Aukcje groszowe. Podejście teoriogrowe

Wielkość: px
Rozpocząć pokaz od strony:

Download "Aukcje groszowe. Podejście teoriogrowe"

Transkrypt

1 Aukcje groszowe Podejście teoriogrowe

2 Plan działania Aukcje groszowe Budowa teorii Sprawdzenie teorii Bibliografia: B. Platt, J. Price, H. Tappen, Pay-to-Bid Auctions [online]. 9 lipca 2009 [dostęp ]. Dostępny w Internecie: + informacje publikowane przez poszczególne serwisy

3 Aukcje groszowe idea Bidding-fee auction, penny auction, all-pay auction Pomysł: Wiele osób robi zrzutkę, by jedna mogła zrobić interes życia Najwyższa cena wygrywa ale za każde podbicie ceny się płaci Zazwyczaj wielkość podbicia jest b. mały (najmniejsza jednostka monetarna np. 1 grosz) stąd nazwa

4

5 Aukcje groszowe - rynek Portale Swoopoo.com (2005, DE) Ponad zakończonych aukcji Ponad 200 aukcji w danym momencie Ponad 2 mln użytkowników Przykładowe wygrane: Apple iphone 16 gb za $9.53 zamiast $599, Nikon D7000 za $73.16, zamiast $1499 MadBid.com (2008, UK), Bidcactus.com i wiele innych Podbij.pl (2008, PL) Wrzesień 2010: aukcji, użytkowników Camelbid.pl, za10groszy.pl

6 Model - prosta aukcja groszowa Założenia: Przedmiot wystawiany na aukcji ma znaną wszystkim licytującym wartość (np. cena w sklepie internetowym) i.e. każdy licytujący wycenia przedmiot na Początkowa cena przedmiotu wynosi 0. Gra iteracyjna, gdzie pojedynczy etap = czas, o który wydłużana jest aukcja po podbiciu. Licytujący płaci b dolarów za podbicie, co podnosi cenę przedmiotu o s i przedłuża aukcję o jeden okres. Decyzje licytujących (strategie mieszane) mają rozkład bezatomowy w czasie każdego okresu (p.n. nie ma remisów). Gra z doskonałą informacją postać ekstensywna szukamy doskonałej równowagi Nasha w podgrach

7 Model (prosta aukcja groszowa) c.d. Założenia: Licytujący płaci b dolarów za podbicie, co podnosi cenę przedmiotu o s i przedłuża aukcję o jeden okres czyli Licytujący zakłada się o b dolarów, że nikt nie zalicytuje po nim. Decyzję o podbiciu poprzedza rachunek wartości oczekiwanej.

8 Model (prosta aukcja groszowa) c.d. Etap Na początku etapu cena przedmiotu wynosi ( 1). Wartość oczekiwana wypłaty z q-tego podbicia wynosi: prawdopodobieństwo, że ktoś dokona +1-ego podbicia Jeśli >, to =0,chociaż zwycięstwo jest pewne Jeśli = ( Z) to licytujący jest indyferentny wobec podbijania. Dla każdego licytujący musi być indyferentny wobec podbijania. Wniosek: = 1 dla 1<. Dla wartość dowolna przyjmiemy =1

9 Model (prosta aukcja groszowa) c.d. Jest to symetryczna równowaga! Czy to jedyna równowaga? Nie! Jeśli np. 100-ny licytujący zagrozi, że zalicytuje 102 podbicie, jeśli ktokolwiek go przebije. Ale jeśli tak by było, najbardziej opłaca się wystosować groźbę po pierwszym podbiciu empiria pokazuje, że tak się nie dzieje.

10 Model (prosta aukcja groszowa) c.d. Strategia indywidualna Zał. 1: stała liczba graczy, gra symetryczna Załóżmy, że cena została podbita 1 razy W -tym etapie każda z 1 osób, które nie wygrywają obiera strategię mieszaną. P-stwo, że nikt z nich nie podbije wynosi 1. Ale jest to równe 1. Stąd =1 1

11 Model (prosta aukcja groszowa) c.d. Strategia indywidualna Zał. 2: gracze dołączają się do gry zgodnie z procesem Poissona, z częstotliwością na okres. Po dołączeniu, gracz natychmiast decyduje, czy podbijać, czy nie (stosując strategię mieszaną ). Jeśli nie podbija, lub ktoś go przebije, opuszcza aukcję. Strategia indywidualna: =min ln 1,1 Dla małych : =1dla małych

12 Oczekiwany zysk Prostszy model: aukcja ze stałą ceną wykupu p =1 Wtedy prawdopodobieństwo (bezwarunkowe) tego, że aukcja zakończy się po q podbiciach wynosi: = 1 Oczekiwana wypłata: = + = 1

13 Oczekiwany zysk Trudniejszy model: normalna aukcja groszowa =1 1<< Wtedy prawdopodobieństwo (bezwarunkowe) tego, że aukcja zakończy się po q podbiciach wynosi: = 1 ( 1) Oczekiwana wypłata (dla =1 ): + = Dla =1oczekiwana wypłata to., 0 =1

14 Model vs. dane

15 Preferencje wobec ryzyka Ponieważ bogactwo jest nieobserwowalne, założymy CARA-funkcję użyteczności postaci: = 1 Analogicznie, przyjmujemy, że gracz jest w momencie indyferentny pomiędzy podbiciem i nie: 1 + = Stąd: =

16 Preferencje wobec ryzyka c.d. Funkcja gęstości Dla aukcji o stałej cenie wykupu 1 () = 1 1 Dla aukcji standardowej: = 1 1 ()

17 Model vs. Dane: aukcje standardowe + ryzyko

18 Model vs. Dane: aukcje stałego wykupu+ ryzyko

19 Model vs. Dane Podbij.pl Pakiet 200 podbić, aukcja ze stałą ceną wykupu p Model MLE Liczba podbić

20 Co dalej?

21 Projektowanie Parametry: cena podbicia wielkość podbicia czas, o jaki przedłużana jest gra (w modelu nieistotny) dopuszczalność graczy do gry dopuszczalność automatów do gry cena wykupu aukcje dzienne/dobowe odzyskanie podbić? Jeden serwis może oferować kilka wariantów!

22 Projektowanie Przykład: Podbij.pl 11 nazwanych rodzajów aukcji, w większości możliwe 4 długości okresów = kilkadziesiąt różnych typów aukcji Kilkadziesiąt parametrów, którymi można sterować, w celu optymalnego mechanizmu

23 Projektowanie - Podbij.pl Powiemy to jasno - przebieg aukcji zostawiamy tylko i wyłącznie użytkownikom. Natomiast faktycznie, mamy możliwość wpływania na aukcje jako całościowy mechanizm ekonomiczny. Do czego przyznajemy się otwarcie wszem i wobec, albowiem korzystamy z prawa popytu i podaży, którym kierują się wszystkie poważne przedsiębiorstwa. Na podstawie danych i statystyk, decydujemy, ile i jakich aukcji wystawiać, aby zachować równowagę między zyskami portalu, a zadowalającą i sprawiająca użytkownikom satysfakcję liczbą przedmiotów sprzedawanych za grosze. Matylda Benderz, Czy na Pobij.pl są boty? [online], Podbij.pl Newsletter, [dostęp ]. Dostępny w internecie:

24 Wniosek Jest jeszcze dużo do modelowania! następne odcinki niedługo!

13. Teoriogrowe Modele Konkurencji Gospodarczej

13. Teoriogrowe Modele Konkurencji Gospodarczej 13. Teoriogrowe Modele Konkurencji Gospodarczej Najpierw, rozważamy model monopolu. Zakładamy że monopol wybiera ile ma produkować w danym okresie. Jednostkowy koszt produkcji wynosi k. Cena wynikająca

Bardziej szczegółowo

LEKCJA 4. Gry dynamiczne z pełną (kompletną) i doskonałą informacją. Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności.

LEKCJA 4. Gry dynamiczne z pełną (kompletną) i doskonałą informacją. Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności. LEKCJA 4 Gry dynamiczne z pełną (kompletną) i doskonałą informacją Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności. Czy w dowolnej grze dynamicznej lepiej być graczem,

Bardziej szczegółowo

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria

Bardziej szczegółowo

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,

Bardziej szczegółowo

10. Wstęp do Teorii Gier

10. Wstęp do Teorii Gier 10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej

Bardziej szczegółowo

Elementy teorii gier

Elementy teorii gier Elementy teorii gier. Podaj wszystkie czyste równowagi Nasha. Zaznacz pary strategii, które są Pareto optymalne. U 2,3-2,7 D 6,-5 0,- U 2,3-2,7 D 6,-5 3,5 2. Pewien ojciec ma dwóch synów. Umierając zostawia

Bardziej szczegółowo

1 S t r o n a. Teoria Gier Praca domowa 1 - rozwiązania

1 S t r o n a. Teoria Gier Praca domowa 1 - rozwiązania 1 S t r o n a Teoria Gier Praca domowa 1 - rozwiązania Zadanie 1 Gdy korzystamy z toalet publicznych dominującą strategią jest: nie sprzątać po sobie. Skorzystanie z toalety przynosi dodatnią wypłatę,

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 5: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE NIESTAŁEJ

TEORIA GIER W EKONOMII WYKŁAD 5: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE NIESTAŁEJ TEORI GIER W EKONOMII WYKŁD 5: GRY DWUOSOOWE KOOPERCYJNE O SUMIE NIESTŁEJ dr Robert Kowalczyk Katedra nalizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwumacierzowe Skończoną grę dwuosobową o

Bardziej szczegółowo

EKONOMIA MENEDŻERSKA. Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER.

EKONOMIA MENEDŻERSKA. Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER. Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER. 1. OLIGOPOL Oligopol - rynek, na którym działa niewiele przedsiębiorstw (od do 10) Cecha charakterystyczna

Bardziej szczegółowo

Model równowagi na rynku prywatnych ubezpieczeń zdrowotnych

Model równowagi na rynku prywatnych ubezpieczeń zdrowotnych Model równowagi na rynku prywatnych ubezpieczeń zdrowotnych Agata de Sas Stupnicka Zagadnienia aktuarialne teoria i praktyka Wrocław, 6-8 września 2010 Plan prezentacji Wprowadzenie ubezpieczenia zdrowotne,

Bardziej szczegółowo

AUKCJE Interaktywne wykłady z cyklu pt. Teoria ekonomii w praktyce dr Przemysław Kusztelak dr Tomasz Kopczewski

AUKCJE Interaktywne wykłady z cyklu pt. Teoria ekonomii w praktyce dr Przemysław Kusztelak dr Tomasz Kopczewski AUKCJE Interaktywne wykłady z cyklu pt. Teoria ekonomii w praktyce dr Przemysław Kusztelak dr Tomasz Kopczewski Przemysław Kusztelak Slajd 1 /27 Aukcje Aukcja to mechanizm oparty na konkurencji używany

Bardziej szczegółowo

Czym zajmuje się teroia gier

Czym zajmuje się teroia gier Czym zajmuje się teroia gier Analiza zachowań graczy (czyli strategii graczy) jak zachowują się gracze jakie są ich możliwe zachowania czy postępują racjonalnie i co to znaczy Poszukiwanie optymalnych

Bardziej szczegółowo

Gry o sumie niezerowej

Gry o sumie niezerowej Gry o sumie niezerowej Równowagi Nasha 2011-12-06 Zdzisław Dzedzej 1 Pytanie Czy profile równowagi Nasha są dobrym rozwiązaniem gry o dowolnej sumie? Zaleta: zawsze istnieją (w grach dwumacierzowych, a

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO D. Miszczyńska, M.Miszczyński KBO UŁ GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata,

Bardziej szczegółowo

Czym zajmuje się teroia gier

Czym zajmuje się teroia gier Czym zajmuje się teroia gier Analiza zachowań graczy (czyli strategii graczy) jak zachowują się gracze jakie są ich możliwe zachowania czy postępują racjonalnie i co to znaczy Poszukiwanie optymalnych

Bardziej szczegółowo

ZADANIE 1/GRY. Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

ZADANIE 1/GRY. Modele i narzędzia optymalizacji w systemach informatycznych zarządzania ZADANIE 1/GRY Zadanie: Dwaj producenci pewnego wyrobu sprzedają swe wyroby na rynku, którego wielkość jest stała. Aby zwiększyć swój udział w rynku (przejąć część klientów konkurencyjnego przedsiębiorstwa),

Bardziej szczegółowo

1. Które z następujących funkcji produkcji cechują się stałymi korzyściami ze skali? (1) y = 3x 1 + 7x 2 (2) y = x 1 1/4 + x 2

1. Które z następujących funkcji produkcji cechują się stałymi korzyściami ze skali? (1) y = 3x 1 + 7x 2 (2) y = x 1 1/4 + x 2 1. Które z następujących funkcji produkcji cechują się stałymi korzyściami ze skali? (1) y = 3x 1 + 7x 2 (2) y = x 1 1/4 + x 2 1/3 (3) y = min{x 1,x 2 } + min{x 3,x 4 } (4) y = x 1 1/5 x 2 4/5 a) 1 i 2

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Mikroekonomia. O czym dzisiaj?

Mikroekonomia. O czym dzisiaj? Mikroekonomia Joanna Tyrowicz jtyrowicz@wne.uw.edu.pl http://www.wne.uw.edu.pl/~jtyrowicz 1.12.2007r. Mikroekonomia WNE UW 1 O czym dzisiaj? Macierze wypłat, czyli ile trzeba mieć w razie się straci...

Bardziej szczegółowo

Matematyka finansowa w pakiecie Matlab

Matematyka finansowa w pakiecie Matlab Matematyka finansowa w pakiecie Matlab Wykład 5. Wycena opcji modele dyskretne Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na kierunku Matematyka

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ

TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Definicja gry o sumie zerowej Powiemy, że jest grą o

Bardziej szczegółowo

Matematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe

Matematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe Matematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe Empik każdego inspiruje inaczej Aleksander Puszkin (1799 1837) Andrey (Andrei) Andreyevich Markov (1856 1922) Wśród 20 tysięcy początkowych

Bardziej szczegółowo

a) Znajdź równowagi Nasha tej gry oraz wypłaty w równowadze obu tenisistek...

a) Znajdź równowagi Nasha tej gry oraz wypłaty w równowadze obu tenisistek... Egzamin z przedmiotu: Wstęp do Teorii Gier Zadanie 1 Prowadzący: dr Michał Lewandowski gnieszka Radwańska gra w tenisa z Karoliną Woźniacki. gnieszka może zaserwować na backhand lub na forehand Woźniacki.

Bardziej szczegółowo

Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego

Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego Instytut Informatyki Uniwersytetu Śląskiego Wykład 2 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.

Bardziej szczegółowo

TEORIA GIER - semestr zimowy 2011

TEORIA GIER - semestr zimowy 2011 TEORIA GIER - semestr zimowy 2011 Przykładowe rozwiązania 4. Gracz I, mąż, wychodzi pod wieczór z domu mówiąc, że idzie jeszcze popracować. W rzeczywistości dopiero zdecyduje, czy naprawdę pójdzie do pracy,

Bardziej szczegółowo

Strategie kwantowe w teorii gier

Strategie kwantowe w teorii gier Uniwersytet Jagielloński adam.wyrzykowski@uj.edu.pl 18 stycznia 2015 Plan prezentacji 1 Gra w odwracanie monety (PQ penny flip) 2 Wojna płci Definicje i pojęcia Równowagi Nasha w Wojnie płci 3 Kwantowanie

Bardziej szczegółowo

W pudełku. Cel gry. Mądrze inwestuj pieniądze na rynku nieruchomości i pokaż innym, że to właśnie Ty jesteś najlepszy!

W pudełku. Cel gry. Mądrze inwestuj pieniądze na rynku nieruchomości i pokaż innym, że to właśnie Ty jesteś najlepszy! zasady gry 1 Mądrze inwestuj pieniądze na rynku nieruchomości i pokaż innym, że to właśnie Ty jesteś najlepszy! W pudełku Cel gry 30 kart Nieruchomości o wartości od 1 do 30. W grze Na Sprzedaż rozgrywka

Bardziej szczegółowo

OGRAĆ BUKMACHERA. DLACZEGO JEST TO MOŻLIWE? KAMIL STUPAK SKN BUSINESS ANALYTICS SGH

OGRAĆ BUKMACHERA. DLACZEGO JEST TO MOŻLIWE? KAMIL STUPAK SKN BUSINESS ANALYTICS SGH OGRAĆ BUKMACHERA. DLACZEGO JEST TO MOŻLIWE? KAMIL STUPAK SKN BUSINESS ANALYTICS SGH PODSTAWOWE DEFINICJE KURS oferowana przez bukmachera stopa zwrotu z pojedynczego zakładu, w Europie wyrażana najczęściej

Bardziej szczegółowo

GRY W POSTACI EKSTENSYWNEJ (rozwiniętej)

GRY W POSTACI EKSTENSYWNEJ (rozwiniętej) GRY W POSTACI EKSTENSYWNEJ (rozwiniętej) Gra w postaci ekstensywnej formalny opis wszystkich możliwych przebiegów gry, z uwzględnieniem struktury czasowej, możliwości wielokrotnego podejmowania decyzji

Bardziej szczegółowo

Zarządzanie Kapitałem. Paweł Śliwa pawel.sliwa@xtb.pl

Zarządzanie Kapitałem. Paweł Śliwa pawel.sliwa@xtb.pl Zarządzanie Kapitałem Paweł Śliwa pawel.sliwa@xtb.pl 1 ZK a Proces Zarabiania Zarządzanie Kapitałem 30% SYSTEM 10% PSYCHOLOGIA 60% To wszystko składa się na skuteczne transakcje. 2 Zarządzanie Kapitałem

Bardziej szczegółowo

Rozmowa ze sklepem przez telefon

Rozmowa ze sklepem przez telefon Rozmowa ze sklepem przez telefon - Proszę Pana, chciałam Panu zaproponować opłacalny interes. - Tak, słucham, o co chodzi? - Dzwonię w imieniu portalu internetowego AmigoBONUS. Pan ma sklep, prawda? Chciałam

Bardziej szczegółowo

2.3.5. Umiejętności związane z wiedzą 2.4. Podsumowanie analizy literaturowej

2.3.5. Umiejętności związane z wiedzą 2.4. Podsumowanie analizy literaturowej Spis treści 1. Przesłanki dla podjęcia badań 1.1. Wprowadzenie 1.2. Cel badawczy i plan pracy 1.3. Obszar badawczy 1.4. Znaczenie badań dla teorii 1.5. Znaczenie badań dla praktyków 2. Przegląd literatury

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 00 minut . Inwestorzy

Bardziej szczegółowo

Teoria gier. Strategie stabilne ewolucyjnie Zdzisław Dzedzej 1

Teoria gier. Strategie stabilne ewolucyjnie Zdzisław Dzedzej 1 Teoria gier Strategie stabilne ewolucyjnie 2012-01-11 Zdzisław Dzedzej 1 John Maynard Smith (1920-2004) 2012-01-11 Zdzisław Dzedzej 2 Hawk- Dove Game Przedstawimy uproszczony model konfliktu omówiony w

Bardziej szczegółowo

TEORIA GIER W NAUKACH SPOŁECZNYCH. Równowagi Nasha. Rozwiązania niekooperacyjne.

TEORIA GIER W NAUKACH SPOŁECZNYCH. Równowagi Nasha. Rozwiązania niekooperacyjne. TEORIA GIER W NAUKACH SPOŁECZNYCH Równowagi Nasha. Rozwiązania niekooperacyjne. Przypomnienie Gra o sumie zerowej Kryterium dominacji Kryterium wartości oczekiwanej Diagram przesunięć Równowaga Can a Round

Bardziej szczegółowo

Zacznijmy od przypomnienia czym są i jak wyglądają gry jednoczesne oraz sekwencyjne w zapisie ekstensywnym.

Zacznijmy od przypomnienia czym są i jak wyglądają gry jednoczesne oraz sekwencyjne w zapisie ekstensywnym. Oligopol Oligopol jest zagadnieniem, którego zrozumienie wymaga dobrej znajomości teorii gier. Modele Oligopolu badane przez ekonomistów koncentrują się bowiem na znalezieniu rozwiązania (równowagi) w

Bardziej szczegółowo

Model Davida Ricardo

Model Davida Ricardo Model Davida Ricardo mgr eszek incenciak 15 lutego 2005 r. 1 Założenia modelu Analiza w modelu Ricardo opiera się na następujących założeniach: istnieje doskonała konkurencja na rynku dóbr i rynku pracy;

Bardziej szczegółowo

Skowrońska-Szmer. Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością. 04.01.2012r.

Skowrońska-Szmer. Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością. 04.01.2012r. mgr inż. Anna Skowrońska-Szmer Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością 04.01.2012r. 1. Cel prezentacji 2. Biznesplan podstawowe pojęcia 3. Teoria gier w

Bardziej szczegółowo

Wykład Ćwiczenia Laboratoriu m 30 30 1,5 1,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI CELE PRZEDMIOTU

Wykład Ćwiczenia Laboratoriu m 30 30 1,5 1,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI CELE PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ELEMENTY TEORII GIER Nazwa w języku angielskim ELEMENTS OF GAME THEORY Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Aukcje UMTS. Mateusz Kielar Marcin Mieteń

Aukcje UMTS. Mateusz Kielar Marcin Mieteń Aukcje UMTS Mateusz Kielar Marcin Mieteń Rys historyczny UMTS Universal Mobile Telecommunications System Na początku 1998 r. Europejski Instytut Standardów Telekomunikacyjnych (ETSI) ogłosił podstawy przyszłego

Bardziej szczegółowo

Złapane.pl. Przemysław Bojczuk. MeetDomainers, Kraków, 4 października 2008

Złapane.pl. Przemysław Bojczuk. MeetDomainers, Kraków, 4 października 2008 Złapane.pl Przemysław Bojczuk MeetDomainers, Kraków, 4 października 2008 Co to jest Złapane.pl? Drugi w Polsce serwis oferujący aukcje przechwyconych domen.pl (start kwiecień 2008) Powstał jako odpowiedź

Bardziej szczegółowo

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2 Instytut Matematyczny Uniwersytet Wrocławski Zakres egzaminu magisterskiego Wybrane rozdziały anazlizy i topologii 1 i 2 Pojęcia, fakty: Definicje i pojęcia: metryka, iloczyn skalarny, norma supremum,

Bardziej szczegółowo

TEORIA GIER HISTORIA TEORII GIER. Rok 1944: powszechnie uznana data narodzin teorii gier. Rok 1994: Nagroda Nobla z dziedziny ekonomii

TEORIA GIER HISTORIA TEORII GIER. Rok 1944: powszechnie uznana data narodzin teorii gier. Rok 1994: Nagroda Nobla z dziedziny ekonomii TEORIA GIER HISTORIA TEORII GIER Rok 1944: powszechnie uznana data narodzin teorii gier Monografia: John von Neumann, Oskar Morgenstern Theory of Games and Economic Behavior (Teoria gier i postępowanie

Bardziej szczegółowo

Lista zadań. 1. Podaj wszystkie czyste równowagi Nasha. Zaznacz pary strategii, które są Pareto optymalne.

Lista zadań. 1. Podaj wszystkie czyste równowagi Nasha. Zaznacz pary strategii, które są Pareto optymalne. Lista zadań 1. Podaj wszystkie czyste równowagi Nasha. Zaznacz pary strategii, które są Pareto optymalne. (a) U 2,3-2,7 D 6,-5 0,-1 (b) U 2,3-2,7 D 6,-5 3,5 2. Rozwiąż gry używając algorytmu eliminacji

Bardziej szczegółowo

Rozsądni Polacy w akcji, czyli najbardziej poszukiwane lokaty bankowe

Rozsądni Polacy w akcji, czyli najbardziej poszukiwane lokaty bankowe Raport: Warszawa, 20 październik 2011 Rozsądni Polacy w akcji, czyli najbardziej poszukiwane lokaty bankowe Eksperci porównywarki finansowej Comperia.pl zbadali preferencje użytkowników dotyczące lokat

Bardziej szczegółowo

MEDIAFLEX PREZENTACJA FIRMY. Mediaflex Sp. z o. o.. ul. Wodna 17, 30-556 Kraków www.mediaflex.pl

MEDIAFLEX PREZENTACJA FIRMY. Mediaflex Sp. z o. o.. ul. Wodna 17, 30-556 Kraków www.mediaflex.pl MEDIAFLEX PREZENTACJA FIRMY Mediaflex Sp. z o. o.. ul. Wodna 17, 30-556 Kraków www.mediaflex.pl Mediaflex oferta Oferujemy kompleksowe działania wspomagające działalność naszych Klientów w Internecie.

Bardziej szczegółowo

J.Brander i P.Krugman (1983): A Reciprocal Dumping Model of International Trade

J.Brander i P.Krugman (1983): A Reciprocal Dumping Model of International Trade J.Brander i P.Krugman (1983): A Reciprocal Dumping Model of International Trade Jan J. Michałek (wersja uproszczona) J.Brander i P.Krugman (1983): A Reciprocal Dumping Model of International Trade - jakie

Bardziej szczegółowo

Schemat sprawdzianu. 25 maja 2010

Schemat sprawdzianu. 25 maja 2010 Schemat sprawdzianu 25 maja 2010 5 definicji i twierdzeń z listy 12(po 10 punktów) np. 1. Proszę sformułować twierdzenie Brouwera o punkcie stałym. 2. Niech X będzie przestrzenią topologiczną. Proszę określić,

Bardziej szczegółowo

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut

Bardziej szczegółowo

Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe

Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe Teorię gier można określić jako teorię podejmowania decyzji w szczególnych warunkach. Zajmuje się ona logiczną analizą sytuacji konfliktu

Bardziej szczegółowo

Load balancing games

Load balancing games Load balancing games Marcin Witkowski Uniwersytet im. Adama Mickiewicza w Poznaniu 11 grudnia 2010 1 / 34 Szeregowanie zadań Przyporządkowanie zbioru zadań do zbioru maszyn, w ten sposób, aby obciążenie

Bardziej szczegółowo

Kurs z NetLogo - część 4.

Kurs z NetLogo - część 4. Kurs z NetLogo - część 4. Mateusz Zawisza Zakład Wspomagania i Analizy Decyzji Instytut Ekonometrii Szkoła Główna Handlowa Seminarium Wieloagentowe Warszawa, 10.01.2011 Agenda spotkań z NetLogo 15. listopada

Bardziej szczegółowo

MODELE I W ASNOŒCI AUKCJI SYMETRYCZNYCH

MODELE I W ASNOŒCI AUKCJI SYMETRYCZNYCH DECYZJE nr 6 grudzień 2006 MODELE I W ASNOŒCI AUKCJI SYMETRYCZNYCH Agnieszka Lewczuk* Pañstwowa Wy sza Szko³a Zawodowa Streszczenie: Teoria aukcji jest jednym z ważniejszych obszarów zastosowań teorii

Bardziej szczegółowo

i inwestowania w biznesie

i inwestowania w biznesie Podstawy finansów i inwestowania w biznesie Wprowadzenie do wykładu Prowadzący dr inż. Marta Kraszewska pokój 216, II pę piętro, budynek C3 e-mail: martak@agh.edu.pl www: home.agh.edu.pl/ edu pl/~martak

Bardziej szczegółowo

Konspekt 7. Strategie postępowania oligopolu - zastosowania teorii gier.

Konspekt 7. Strategie postępowania oligopolu - zastosowania teorii gier. KRAJOWA SZKOŁA ADMINISTRACJI PUBLICZNEJ Ryszard Rapacki EKONOMIA MENEDŻERSKA Konspekt 7. Strategie postępowania oligopolu - zastosowania teorii gier. A. Cele zajęć. 1. Porównanie różnych struktur rynku

Bardziej szczegółowo

--------------------------------- Zacznij Zarabiać

--------------------------------- Zacznij Zarabiać NetWork Dostarcza GoDealla.pl GoDealla NetWork --------------------------------- Zacznij Zarabiać na zakupach grupowych Czym jest GoDealla Network? GoDealla.pl to największy polski agregator zakupów grupowych.

Bardziej szczegółowo

EKONOMIA MENEDŻERSKA

EKONOMIA MENEDŻERSKA oraz na kierunku zarządzanie i marketing (jednolite studia magisterskie) 1 EKONOMIA MENEDŻERSKA PROGRAM WYKŁADÓW Wykład 1. Wprowadzenie do ekonomii menedŝerskiej. Podejmowanie optymalnych decyzji na podstawie

Bardziej szczegółowo

Quantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński

Quantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński czyli jak tanio i dobrze zabezpieczyć opcję Michał Krawiec Piotr Piestrzyński Koło Naukowe Probabilistyki i Statystyki Matematycznej Uniwersytet Wrocławski Niedziela, 19 kwietnia 2015 Przykład (opis problemu)

Bardziej szczegółowo

TEORIA GIER- semestr zimowy 2011. ZADANIA 3. Gry w postaci ekstensywnej

TEORIA GIER- semestr zimowy 2011. ZADANIA 3. Gry w postaci ekstensywnej TEORIA GIER- semestr zimowy 2011 ZADANIA 3. Gry w postaci ekstensywnej 1. Jaś i Małgosia dostali do podziału między siebie cztery zabawki, z których każda jest niepodzielna: dwie identyczne lalki, misia

Bardziej szczegółowo

oferta na pozyskanie uczestników wyjazdów firmowych

oferta na pozyskanie uczestników wyjazdów firmowych incentive.nf.pl Szukaj oferta na pozyskanie uczestników wyjazdów firmowych platforma generowania leadów biznesowych Serwis incentive.nf.pl umożliwia organizatorom wyjazdów skuteczne pozyskiwanie leadów

Bardziej szczegółowo

NAJMŁODSI W SIECI. Konsumpcja treści i usług dostępnych w Internecie przez najmłodszych użytkowników

NAJMŁODSI W SIECI. Konsumpcja treści i usług dostępnych w Internecie przez najmłodszych użytkowników NAJMŁODSI W SIECI Konsumpcja treści i usług dostępnych w Internecie przez najmłodszych użytkowników Raport z badania ilościowego 28 lipca 2014 2 Najmłodsi w sieci. Raport z badania ilościowego. O AUTORACH

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 1.10.2012 r.

Matematyka ubezpieczeń majątkowych 1.10.2012 r. Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna

Bardziej szczegółowo

WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB VIII ASSESS

WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB VIII ASSESS WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI AB VIII ASSESS. oteria oteria = rozkład prawdopodobieństwa na zbiorze zdarzeń x (możliwych ocen wariantu) - odpowiada mu rozkład użyteczności. W praktyce, loteria

Bardziej szczegółowo

Marcin Borecki PlaceChallenge Rafał Czupryński Microsoft

Marcin Borecki PlaceChallenge Rafał Czupryński Microsoft Marcin Borecki PlaceChallenge Rafał Czupryński Microsoft Aplikacje jako kanał marketingowy Do czego wykorzystać aplikacje? Jak zacząć przygodę z aplikacjami? Z jakich narzędzi korzystamy na co dzień?

Bardziej szczegółowo

Forward kontrakt terminowy o charakterze rzeczywistym (z dostawą instrumentu bazowego).

Forward kontrakt terminowy o charakterze rzeczywistym (z dostawą instrumentu bazowego). Kontrakt terminowy (z ang. futures contract) to umowa pomiędzy dwiema stronami, z których jedna zobowiązuje się do kupna, a druga do sprzedaży, w określonym terminie w przyszłości (w tzw. dniu wygaśnięcia)

Bardziej szczegółowo

Projektowanie: architektura informacji

Projektowanie: architektura informacji 2012 Projektowanie: architektura informacji Barbara Rogoś - Turek Wyzwania w projektowaniu i programowaniu e-usługi Poznań, 11 października 2012 PROJEKTOWANIE: ARCHITEKTURA INFORMACJI ARCHITEKTURA INFORMACJI

Bardziej szczegółowo

1. Opierał się wyłącznie na strategiach czystych, a, jak wiadomo, gra może mieć jedyne równowagi w strategiach mieszanych.

1. Opierał się wyłącznie na strategiach czystych, a, jak wiadomo, gra może mieć jedyne równowagi w strategiach mieszanych. Rozdział 4 Uczenie się w grach Na dzisiejszym wykładzie robimy krok w tył w stosunku do tego, o czym mówiliśmy przez ostatnie tygodnie. Dotychczas mówiliśmy o dowolnych grach wieloetapowych, dziś opowiem

Bardziej szczegółowo

Adam Meissner. SZTUCZNA INTELIGENCJA Gry dwuosobowe

Adam Meissner. SZTUCZNA INTELIGENCJA Gry dwuosobowe Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Gry dwuosobowe Literatura [1] Sterling

Bardziej szczegółowo

Finanse dla sprytnych

Finanse dla sprytnych Ekonomiczny Uniwersytet Dziecięcy Uniwersytet w Białymstoku 28 kwietnia 2011 r. Finanse dla sprytnych Dlaczego inteligencja finansowa popłaca? dr Adam Wyszkowski EKONOMICZNY UNIWERSYTET DZIECIĘCY WWW.UNIWERSYTET-DZIECIECY.PL

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, 25.06.2009 Biomatematyka

EGZAMIN MAGISTERSKI, 25.06.2009 Biomatematyka Biomatematyka 80...... Zadanie 1. (8 punktów) Rozpatrzmy prawo Hardy ego Weinberga dla loci związanej z chromosomem X o dwóch allelach A 1 i A 2. Załóżmy, że początkowa częstość allelu A 2 u kobiet jest

Bardziej szczegółowo

LIV Egzamin dla Aktuariuszy z 4 października 2010 r.

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Komisja Egzaminacyjna dla Aktuariuszy LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:...klucz odpowiedzi... Czas egzaminu:

Bardziej szczegółowo

Oferta prowadzenia działań reklamowych w Internecie

Oferta prowadzenia działań reklamowych w Internecie Oferta prowadzenia działań reklamowych w Internecie 1. Dlaczego reklama w Internecie cieszy się powodzeniem? W Polsce jest ponad 17 milionów Internautów; Przeciętny Internauta spędza w sieci ponad 50 godzin

Bardziej szczegółowo

a) Znajdź równowagi Nasha tej gry oraz wypłaty w równowadze obu tenisistek.

a) Znajdź równowagi Nasha tej gry oraz wypłaty w równowadze obu tenisistek. Egzamin z przedmiotu: Wstęp do Teorii Gier Zadanie 1 Prowadzący: dr Michał Lewandowski Agnieszka Radwańska gra w tenisa z Karoliną Woźniacki. Agnieszka może zaserwować na backhand lub na forehand Woźniacki.

Bardziej szczegółowo

Lista 1. Procesy o przyrostach niezależnych.

Lista 1. Procesy o przyrostach niezależnych. Lista. Procesy o przyrostach niezależnych.. Niech N t bedzie procesem Poissona o intensywnoci λ = 2. Obliczyć a) P (N 2 < 3, b) P (N =, N 3 = 6), c) P (N 2 = N 5 = 2), d) P (N =, N 2 = 3, N 4 < 5), e)

Bardziej szczegółowo

1 Funkcja użyteczności

1 Funkcja użyteczności 1 Funkcja użyteczności Funkcja użyteczności to funkcja, której wartościami są wartości użyteczności (satysfakcji, komfortu psychicznego). Można mówić o użyteczności różnych zjawisk. Użyteczność pieniądza

Bardziej szczegółowo

Wprowadzenie do teorii gier

Wprowadzenie do teorii gier Instytut Informatyki Uniwersytetu Śląskiego Wykład 1 1 Klasyfikacja gier 2 Gry macierzowe, macierz wypłat, strategie czyste i mieszane 3 Punkty równowagi w grach o sumie zerowej 4 Gry dwuosobowe oraz n-osobowe

Bardziej szczegółowo

Bezpieczeństwo maszyn w przestrzeni zagrożonej wybuchem

Bezpieczeństwo maszyn w przestrzeni zagrożonej wybuchem Bezpieczeństwo maszyn Elementy systemów sterowania związane z bezpieczeństwem Bezpieczeństwo maszyn w przestrzeni zagrożonej wybuchem Dr inż. Gerard Kałuża 1 Bezpieczeństwo jest sytuacją, w której nie

Bardziej szczegółowo

AUKCJE LIVE! PRZEWODNIK! licytowanie na żywo przez Internet razem z salą! AGRAART.ONEBID.PL! Agra-Art SA 2015

AUKCJE LIVE! PRZEWODNIK! licytowanie na żywo przez Internet razem z salą! AGRAART.ONEBID.PL! Agra-Art SA 2015 AUKCJE LIVE licytowanie na żywo przez Internet razem z salą PRZEWODNIK AGRAART.ONEBID.PL Agra-Art SA 2015 Przewodnik Aukcji Live 2 z 10 Agra-Art SA i Onebid.pl, 2015 JAK TO DZIAŁA Licytacja Live razem

Bardziej szczegółowo

5. Wprowadzenie do prawdopodobieństwa Wprowadzenie Wyniki i zdarzenia Różne podejścia do prawdopodobieństwa Zdarzenia wzajemnie wykluczające się i

5. Wprowadzenie do prawdopodobieństwa Wprowadzenie Wyniki i zdarzenia Różne podejścia do prawdopodobieństwa Zdarzenia wzajemnie wykluczające się i Spis treści Przedmowa do wydania polskiego - Tadeusz Tyszka Słowo wstępne - Lawrence D. Phillips Przedmowa 1. : rola i zastosowanie analizy decyzyjnej Decyzje złożone Rola analizy decyzyjnej Zastosowanie

Bardziej szczegółowo

Instrukcja użytkowania serwisu aukcyjnego Flota.TargetMoto.pl

Instrukcja użytkowania serwisu aukcyjnego Flota.TargetMoto.pl Instrukcja użytkowania serwisu aukcyjnego Flota.TargetMoto.pl I. Dostęp do serwisu Platforma aukcyjna Grupy Maspex Wadowice dostępna jest pod adresem www.flota.targetmoto.pl. Przeglądanie serwisu aukcyjnego

Bardziej szczegółowo

Z Wikipedii, wolnej encyklopedii.

Z Wikipedii, wolnej encyklopedii. Rozkład normalny Rozkład normalny jest niezwykle ważnym rozkładem prawdopodobieństwa w wielu dziedzinach. Nazywa się go także rozkładem Gaussa, w szczególności w fizyce i inżynierii. W zasadzie jest to

Bardziej szczegółowo

Inwestowanie w obligacje

Inwestowanie w obligacje Inwestowanie w obligacje Ile zapłacić za obligację aby uzyskać oczekiwaną stopę zwrotu? Jaką stopę zwrotu uzyskamy kupując obligację po danej cenie? Jak zmienią się ceny obligacji, kiedy Rada olityki ieniężnej

Bardziej szczegółowo

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Definicja ceny. I. Sobańska (red.), Rachunek kosztów i rachunkowość zarządcza, C.H. Beck, Warszawa 2003, s. 179

Definicja ceny. I. Sobańska (red.), Rachunek kosztów i rachunkowość zarządcza, C.H. Beck, Warszawa 2003, s. 179 Ceny Definicja ceny cena ilość pieniądza, którą płaci się za dobra i usługi w stosunkach towarowo-pieniężnych, których przedmiotem jest zmiana właściciela lub dysponenta będąca wyrazem wartości i zależna

Bardziej szczegółowo

System bonus-malus z mechanizmem korekty składki

System bonus-malus z mechanizmem korekty składki System bonus-malus z mechanizmem korekty składki mgr Kamil Gala Ubezpieczeniowy Fundusz Gwarancyjny dr hab. Wojciech Bijak, prof. SGH Ubezpieczeniowy Fundusz Gwarancyjny, Szkoła Główna Handlowa Zagadnienia

Bardziej szczegółowo

Program Dynamicznego Startu (Dynamiczny Start Program - DSP)

Program Dynamicznego Startu (Dynamiczny Start Program - DSP) Program Dynamicznego Startu (Dynamiczny Start Program - ) Przegląd / Szybkie Zrozumienie (definicje są podane w części głównej dokumentu Zarysie ) Wprowadza sie do sprzedaży nowe pakiety z produktami,

Bardziej szczegółowo

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Instrumenty pochodne 2014 Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Jerzy Dzieża, WMS, AGH Kraków 28 maja 2014 (Instrumenty pochodne 2014 ) Wycena equity derivatives

Bardziej szczegółowo

PHASE 10 LICZBA GRACZY: 2-6

PHASE 10 LICZBA GRACZY: 2-6 PHASE 10 LICZBA GRACZY: 2-6 CEL GRY: Być pierwszym graczem, który ukończy wszystkie 10 faz. W przypadku remisu gracz z mniejszym wynikiem zostaje zwycięzcą. ZAWARTOŚĆ: Karty ściągi (opisujące 10 faz) oraz

Bardziej szczegółowo

Oligopol wieloproduktowy

Oligopol wieloproduktowy Oligopol wieloproduktowy Do tej pory zakładali adaliśmy, że e produkty sąs identyczne (homogeniczne) W rzeczywistości ci produkty sprzedawane przez firmy nie są doskonałymi substytutami. W większo kszości

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXIX Egzamin dla Aktuariuszy z 5 czerwca 006 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Inwestor dokonuje

Bardziej szczegółowo

Odmiany Gry. Rozpoczęcie gry

Odmiany Gry. Rozpoczęcie gry Odmiany Gry Limit: każda runda ma określony wcześniej limit podbicia, Pot-Limit: w każdej rundzie gracz nie może postawić więcej niż wartość puli znajdującej się na stole, No-Limit: w każdej chwili można

Bardziej szczegółowo

Konsystem, Friedrich-Ebert-Str. 20, 15234 Frankfurt

Konsystem, Friedrich-Ebert-Str. 20, 15234 Frankfurt Dochodowy e-biznes czyli jak zaistnieć i zarabiać w sieci Anna Konopa Spis treści Czy warto zaistnieć w sieci? (internauci w Polsce) Jak zaistnieć w sieci? Jak rozpocząć działalność w sieci? Plan działania

Bardziej szczegółowo

Temat Rynek i funkcje rynku. Elementy rynku. Rynek. Popyt i podaż. Cena - pieniężny wyraz wartości. Popyt Podaż Cena

Temat Rynek i funkcje rynku. Elementy rynku. Rynek. Popyt i podaż. Cena - pieniężny wyraz wartości. Popyt Podaż Cena Temat i funkcje rynku 1. Rynkowa a administracyjna koordynacja działań gospodarczych 2. opyt, podaż, cena równowagi 3. Czynniki wpływające na rozmiary popytu 4. Czynniki wpływające na rozmiary podaży 5.

Bardziej szczegółowo

INSTRUKCJA GRY TURNIEJOWEJ

INSTRUKCJA GRY TURNIEJOWEJ Cel turnieju Przed rozpoczeciem Czy zostaniesz mistrzem Spinjitzu? Wybierz przeciwnika i przygotuj się do walki przez kilka rund. Aby wygrać, zabierz przeciwnikowi wszystkie bronie! Każdy z graczy musi

Bardziej szczegółowo

WWW.OPIEKUNZYSKU.PL - PORTAL DLA KLIENTÓW PRZEGLĄD FUNKCJONALNOŚCI

WWW.OPIEKUNZYSKU.PL - PORTAL DLA KLIENTÓW PRZEGLĄD FUNKCJONALNOŚCI OPIEKUN ZYSKU WWW.OPIEKUNZYSKU.PL - PORTAL DLA KLIENTÓW PRZEGLĄD FUNKCJONALNOŚCI JAK INWESTOWAĆ? CZYLI STRATEGIA INWESTOWANIA To najważniejsza funkcja portalu. Dlatego inwestor odnajdzie ją od razu po

Bardziej szczegółowo

RAPORT Z POLSKIEGO BADANIA PROJEKTÓW IT 2010

RAPORT Z POLSKIEGO BADANIA PROJEKTÓW IT 2010 RAPORT Z POLSKIEGO BADANIA PROJEKTÓW IT 2010 Odpowiada na pytania: Jaka część projektów IT kończy się w Polsce sukcesem? Jak wiele projektów sponsorowanych jest przez instytucje publiczne? Czy kończą się

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Jak zbudować standard (bezpieczeństwa) doskonały?

Jak zbudować standard (bezpieczeństwa) doskonały? 1 Jak zbudować standard (bezpieczeństwa) doskonały? Konferencja IT Security Trends Kliknij, aby edytować styl wzorca 28 listopada Warszawa Plan wystąpienia 2 Standard bezpieczeństwa co to takiego? Dojrzałość

Bardziej szczegółowo

Zmienna losowa (wygrana w pojedynczej grze): (1, 0.5), ( 1, 0.5)

Zmienna losowa (wygrana w pojedynczej grze): (1, 0.5), ( 1, 0.5) Przykład 0. Gra polega na jednokrotnym rzucie symetryczną monetą, przy czym wygrywamy 1 jeżeli wypadnie orzeł oraz przegrywamy 1 jeżeli wypadnie reszka. Nasz początkowy kapitał wynosi 5. Jakie jest prawdopodobieństwo,

Bardziej szczegółowo

REFERAT PRACY DYPLOMOWEJ

REFERAT PRACY DYPLOMOWEJ REFERAT PRACY DYPLOMOWEJ Temat pracy: Projekt o implementacja pakietu gier planszowych realizowany na platformie Android Autor: Paweł Piechociński Promotor: dr Jadwiga Bakonyi Kategorie: gra planszowa

Bardziej szczegółowo