdynia ("Czysta Energia" - nr 6/2014) Czy w miejscu mojego zamieszkania wiatr wieje

Bardziej szczegółowo

Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami

Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami Przykład 1. Napisz program, który dla podanej liczby n wypisze jej rozkład na czynniki pierwsze. Oblicz asymptotyczną złożoność

Bardziej szczegółowo

Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji

Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji Wykład 11. Metoda najmniejszych kwadratów Szukamy zależności Dane są wyniki pomiarów dwóch wielkości x i y: (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ). Przypuśćmy, że nanieśliśmy je na wykres w układzie

Bardziej szczegółowo

Zmienność wiatru w okresie wieloletnim

Zmienność wiatru w okresie wieloletnim Warsztaty: Prognozowanie produktywności farm wiatrowych PSEW, Warszawa 5.02.2015 Zmienność wiatru w okresie wieloletnim Dr Marcin Zientara DCAD / Stermedia Sp. z o.o. Zmienność wiatru w różnych skalach

Bardziej szczegółowo

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Ćwiczenia ZPI 1 Kupno opcji Profil wypłaty dla nabywcy opcji kupna. Z/S Premia (P) np. 100 Kurs wykonania opcji (X) np. 2500 Punkt opłacalności X + P 2500+100=2600 WIG20 2 Kupno opcji Profil wypłaty dla

Bardziej szczegółowo

Ubezpieczenia majątkowe

Ubezpieczenia majątkowe Funkcje użyteczności a składki Uniwersytet Przyrodniczy we Wrocławiu Instytut Nauk Ekonomicznych i Społecznych 2016/2017 Funkcja użyteczności Niech ω wielkość majątku decydenta wyrażona w j.p., u (ω) stopień

Bardziej szczegółowo

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony.

Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony. GRY (część 1) Zastosowanie: Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony. Najbardziej znane modele: - wybór strategii marketingowych przez konkurujące ze sobą firmy

Bardziej szczegółowo

Zarządzanie ryzykiem 3. Dorota Kuchta

Zarządzanie ryzykiem 3. Dorota Kuchta Zarządzanie ryzykiem 3 Dorota Kuchta Pojęcie użyteczności paradoks petersburski Bernoulli paradoks petersburski: Rzucamy kostką aż do momentu, kiedy po raz pierwszy wypadnie orzeł W tym momencie gracz

Bardziej szczegółowo

TEORIA GIER HISTORIA TEORII GIER. Rok 1944: powszechnie uznana data narodzin teorii gier. Rok 1994: Nagroda Nobla z dziedziny ekonomii

TEORIA GIER HISTORIA TEORII GIER. Rok 1944: powszechnie uznana data narodzin teorii gier. Rok 1994: Nagroda Nobla z dziedziny ekonomii TEORIA GIER HISTORIA TEORII GIER Rok 1944: powszechnie uznana data narodzin teorii gier Monografia: John von Neumann, Oskar Morgenstern Theory of Games and Economic Behavior (Teoria gier i postępowanie

Bardziej szczegółowo

========================= Zapisujemy naszą funkcję kwadratową w postaci kanonicznej: 2

========================= Zapisujemy naszą funkcję kwadratową w postaci kanonicznej: 2 Leszek Sochański Arkusz przykładowy, poziom podstawowy (A1) Zadanie 1. Wykresem funkcji kwadratowej f jest parabola o wierzchołku 5,7 Wówczas prawdziwa jest równość W. A. f 1 f 9 B. f 1 f 11 C. f 1 f 1

Bardziej szczegółowo

TEMAT: ZASTOSOWANIE FUNKCJI LINIOWEJ W ZADANIACH Z ŻYCIA CODZIENNEGO

TEMAT: ZASTOSOWANIE FUNKCJI LINIOWEJ W ZADANIACH Z ŻYCIA CODZIENNEGO Semestr 3A, 3B, 3C TEMAT: ZASTOSOWANIE FUNKCJI LINIOWEJ W ZADANIACH Z ŻYCIA CODZIENNEGO PRZYKŁAD 1 Temperaturę w stopniach Celsjusza x przelicza się na stopnie y w skali Fahrenheita według wzoru: y = 5

Bardziej szczegółowo

4. Ubezpieczenie Życiowe

4. Ubezpieczenie Życiowe 4. Ubezpieczenie Życiowe Składka ubezpieczeniowa musi brać pod uwagę następujące czynniki: 1. Kwotę wypłaconą przy śmierci ubezpieczonego oraz jej wartość aktualną. 2. Rozkład czasu do śmierci ubezpieczonego

Bardziej szczegółowo

ROK MA 12 MIESIĘCY LISTOPAD PAŹDZIERNIK WRZESIEŃ SIERPIEŃ GRUDZIEŃ CZERWIEC MAJ LIPIEC STYCZEŃ LUTY MARZEC KWIECIEŃ Wrzesień to pierwszy miesiąc nauki w roku szkolnym. Czerwiec to ostatni miesiąc nauki.

Bardziej szczegółowo

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast

Bardziej szczegółowo

STANDARD DLA WYMAGAJĄCYCH

STANDARD DLA WYMAGAJĄCYCH STANDARD DLA WYMAGAJĄCYCH Psychologia inwestowania Mateusz Madej 05.04.2017 Agenda Psychologia na rynku Teoria perspektywy Błędy w przekonaniach i ocenie prawdopodobieństwa Błędy w zachowaniu i podejmowaniu

Bardziej szczegółowo

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu: Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie

Bardziej szczegółowo

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci

Bardziej szczegółowo

Optymalizacja decyzji

Optymalizacja decyzji Optymalizacja decyzji Dr hab. inż Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć będa dostępne na stronie www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia

Bardziej szczegółowo

Przeanalizujemy przykład pozwalający ustalić zależność między bokami prostokąta, którego pole wynosi 12 cm 2.

Przeanalizujemy przykład pozwalający ustalić zależność między bokami prostokąta, którego pole wynosi 12 cm 2. SCENARIUSZ LEKCJI MATEMATYKI W KLASIE I GIMNAZJUM Temat: Wielkości odwrotnie proporcjonalne. Cele ogólne: -Rozwijanie umiejętności logicznego myślenia, współpracy i współodpowiedzialności. Cele operacyjne:

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 1.10.2012 r.

Matematyka ubezpieczeń majątkowych 1.10.2012 r. Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna

Bardziej szczegółowo

LEKCJA 4. Gry dynamiczne z pełną (kompletną) i doskonałą informacją. Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności.

LEKCJA 4. Gry dynamiczne z pełną (kompletną) i doskonałą informacją. Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności. LEKCJA 4 Gry dynamiczne z pełną (kompletną) i doskonałą informacją Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności. Czy w dowolnej grze dynamicznej lepiej być graczem,

Bardziej szczegółowo

Rozwiązania, seria 5.

Rozwiązania, seria 5. Rozwiązania, seria 5. 26 listopada 2012 Zadanie 1. Zbadaj, dla jakich wartości parametru r R wektor (r, r, 1) lin{(2, r, r), (1, 2, 2)} R 3? Rozwiązanie. Załóżmy, że (r, r, 1) lin{(2, r, r), (1, 2, 2)}.

Bardziej szczegółowo

Matematyka ubezpieczeń życiowych r.

Matematyka ubezpieczeń życiowych r. . W populacji, w której śmiertelnością rządzi prawo de Moivre a z wiekiem granicznym ω = 50, dzieckiem jest się do wieku d. W wieku d rozpoczyna się pracę i pracuje się do wieku p.w wieku p przechodzi

Bardziej szczegółowo

STRATEGIE NA RYNKU OPCJI. KRÓTKI STELAŻ (Short Straddle)

STRATEGIE NA RYNKU OPCJI. KRÓTKI STELAŻ (Short Straddle) STRATEGIE NA RYNKU OPCJI KRÓTKI STELAŻ (Short Straddle) * * * Niniejsza broszura ma charakter jedynie edukacyjny i nie stanowi oferty kupna ani oferty sprzedaży żadnych instrumentów finansowych ani usług

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

Teoria Gier - wojna, rybołówstwo i sprawiedliwość w polityce.

Teoria Gier - wojna, rybołówstwo i sprawiedliwość w polityce. Liceum Ogólnokształcące nr XIV we Wrocławiu 5 maja 2009 1 2 Podobieństwa i różnice do gier o sumie zerowej Równowaga Nasha I co teraz zrobimy? 3 Idee 1 Grać będą dwie osoby. U nas nazywają się: pan Wiersz

Bardziej szczegółowo

Przykładowy arkusz egzaminacyjny I - poziom podstawowy - wersja A

Przykładowy arkusz egzaminacyjny I - poziom podstawowy - wersja A Przykładowy arkusz egzaminacyjny I - poziom podstawowy - wersja A Zadanie. (3 pkt.) Rozwiąż równanie:. Zadanie 2. (3 pkt.) Zadanie 3. (3 pkt.) Obok, na wykresie kołowym, przedstawiono procentowy udział

Bardziej szczegółowo

Mikroekonomia II: Kolokwium, grupa II

Mikroekonomia II: Kolokwium, grupa II Mikroekonomia II: Kolokwium, grupa II Prowadząca: Martyna Kobus 2012-06-11 Piszemy 90 minut. Sprawdzian jest za 70 punktów. Jest 10 pytań testowych, każde za 2 punkty (łącznie 20 punktów za test) i 3 zadania,

Bardziej szczegółowo

Spis treści: Uzyskiwanie dostępu do konta GWAZY 3. Sekcje platformy 4. Informacje o platformie 5. Lista obserwowanych 5.

Spis treści: Uzyskiwanie dostępu do konta GWAZY 3. Sekcje platformy 4. Informacje o platformie 5. Lista obserwowanych 5. Spis treści: Uzyskiwanie dostępu do konta GWAZY 3 Sekcje platformy 4 Informacje o platformie 5 Lista obserwowanych 5 Obszar handlu 6 Metoda Classic 7 Otwarte inwestycje 9 Wiadomości 10 Sprawozdania 11

Bardziej szczegółowo

FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA

FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA POTĘGA, DZIAŁANIA NA POTĘGACH Potęga o wykładniku naturalnym. Jest to po prostu pomnożenie przez siebie danej liczby tyle razy ile wynosi wykładnik. Zapisujemy

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

4. Ubezpieczenie Życiowe

4. Ubezpieczenie Życiowe 4. Ubezpieczenie Życiowe Składka ubezpieczeniowa musi brać pod uwagę następujące czynniki: 1. Kwotę wypłaconą przy śmierci ubezpieczonego oraz jej wartość aktualną. 2. Rozkład czasu do śmierci ubezpieczonego

Bardziej szczegółowo

Twierdzenia Rolle'a i Lagrange'a

Twierdzenia Rolle'a i Lagrange'a Twierdzenia Rolle'a i Lagrange'a Zadanie 1 Wykazać, że dla dowolnych zachodzi. W przypadku nierówność (a właściwie równość) w treści zadania spełniona jest w sposób oczywisty, więc tego przypadku nie musimy

Bardziej szczegółowo

12.Rozwiązywanie równań i nierówności liniowych oraz ich układów.

12.Rozwiązywanie równań i nierówności liniowych oraz ich układów. matematyka /.Rozwiązywanie równań i nierówności liniowych oraz ich układów. I. Przypomnij sobie:. Co to jest równanie /nierówność? Rodzaje nierówności. Ogólnie: Równaniem nazywamy dwa wyrażenia algebraiczne

Bardziej szczegółowo

Systemy Wspomagania Decyzji

Systemy Wspomagania Decyzji Teoria decyzji Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności February 5, 2016 1 Definicje 2 Normatywna teoria decyzji 3 Opisowa teoria decyzji 4 Naturalistyczny model podejmowania decyzji

Bardziej szczegółowo