a) Znajdź równowagi Nasha tej gry oraz wypłaty w równowadze obu tenisistek...

Wielkość: px
Rozpocząć pokaz od strony:

Download "a) Znajdź równowagi Nasha tej gry oraz wypłaty w równowadze obu tenisistek..."

Transkrypt

1 Egzamin z przedmiotu: Wstęp do Teorii Gier Zadanie 1 Prowadzący: dr Michał Lewandowski gnieszka Radwańska gra w tenisa z Karoliną Woźniacki. gnieszka może zaserwować na backhand lub na forehand Woźniacki. Jeśli Woźniacki przewidzi właściwie, na którą stronę gnieszka zaserwuje, odbierze serw z większym prawdopodobieństwem. gnieszka ma jednak silniejszy serwis na backhand. Dlatego, jeśli gnieszka zaserwuje na backhand a Karolina to przewidzi, wówczas Karolina odbierze z prawdopodobieństwem 60%, a jeśli zaserwuje na forehand i Karolina to przewidzi, wówczas odbierze z prawdopodobieństwem 90%. Jeśli Woźniacki nie przewidzi serwu na forehand, wówczas odbierze z prawdopodobieństwem 20%, a jeśli nie przewidzi serwu na backhand, odbierze z prawdopodobieństwem 30%. Gra w formie strategicznej jest pokazana w tabeli poniżej. a) Znajdź równowagi Nasha tej gry oraz wypłaty w równowadze obu tenisistek..... b) Wyznacz i narysuj korespondencje najlepszych odpowiedzi dla obu tenisistek na jednym wykresie. Korespondencje najlepszych odpowiedzi: Zadanie 2 a) Znajdź równowagę Nasha b) Znajdź poziomy bezpieczeństwa wiersza i kolumny (wypłaty, jakie mogą sobie zagwarantować gracze np. poziom bezpieczeństwa kolumny to wypłata w równowadze w grze najbardziej dla kolumny niekorzystnej, czyli takiej, gdzie wypłaty kolumny są identyczne jak w grze powyżej a wypłaty wiersza są po prostu ujemnymi wypłatami kolumny) Gra wiersza Kolumny Poziomy bezpieczeństwa: Wiersza:., Kolumny:

2 c) Narysuj wielobok wypłat i nanieś na niego status quo wyznaczony w poziomach bezpieczeństwa graczy oraz zbiór negocjacyjny (bargaining set) d) Znajdź rozwiązanie arbitrażowe Nasha, gdzie status quo jest wyznaczone przez poziomy bezpieczeństwa graczy Zadanie 3 Rozważmy problem duopolu. Mamy dwie firmy, produkujące identyczne dobro. Każda z firm wybiera własną produkcję (x1 i x2). Cena dobra dana jest odwrotną funkcją popytu p(x1,x2)=60-3(x1+x2) (lub 0 jeśli suma produkcji przekracza 20). Funkcja kosztów wynosi ci(xi)=12xi dla i=1,2. Obaj gracze dążą do maksymalizacji zysku, czyli różnicy między dochodem a kosztem. a) (Cournot) Przyjmijmy, że gracze dokonują wyboru x1 i x2 jednocześnie. Wyznacz równowagi Nasha oraz zyski w równowadze b) (Stackelberg) Przyjmijmy, że najpierw decyzje podejmuje gracz 1, a następnie zaobserwowawszy decyzję gracza 1 decyzję podejmuje gracz 2. Przebieg gry, wypłaty i możliwe akcje i strategie są wspólną wiedzą w tej grze. Wyznacz równowagę i zyski w równowadze. (Wskazówka użyj indukcji wstecznej, najpierw rozwiąż problem gracza 2 i wyznacz funkcję reakcji na akcję gracza 1, potem podstaw do problemu gracza 1).... Zadanie 4

3 a) Zamień powyższą grę w postaci ekstensywnej na grę w postaci strategicznej. b) Znajdź równowagi Nasha w strategiach czystych. c) Czy są równowagi Nasha, które nie są równowagami doskonałymi w podgrach? d) Ile podgier można wyróżnić w poniższym drzewie (cała gra jest również podgrą)?... Zadanie 5 Gracz 1 Gracz 2 X Y 4,2 0,2 1,1 4,2 C 2,3 2,1 a) Rozwiąż grę metodą iteracyjnej eliminacji strategii zdominowanych. Za każdym razem podaj, przez jaką strategię jest zdominowana dana strategia. Podaj równowagę Nasha będącą rozwiązaniem.... b) Czy w wyniku procedury z punktu a) nie straciliśmy jakiejś równowagi Nasha? Jeśli tak, to jaką?... Zadanie 6 Dana jest następująca gra ultimatum. a) Ile strategii ma gracz 1? Ile strategii ma gracz 2? Gracz 1:.., Gracz 2:. b) Podaj równowagi doskonałe w podgrach? c) Czy strategia zaakceptuj 3 a wszystko inne odrzucaj dla gracza 2 oraz zaoferuj 3 dla gracza 1 jest równowagą Nasha? Uzasadnij jednym zdaniem.

4 Zadanie 7 Znajdź równowagi stabilne ewolucyjnie w następującej grze: Odpowiedź:. Zadanie 8 Dana jest gra Panika finansowa omawiana na wykładzie. a) Czy istnieje równowaga separowalna, w której dobry typ Wypłaca a słaby Nie Wypłaca pieniędzy z banku?. b) Sprawdź następujące strategie: Gracz 1: Nie Wypłacać, Gracz 2- dobry: Nie Wypłacać, Gracz 2- słaby: Wypłacać. Czy jest to równowaga ayesowska Nasha? Jeśli tak, to dla jakich wierzeń gracza 1?. Zadanie 9 (DODTKOWE) la, asia i Cecylia oraz Darek, Ernest oraz Filip są z tej samej klasy. W długich rozmowach na przerwach chłopcy ustalili jako najważniejsze kryterium oceny, że blondynka powinna mieć niebieskie oczy a brunetka ciemne. Dziewczynki z kolei stwierdziły po długiej konwersacji, że fajny chłopak musi być przede wszystkim wysoki. W poniższych tabelkach znajduje się charakterystyka chłopców i dziewczynek: Włosy Oczy la londynka Niebieskie asia runetka Ciemne Cecylia runetka Jasne Włosy Wzrost Darek londyn Wysoki Ernest runet Wysoki Filip londyn Niski Okazało się, że blondynki wolą brunetów, brunetki blondynów, bruneci brunetki (!) i blondyni blondynki (!). a) Sporządź ranking chłopców odnośnie dziewczynek i dziewczynek odnośnie chłopców. la asia Cecylia I miejsce II miejsce III miejsce Darek Ernest Filip I miejsce II miejsce III miejsce

5 b) Czy poniższe skojarzenie jest stabilne? Jeśli nie, podaj kto z kim mógłby zablokować to skojarzenie? asia - Darek, Cecylia Ernest la - Filip c) Jakie skojarzenie będzie wybrane, jeśli użyjemy algorytmu Gale-Shapley a z chłopcami proponującymi wyjście na randkę dziewczynkom? d) Czy można zyskać poprzez podanie nieprawdziwych preferencji? Wskazówka: użyj algorytmu Gale-Shapley a z chłopcami proponującymi (jak wyżej), jeśli la skłamie i powie, że woli Filipa niż Darka. Jakie będzie wówczas skojarzenie: Zadanie 10 (DODTKOWE) Rozważmy następującą grę: dwóch przestępców zostało zamkniętych w osobnych celach. Jeśli oboje będą zeznawać, dostaną wyroki każdy po 5 lat Jeśli oboje nie będą zeznawać, dostaną wyroki każdy po 1 roku Jeśli jeden będzie zeznawać a drugi nie, to ten pierwszy zostanie zwolniony w ogóle a ten drugi dostanie maksymalny wyrok 20 lat. Zanim jednak zaczną grać, każdy z przestępców może wybrać czy być honorowym czy niehonorowym (niezależnie i bez informowania drugiego). Niehonorowy przestępca dba wyłącznie o to, aby jak najkrócej przesiedzieć w więzieniu. Honorowy przestępca natomiast nie lubi być kapusiem. Jego użyteczność jeśli on sam nie zeznaje pozostaje niezmieniona. Teraz jednak woli nie zeznawać i siedzieć 20 lat w więzieniu niż zeznawać i siedzieć 5 lat (w przypadku, kiedy ten drugi zeznaje). Również woli nie zeznawać i siedzieć rok w więzieniu niż zeznawać i zostać zwolnionym (w przypadku kiedy ten drugi nie zeznaje). Zapisz grę w postaci ekstensywnej. Poprzez znalezienie równowag Nasha w odpowiednich podgrach i metodę indukcji wstecznej znajdź równowagi doskonałe w podgrach. Ile ich jest?

a) Znajdź równowagi Nasha tej gry oraz wypłaty w równowadze obu tenisistek.

a) Znajdź równowagi Nasha tej gry oraz wypłaty w równowadze obu tenisistek. Egzamin z przedmiotu: Wstęp do Teorii Gier Zadanie 1 Prowadzący: dr Michał Lewandowski Agnieszka Radwańska gra w tenisa z Karoliną Woźniacki. Agnieszka może zaserwować na backhand lub na forehand Woźniacki.

Bardziej szczegółowo

1 S t r o n a. Teoria Gier Praca domowa 1 - rozwiązania

1 S t r o n a. Teoria Gier Praca domowa 1 - rozwiązania 1 S t r o n a Teoria Gier Praca domowa 1 - rozwiązania Zadanie 1 Gdy korzystamy z toalet publicznych dominującą strategią jest: nie sprzątać po sobie. Skorzystanie z toalety przynosi dodatnią wypłatę,

Bardziej szczegółowo

10. Wstęp do Teorii Gier

10. Wstęp do Teorii Gier 10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej

Bardziej szczegółowo

EKONOMIA MENEDŻERSKA. Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER.

EKONOMIA MENEDŻERSKA. Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER. Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER. 1. OLIGOPOL Oligopol - rynek, na którym działa niewiele przedsiębiorstw (od do 10) Cecha charakterystyczna

Bardziej szczegółowo

13. Teoriogrowe Modele Konkurencji Gospodarczej

13. Teoriogrowe Modele Konkurencji Gospodarczej 13. Teoriogrowe Modele Konkurencji Gospodarczej Najpierw, rozważamy model monopolu. Zakładamy że monopol wybiera ile ma produkować w danym okresie. Jednostkowy koszt produkcji wynosi k. Cena wynikająca

Bardziej szczegółowo

Gry o sumie niezerowej

Gry o sumie niezerowej Gry o sumie niezerowej Równowagi Nasha 2011-12-06 Zdzisław Dzedzej 1 Pytanie Czy profile równowagi Nasha są dobrym rozwiązaniem gry o dowolnej sumie? Zaleta: zawsze istnieją (w grach dwumacierzowych, a

Bardziej szczegółowo

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,

Bardziej szczegółowo

Oligopol. Jest to rynek, na którym niewielka liczba firm zachowuje się w sposób b strategiczny i ają niezależnie od siebie, ale uwzględniaj

Oligopol. Jest to rynek, na którym niewielka liczba firm zachowuje się w sposób b strategiczny i ają niezależnie od siebie, ale uwzględniaj Oligopol Jest to rynek, na którym niewielka liczba firm zachowuje się w sposób b strategiczny i działaj ają niezależnie od siebie, ale uwzględniaj dniają istnienie pozostałych firm. Na decyzję firmy wpływaj

Bardziej szczegółowo

TEORIA GIER HISTORIA TEORII GIER. Rok 1944: powszechnie uznana data narodzin teorii gier. Rok 1994: Nagroda Nobla z dziedziny ekonomii

TEORIA GIER HISTORIA TEORII GIER. Rok 1944: powszechnie uznana data narodzin teorii gier. Rok 1994: Nagroda Nobla z dziedziny ekonomii TEORIA GIER HISTORIA TEORII GIER Rok 1944: powszechnie uznana data narodzin teorii gier Monografia: John von Neumann, Oskar Morgenstern Theory of Games and Economic Behavior (Teoria gier i postępowanie

Bardziej szczegółowo

TEORIA GIER W NAUKACH SPOŁECZNYCH. Równowagi Nasha. Rozwiązania niekooperacyjne.

TEORIA GIER W NAUKACH SPOŁECZNYCH. Równowagi Nasha. Rozwiązania niekooperacyjne. TEORIA GIER W NAUKACH SPOŁECZNYCH Równowagi Nasha. Rozwiązania niekooperacyjne. Przypomnienie Gra o sumie zerowej Kryterium dominacji Kryterium wartości oczekiwanej Diagram przesunięć Równowaga Can a Round

Bardziej szczegółowo

Elementy teorii gier

Elementy teorii gier Elementy teorii gier. Podaj wszystkie czyste równowagi Nasha. Zaznacz pary strategii, które są Pareto optymalne. U 2,3-2,7 D 6,-5 0,- U 2,3-2,7 D 6,-5 3,5 2. Pewien ojciec ma dwóch synów. Umierając zostawia

Bardziej szczegółowo

Oligopol wieloproduktowy

Oligopol wieloproduktowy Oligopol wieloproduktowy Do tej pory zakładali adaliśmy, że e produkty sąs identyczne (homogeniczne) W rzeczywistości ci produkty sprzedawane przez firmy nie są doskonałymi substytutami. W większo kszości

Bardziej szczegółowo

Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe

Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe Teorię gier można określić jako teorię podejmowania decyzji w szczególnych warunkach. Zajmuje się ona logiczną analizą sytuacji konfliktu

Bardziej szczegółowo

Mikroekonomia. O czym dzisiaj?

Mikroekonomia. O czym dzisiaj? Mikroekonomia Joanna Tyrowicz jtyrowicz@wne.uw.edu.pl http://www.wne.uw.edu.pl/~jtyrowicz 1.12.2007r. Mikroekonomia WNE UW 1 O czym dzisiaj? Macierze wypłat, czyli ile trzeba mieć w razie się straci...

Bardziej szczegółowo

Wprowadzenie do teorii gier

Wprowadzenie do teorii gier Instytut Informatyki Uniwersytetu Śląskiego Wykład 1 1 Klasyfikacja gier 2 Gry macierzowe, macierz wypłat, strategie czyste i mieszane 3 Punkty równowagi w grach o sumie zerowej 4 Gry dwuosobowe oraz n-osobowe

Bardziej szczegółowo

GRY DWUOSOBOWE O SUMIE NIEZEROWEJ. Równowaga Nasha Rozwiązania niekooperacyjne

GRY DWUOSOBOWE O SUMIE NIEZEROWEJ. Równowaga Nasha Rozwiązania niekooperacyjne GRY DWUOSOBOWE O SUMIE NIEZEROWEJ 1. 2. Równowaga Nasha Rozwiązania niekooperacyjne Gdy dwuosobowa gra nie jest grą o sumie zerowej, to aby ją opisać musimy podać wypłaty obu graczy. Jak wiadomo niektóre

Bardziej szczegółowo

TEORIA GIER - semestr zimowy 2011

TEORIA GIER - semestr zimowy 2011 TEORIA GIER - semestr zimowy 2011 Przykładowe rozwiązania 4. Gracz I, mąż, wychodzi pod wieczór z domu mówiąc, że idzie jeszcze popracować. W rzeczywistości dopiero zdecyduje, czy naprawdę pójdzie do pracy,

Bardziej szczegółowo

Zacznijmy od przypomnienia czym są i jak wyglądają gry jednoczesne oraz sekwencyjne w zapisie ekstensywnym.

Zacznijmy od przypomnienia czym są i jak wyglądają gry jednoczesne oraz sekwencyjne w zapisie ekstensywnym. Oligopol Oligopol jest zagadnieniem, którego zrozumienie wymaga dobrej znajomości teorii gier. Modele Oligopolu badane przez ekonomistów koncentrują się bowiem na znalezieniu rozwiązania (równowagi) w

Bardziej szczegółowo

TEORIA GIER- semestr zimowy 2011. ZADANIA 3. Gry w postaci ekstensywnej

TEORIA GIER- semestr zimowy 2011. ZADANIA 3. Gry w postaci ekstensywnej TEORIA GIER- semestr zimowy 2011 ZADANIA 3. Gry w postaci ekstensywnej 1. Jaś i Małgosia dostali do podziału między siebie cztery zabawki, z których każda jest niepodzielna: dwie identyczne lalki, misia

Bardziej szczegółowo

Wykład Ćwiczenia Laboratoriu m 30 30 1,5 1,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI CELE PRZEDMIOTU

Wykład Ćwiczenia Laboratoriu m 30 30 1,5 1,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI CELE PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ELEMENTY TEORII GIER Nazwa w języku angielskim ELEMENTS OF GAME THEORY Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

5. Utarg krańcowy (MR) można zapisać jako: A)

5. Utarg krańcowy (MR) można zapisać jako: A) 1. Na rynku pewnego dobra działają dwie firmy, które zachowują się zgodnie z modelem Stackelberga. Firmy ponoszą stałe koszty krańcowe równe 24. Odwrócona linia popytu na tym rynku ma postać: P = 480-0.5Q.

Bardziej szczegółowo

ZADANIE 1/GRY. Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

ZADANIE 1/GRY. Modele i narzędzia optymalizacji w systemach informatycznych zarządzania ZADANIE 1/GRY Zadanie: Dwaj producenci pewnego wyrobu sprzedają swe wyroby na rynku, którego wielkość jest stała. Aby zwiększyć swój udział w rynku (przejąć część klientów konkurencyjnego przedsiębiorstwa),

Bardziej szczegółowo

Lista zadań. 1. Podaj wszystkie czyste równowagi Nasha. Zaznacz pary strategii, które są Pareto optymalne.

Lista zadań. 1. Podaj wszystkie czyste równowagi Nasha. Zaznacz pary strategii, które są Pareto optymalne. Lista zadań 1. Podaj wszystkie czyste równowagi Nasha. Zaznacz pary strategii, które są Pareto optymalne. (a) U 2,3-2,7 D 6,-5 0,-1 (b) U 2,3-2,7 D 6,-5 3,5 2. Rozwiąż gry używając algorytmu eliminacji

Bardziej szczegółowo

1. Które z następujących funkcji produkcji cechują się stałymi korzyściami ze skali? (1) y = 3x 1 + 7x 2 (2) y = x 1 1/4 + x 2

1. Które z następujących funkcji produkcji cechują się stałymi korzyściami ze skali? (1) y = 3x 1 + 7x 2 (2) y = x 1 1/4 + x 2 1. Które z następujących funkcji produkcji cechują się stałymi korzyściami ze skali? (1) y = 3x 1 + 7x 2 (2) y = x 1 1/4 + x 2 1/3 (3) y = min{x 1,x 2 } + min{x 3,x 4 } (4) y = x 1 1/5 x 2 4/5 a) 1 i 2

Bardziej szczegółowo

Schemat sprawdzianu. 25 maja 2010

Schemat sprawdzianu. 25 maja 2010 Schemat sprawdzianu 25 maja 2010 5 definicji i twierdzeń z listy 12(po 10 punktów) np. 1. Proszę sformułować twierdzenie Brouwera o punkcie stałym. 2. Niech X będzie przestrzenią topologiczną. Proszę określić,

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ

TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Definicja gry o sumie zerowej Powiemy, że jest grą o

Bardziej szczegółowo

Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu dla odczytu Australia Employment Change

Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu dla odczytu Australia Employment Change Raport 4/2015 Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu dla odczytu Australia Employment Change autor: Michał Osmoła INIME Instytut nauk informatycznych i matematycznych

Bardziej szczegółowo

Uniwersytet Warszawski Mikroekonomia zaawansowana Studia zaoczne dr Olga Kiuila LEKCJA 9

Uniwersytet Warszawski Mikroekonomia zaawansowana Studia zaoczne dr Olga Kiuila LEKCJA 9 LEKCJA 9 Oligopol równoczesnej konkurencji cenowej przy wyborze zdolności produkcyjnych (model Kreps a) Jeżeli zdolności produkcyjne co najmniej jednej z firm są ograniczone, to na rynku będziemy obserwować

Bardziej szczegółowo

Uszereguj dla obydwu firm powyższe sytuacje od najkorzystniejszej do najgorszej. Uszereguj powyższe sytuacje z punktu widzenia konsumentów.

Uszereguj dla obydwu firm powyższe sytuacje od najkorzystniejszej do najgorszej. Uszereguj powyższe sytuacje z punktu widzenia konsumentów. Strategie konkurencji w oligopolu: modele Bertranda, Stackelberga i lidera cenowego. Wojna cenowa. Kartele i inne zachowania strategiczne zadania wraz z rozwiązaniami Zadanie 1 Na rynku działają dwie firmy.

Bardziej szczegółowo

Czym zajmuje się teroia gier

Czym zajmuje się teroia gier Czym zajmuje się teroia gier Analiza zachowań graczy (czyli strategii graczy) jak zachowują się gracze jakie są ich możliwe zachowania czy postępują racjonalnie i co to znaczy Poszukiwanie optymalnych

Bardziej szczegółowo

GRY W POSTACI EKSTENSYWNEJ (rozwiniętej)

GRY W POSTACI EKSTENSYWNEJ (rozwiniętej) GRY W POSTACI EKSTENSYWNEJ (rozwiniętej) Gra w postaci ekstensywnej formalny opis wszystkich możliwych przebiegów gry, z uwzględnieniem struktury czasowej, możliwości wielokrotnego podejmowania decyzji

Bardziej szczegółowo

Wprowadzenie do teorii gier Ryszard Paweł Kostecki

Wprowadzenie do teorii gier Ryszard Paweł Kostecki Wprowadzenie do teorii gier Ryszard Paweł Kostecki 1. Wstęp Obszarem zainteresowania teorii gier są problemy związane z decyzjami w układach z wieloma uczestnikami (agentami, graczami), z których każdy

Bardziej szczegółowo

LEKCJA 8. Miara wielkości barier wejścia na rynek = różnica między ceną dla której wejście na rynek nie następuje a min AC.

LEKCJA 8. Miara wielkości barier wejścia na rynek = różnica między ceną dla której wejście na rynek nie następuje a min AC. LEKCJA 8 KOSZTY WEJŚCIA NA RYNEK Miara wielkości barier wejścia na rynek = różnica między ceną dla której wejście na rynek nie następuje a min AC. Na wysokość barier wpływ mają: - korzyści skali produkcji,

Bardziej szczegółowo

Aukcje groszowe. Podejście teoriogrowe

Aukcje groszowe. Podejście teoriogrowe Aukcje groszowe Podejście teoriogrowe Plan działania Aukcje groszowe Budowa teorii Sprawdzenie teorii Bibliografia: B. Platt, J. Price, H. Tappen, Pay-to-Bid Auctions [online]. 9 lipca 2009 [dostęp 3.02.2011].

Bardziej szczegółowo

Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego

Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego Instytut Informatyki Uniwersytetu Śląskiego Wykład 2 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.

Bardziej szczegółowo

Czym zajmuje się teroia gier

Czym zajmuje się teroia gier Czym zajmuje się teroia gier Analiza zachowań graczy (czyli strategii graczy) jak zachowują się gracze jakie są ich możliwe zachowania czy postępują racjonalnie i co to znaczy Poszukiwanie optymalnych

Bardziej szczegółowo

TEORIA GIER. Wspólna wiedza dotyczy nie tylko zachowań (reguł postępowania), ale i samej gry : każdy zna jej reguły i wypłaty (swoje i uczestników).

TEORIA GIER. Wspólna wiedza dotyczy nie tylko zachowań (reguł postępowania), ale i samej gry : każdy zna jej reguły i wypłaty (swoje i uczestników). TEOR GER 1. Wstęp Teoria gier jest dziedziną zajmującą się opisem sytuacji, w których podmioty (gracze) podejmujący świadome decyzje (nazywane strategie), w wyniku których zapadają rozstrzygnięcia mogące

Bardziej szczegółowo

Skowrońska-Szmer. Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością. 04.01.2012r.

Skowrońska-Szmer. Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością. 04.01.2012r. mgr inż. Anna Skowrońska-Szmer Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością 04.01.2012r. 1. Cel prezentacji 2. Biznesplan podstawowe pojęcia 3. Teoria gier w

Bardziej szczegółowo

WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB VIII ASSESS

WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB VIII ASSESS WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI AB VIII ASSESS. oteria oteria = rozkład prawdopodobieństwa na zbiorze zdarzeń x (możliwych ocen wariantu) - odpowiada mu rozkład użyteczności. W praktyce, loteria

Bardziej szczegółowo

Drzewka gry. Teoria gier a biznes.

Drzewka gry. Teoria gier a biznes. Drzewka gry. Teoria gier a biznes. Drzewka gry Gra jest to sytuacja konfliktowa, w której gracze podejmują decyzję, co do strategii, w sposób sekwencyjny i sukcesywny, w miarę przebiegu gry poznając kolejne

Bardziej szczegółowo

Konspekt 7. Strategie postępowania oligopolu - zastosowania teorii gier.

Konspekt 7. Strategie postępowania oligopolu - zastosowania teorii gier. KRAJOWA SZKOŁA ADMINISTRACJI PUBLICZNEJ Ryszard Rapacki EKONOMIA MENEDŻERSKA Konspekt 7. Strategie postępowania oligopolu - zastosowania teorii gier. A. Cele zajęć. 1. Porównanie różnych struktur rynku

Bardziej szczegółowo

1. Opierał się wyłącznie na strategiach czystych, a, jak wiadomo, gra może mieć jedyne równowagi w strategiach mieszanych.

1. Opierał się wyłącznie na strategiach czystych, a, jak wiadomo, gra może mieć jedyne równowagi w strategiach mieszanych. Rozdział 4 Uczenie się w grach Na dzisiejszym wykładzie robimy krok w tył w stosunku do tego, o czym mówiliśmy przez ostatnie tygodnie. Dotychczas mówiliśmy o dowolnych grach wieloetapowych, dziś opowiem

Bardziej szczegółowo

Egzamin maturalny z matematyki Budowa arkuszy maturalnych według nowej formuły

Egzamin maturalny z matematyki Budowa arkuszy maturalnych według nowej formuły Egzamin maturalny z matematyki Budowa arkuszy maturalnych według nowej formuły Śląski Salon Maturzystów 25, 26 września 2014 CELE I NOWE UWARUNKOWANIA 1. Istotne zwiększenie wymagań na poziomie rozszerzonym

Bardziej szczegółowo

Journal of Agribusiness and Rural Development

Journal of Agribusiness and Rural Development pissn 1899-5241 eissn 1899-5772 Journal of Agribusiness and Rural Development www.jard.edu.pl 2(24) 2012, 119-126 MOŻLIWOŚCI ZASTOSOWANIA TEORII GIER DO ANALIZY KONFLIKTÓW DECYZYJNYCH POWSTAJĄCYCH WE WSPÓLNEJ

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 00 minut . Inwestorzy

Bardziej szczegółowo

Teoria gier. Teoria gier. Odróżniać losowość od wiedzy graczy o stanie!

Teoria gier. Teoria gier. Odróżniać losowość od wiedzy graczy o stanie! Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), 2-osobowe(np. szachy, warcaby, go, itp.), wieloosobowe(np. brydż, giełda, itp.); wygraną/przegraną:

Bardziej szczegółowo

Teoria gier. Wykład7,31III2010,str.1. Gry dzielimy

Teoria gier. Wykład7,31III2010,str.1. Gry dzielimy Wykład7,31III2010,str.1 Gry dzielimy Wykład7,31III2010,str.1 Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), Wykład7,31III2010,str.1 Gry

Bardziej szczegółowo

Gra: Partnerstwo biznesowe

Gra: Partnerstwo biznesowe Gra: Partnerstwo biznesowe Opis: Gra uczy partnerstwa biznesowego. Pokazuje jakie są jego zalety i wady. Pozwala uczestnikom szkolenia odkryć główny powód, dla którego firmy tworzą partnerstwa biznesowe.

Bardziej szczegółowo

Komunikacja. Materiały szkoleniowe i coachingowe. Gra: Skarbonka

Komunikacja. Materiały szkoleniowe i coachingowe. Gra: Skarbonka Opis: Gra pokazuje w jaki sposób komunikacja wpływa na współpracę oraz rywalizację. Uczy tego, że przed każdym działaniem warto porozmawiać z partnerami, ustalić wspólny plan działania oraz zrealizować

Bardziej szczegółowo

18 WRZEŚNIA 2001 r. MMA-P1A1P-011

18 WRZEŚNIA 2001 r. MMA-P1A1P-011 18 WRZEŚNIA 2001 r. MMA-P1A1P-011 Miejsce na naklejkę z kodem KOD ZDAJĄCEGO (Wpisuje zdający przed rozpoczęciem pracy) PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Informacje Czas pracy 120

Bardziej szczegółowo

ur. 28 Czerwca 1928 w Bluefield w Wirginii, matematyk i ekonomista, profesor Uniwersytetu Princeton

ur. 28 Czerwca 1928 w Bluefield w Wirginii, matematyk i ekonomista, profesor Uniwersytetu Princeton ur. 28 Czerwca 1928 w Bluefield w Wirginii, matematyk i ekonomista, profesor Uniwersytetu Princeton Przygotowali Ostrowski Damian Ryciak Norbert Ryciuk Wiktor Seliga Marcin Lata młodości ojciec John Forbes

Bardziej szczegółowo

Zadanie 1 - MŁODZIKI

Zadanie 1 - MŁODZIKI Zadanie 1 - MŁOZIKI klasy 2,, 4 - szkoła podstawowa 28.09.2012 r. OMINO Zapewne widzieliście i graliście kiedyś w OMINO. Przed przystąpieniem do rozwiązywania zadań tej sesji zagrajcie z najbliższymi w

Bardziej szczegółowo

MIKROEKONOMIA. Wykład 3 Mikroanaliza rynku 1 MIKROANALIZA RYNKU

MIKROEKONOMIA. Wykład 3 Mikroanaliza rynku 1 MIKROANALIZA RYNKU Wykład 3 Mikroanaliza rynku 1 MIKROANALIZA RYNKU 1. POPYT Popyt (zapotrzebowanie) - ilość towaru, jaką jest skłonny kupić nabywca po ustalonej cenie rynkowej, dysponując do tego celu odpowiednim dochodem

Bardziej szczegółowo

OGRAĆ BUKMACHERA. DLACZEGO JEST TO MOŻLIWE? KAMIL STUPAK SKN BUSINESS ANALYTICS SGH

OGRAĆ BUKMACHERA. DLACZEGO JEST TO MOŻLIWE? KAMIL STUPAK SKN BUSINESS ANALYTICS SGH OGRAĆ BUKMACHERA. DLACZEGO JEST TO MOŻLIWE? KAMIL STUPAK SKN BUSINESS ANALYTICS SGH PODSTAWOWE DEFINICJE KURS oferowana przez bukmachera stopa zwrotu z pojedynczego zakładu, w Europie wyrażana najczęściej

Bardziej szczegółowo

Load balancing games

Load balancing games Load balancing games Marcin Witkowski Uniwersytet im. Adama Mickiewicza w Poznaniu 11 grudnia 2010 1 / 34 Szeregowanie zadań Przyporządkowanie zbioru zadań do zbioru maszyn, w ten sposób, aby obciążenie

Bardziej szczegółowo

Konkurs dla szkół ponadgimnazjalnych Etap szkolny 9 stycznia 2013 roku

Konkurs dla szkół ponadgimnazjalnych Etap szkolny 9 stycznia 2013 roku Konkurs dla szkół ponadgimnazjalnych Etap szkolny 9 stycznia roku Instrukcja dla ucznia W zadaniach o numerach od do są podane cztery warianty odpowiedzi: A, B, C, D Dokładnie jeden z nich jest poprawny

Bardziej szczegółowo

Baltie 2010 etap szkolny, zadania dla kategorie A, B

Baltie 2010 etap szkolny, zadania dla kategorie A, B Baltie 2010 etap szkolny, zadania dla kategorie A, B W tym roku konkurs w szkolnym kółku będzie zawierał 2 zadania dla kategorii A i B (Baltie 3) oraz 2 zadania dla kategorii C i D (Baltie 4 C#). Zadanie

Bardziej szczegółowo

TEORIA GIER WNE UW, jesień 2011 PLAN PRZEDMIOTU

TEORIA GIER WNE UW, jesień 2011 PLAN PRZEDMIOTU TEORIA GIER WNE UW, jesień 2011 PLAN PRZEDMIOTU 1. Indywidualne podejmowanie decyzji 2. Gry niekooperacyjne w postaci normalnej w postaci ekstensywnej 3. Gry z niekompletną informacją (w miarę możliwości).

Bardziej szczegółowo

ZESTAWY ZADAŃ Z EKONOMII MATEMATYCZNEJ

ZESTAWY ZADAŃ Z EKONOMII MATEMATYCZNEJ ZESTAWY ZADAŃ Z EKONOMII MATEMATYCZNEJ Zestaw 5 1.Narynkuistniejądwajhandlowcyidwatowary,przyczymtowarupierwszegosą3sztuki,adrugiego 2sztuki. a). Jak wygląda zbiór alokacji dopuszczalnych, jeśli towary

Bardziej szczegółowo

Mikroekonomia II: Teoria Producenta Zadania dodatkowe. produkcji? a produkcji f(x 1, x 2 ) = x 1/4. odpowiednio, w 1 i w 2 a cena produktu p.

Mikroekonomia II: Teoria Producenta Zadania dodatkowe. produkcji? a produkcji f(x 1, x 2 ) = x 1/4. odpowiednio, w 1 i w 2 a cena produktu p. Mikroekonomia II: Teoria Producenta Zadania dodatkowe 1. Przypuśćmy, że mamy nastepuj ac a funkcje produkcji f(x 1, x 2 ) = x 1/4 1 x 1/4 2. (a) Narysuj izokwante reprezentujac a y = 1. (b) Oblicz TRS

Bardziej szczegółowo

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy

Bardziej szczegółowo

Konkurs matematyczny dla uczniów szkół podstawowych rok szkolny 2014/2015 III stopień - wojewódzki Kryteria oceniania

Konkurs matematyczny dla uczniów szkół podstawowych rok szkolny 2014/2015 III stopień - wojewódzki Kryteria oceniania Gimnazjum nr 26 w Gdańsku im. Jana III Sobieskiego ul. R. Traugutta 92 sekretariat@gim26.gda.pl 80-226 Gdańsk www.gim26.gda.pl tel. 58-341-02-33 fax 58-344-05-02 Zad.1. (0 1) Konkurs matematyczny dla uczniów

Bardziej szczegółowo

Teoria Gier i Optymalne Wykorzystanie Wspólnych Zasobów p. 1/4

Teoria Gier i Optymalne Wykorzystanie Wspólnych Zasobów p. 1/4 Teoria Gier i Optymalne Wykorzystanie Wspólnych Zasobów p. 1/4 Teoria Gier i Optymalne Wykorzystanie Wspólnych Zasobów Krzysztof R. Apt CWI, Amsterdam Uniwersytet Amsterdamski Teoria Gier i Optymalne Wykorzystanie

Bardziej szczegółowo

WPROWADZENIE DO KOMUNIKACJI NEGOCJACJE

WPROWADZENIE DO KOMUNIKACJI NEGOCJACJE WPROWADZENIE DO KOMUNIKACJI NEGOCJACJE DLA ZAINTERESOWANYCH NEGOCJACJE http://www.uwm.edu.pl/pa/fileadmin/pliki_do_pobrania/przewodnik_negocjacje.pdf Zbigniew Nęcki Negocjacje w biznesie Fisher, Ury, Patton

Bardziej szczegółowo

Zestaw 3 Optymalizacja międzyokresowa

Zestaw 3 Optymalizacja międzyokresowa Zestaw 3 Optymalizacja międzyokresowa W modelu tym rozważamy optymalny wybór konsumenta dotyczący konsumpcji w okresie obecnym i w przyszłości. Zakładając, że nasz dochód w okresie bieżącym i przyszłym

Bardziej szczegółowo

Witajcie na kolejnym spotkaniu,

Witajcie na kolejnym spotkaniu, warsztat trenera Równowaga Jarosław Jakubowski Witajcie na kolejnym spotkaniu, podczas którego doskonalić będziemy nasz warsztat trenerski. Do przygotowania tego i kolejnego artykułu zaprosiłem do udziału

Bardziej szczegółowo

Zespół Szkół Ogólnokształcących im. H. Sienkiewicza w Świebodzinie

Zespół Szkół Ogólnokształcących im. H. Sienkiewicza w Świebodzinie Zespół Szkół Ogólnokształcących im. H. Sienkiewicza w Świebodzinie 16.02.2009 i chłopców 17.02.2009 18.02.2009 19.02.2009 20.02.2009 i chłopców i chłopców i chłopców i chłopców i chłopców i chłopców 25.02.2009

Bardziej szczegółowo

Programowanie genetyczne, gra SNAKE

Programowanie genetyczne, gra SNAKE STUDENCKA PRACOWNIA ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne, gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................

Bardziej szczegółowo

Teoria wyboru konsumenta. Marta Lubieniecka Tomasz Szemraj

Teoria wyboru konsumenta. Marta Lubieniecka Tomasz Szemraj Teoria wyboru konsumenta Marta Lubieniecka Tomasz Szemraj Teoria wyboru konsumenta 1) Przedmiot wyboru konsumenta na rynku towarów. 2) Zmienne decyzyjne, parametry rynkowe i preferencje jako warunki wyboru.

Bardziej szczegółowo

Model równowagi na rynku prywatnych ubezpieczeń zdrowotnych

Model równowagi na rynku prywatnych ubezpieczeń zdrowotnych Model równowagi na rynku prywatnych ubezpieczeń zdrowotnych Agata de Sas Stupnicka Zagadnienia aktuarialne teoria i praktyka Wrocław, 6-8 września 2010 Plan prezentacji Wprowadzenie ubezpieczenia zdrowotne,

Bardziej szczegółowo

Kurs z NetLogo - część 4.

Kurs z NetLogo - część 4. Kurs z NetLogo - część 4. Mateusz Zawisza Zakład Wspomagania i Analizy Decyzji Instytut Ekonometrii Szkoła Główna Handlowa Seminarium Wieloagentowe Warszawa, 10.01.2011 Agenda spotkań z NetLogo 15. listopada

Bardziej szczegółowo

Ekonometria - ćwiczenia 10

Ekonometria - ćwiczenia 10 Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na

Bardziej szczegółowo

NOWA STREFA KIBICA bilety.legia.com

NOWA STREFA KIBICA bilety.legia.com NOWA STREFA KIBICA bilety.legia.com Witamy w nowej Strefie Kibica. Za pomocą tej strony w łatwy i prosty sposób zakupisz bilet lub karnet na mecze Legii Warszawa, a także wyrobisz kartę kibica. Przeczytaj

Bardziej szczegółowo

Konkurencja i kooperacja w dwuosobowych grach strategicznych. Anna Lamek

Konkurencja i kooperacja w dwuosobowych grach strategicznych. Anna Lamek Konkurencja i kooperacja w dwuosobowych grach strategicznych Anna Lamek Plan prezentacji Ujęcie kooperacji i konkurencji w teorii gier Nowe podejście CoCo value CoCo value dla gier bayesowskich Uzasadnienie

Bardziej szczegółowo

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA DYNAMICZNYCH LOKAT KAPITAŁOWYCH Krzysztof Gąsior Uniwersytet Rzeszowski Streszczenie Celem referatu jest zaprezentowanie praktycznego zastosowania

Bardziej szczegółowo

EKONOMIA MENEDŻERSKA

EKONOMIA MENEDŻERSKA oraz na kierunku zarządzanie i marketing (jednolite studia magisterskie) 1 EKONOMIA MENEDŻERSKA PROGRAM WYKŁADÓW Wykład 1. Wprowadzenie do ekonomii menedŝerskiej. Podejmowanie optymalnych decyzji na podstawie

Bardziej szczegółowo

Matematyczne modele współpracy i konfliktu - teoria gier w praktyce

Matematyczne modele współpracy i konfliktu - teoria gier w praktyce Stanisław Kasjan i Piotr Malicki Matematyczne modele współpracy i konfliktu - teoria gier w praktyce (Kurs letni 2010) Materiały dydaktyczne dla studentów II-go roku matematyki Wydział Matematyki i Informatyki

Bardziej szczegółowo

Ekonomia. Wykład dla studentów WPiA

Ekonomia. Wykład dla studentów WPiA Ekonomia Wykład dla studentów WPiA Wykład 7: Struktury niedoskonale konkurencyjne i ich skutki dla wielkości produkcji i poziomu cen. Konkurencja niedoskonała a oligopol. Teoria gier. Decyzje firmy o wielkości

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Gry dwuosobowe i gry z naturą............... 5

Bardziej szczegółowo

Spójrzmy i zobaczmy w jaki sposób teoria gier znajduje swoją użyteczność w odzwierciedleniu i modelowaniu prostych systemów socjobiologicznych.

Spójrzmy i zobaczmy w jaki sposób teoria gier znajduje swoją użyteczność w odzwierciedleniu i modelowaniu prostych systemów socjobiologicznych. Ciekawa teoria gier Teoria gier jest działem matematyki zajmującej się badaniem optymalnego zachowania jednostek, organizacji lub różnego rodzaju grup społecznych w przypadku konfliktu interesów. Wywodzi

Bardziej szczegółowo

SZKOŁA INTELIGENTNEGO INWESTOWANIA

SZKOŁA INTELIGENTNEGO INWESTOWANIA SZKOŁA INTELIGENTNEGO INWESTOWANIA Zarządzający Tom Dorsey guru zarządzania Smart Beta oraz współwłaściciel DIF Broker Jeśli ktoś oczekuje cudów u nas ich nie znajdzie. My twardo stąpamy po ziemi i tego

Bardziej szczegółowo

Gdzie ta matematyka, czyli. o wojnie jaszczurek

Gdzie ta matematyka, czyli. o wojnie jaszczurek Gdzie ta matematyka, czyli o wojnie jaszczurek Prezentacja na podstawie książki: Unlocking the secrets of existence XVII wiek Francja Człowiek ma naturę hazardzisty! W tym czasie działają znane postaci

Bardziej szczegółowo

Brain Game. Wstęp. Scratch

Brain Game. Wstęp. Scratch Scratch 2 Brain Game Każdy Klub Kodowania musi być zarejestrowany. Zarejestrowane kluby można zobaczyć na mapie na stronie codeclubworld.org - jeżeli nie ma tam twojego klubu sprawdź na stronie jumpto.cc/18cplpy

Bardziej szczegółowo

Matematyka test dla uczniów klas piątych

Matematyka test dla uczniów klas piątych Matematyka test dla uczniów klas piątych szkół podstawowych w roku szkolnym 2010/2011 Etap szkolny (60 minut) Dysleksja [suma punktów] Imię i nazwisko... kl.5... Asia postanowiła sprawdzić, ile czasu poświęca

Bardziej szczegółowo

Fundusz ING Parasol SFIO Nadchodzi nowa era dla rynku funduszy inwestycyjnych...

Fundusz ING Parasol SFIO Nadchodzi nowa era dla rynku funduszy inwestycyjnych... Nadchodzi nowa era dla rynku funduszy inwestycyjnych... Marcin Sobociński Sebastian Buczek ING TFI 22 820 52 00 Warszawa, 26 czerwca 2006 r. Nowe prawo = nowe możliwości Skąd pomysł? Dzięki zmianom w polskim

Bardziej szczegółowo

Lista 1. Procesy o przyrostach niezależnych.

Lista 1. Procesy o przyrostach niezależnych. Lista. Procesy o przyrostach niezależnych.. Niech N t bedzie procesem Poissona o intensywnoci λ = 2. Obliczyć a) P (N 2 < 3, b) P (N =, N 3 = 6), c) P (N 2 = N 5 = 2), d) P (N =, N 2 = 3, N 4 < 5), e)

Bardziej szczegółowo

Analiza wyników ankiety p.t. KOMPUTERY I ICH ZAGROŻENIA przeprowadzonej wśród uczniów klas młodszych (I III)

Analiza wyników ankiety p.t. KOMPUTERY I ICH ZAGROŻENIA przeprowadzonej wśród uczniów klas młodszych (I III) Analiza wyników ankiety p.t. KOMPUTERY I ICH ZAGROŻENIA przeprowadzonej wśród uczniów klas młodszych (I III) opracowały: mgr Agnieszka Kicman mgr Danuta Wiatr 2 Spis treści : 1.Wstęp... 3 2.Charakterystyka

Bardziej szczegółowo

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa II szkoła podstawowa marzec 2012

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa II szkoła podstawowa marzec 2012 PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa II szkoła podstawowa marzec 202 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 SUMA PUNKTÓW Poprawna

Bardziej szczegółowo

Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu - metodologia badań

Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu - metodologia badań Raport 1/2015 Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu - metodologia badań autor: Michał Osmoła INIME Instytut nauk informatycznych i matematycznych z zastosowaniem

Bardziej szczegółowo

MODEL KONKURENCJI DOSKONAŁEJ.

MODEL KONKURENCJI DOSKONAŁEJ. Wykład 4 Konkurencja doskonała i monopol 1 MODEL KONKURENCJI DOSKONAŁEJ. EFEKTYWNOŚĆ RYNKU. MONOPOL CZYSTY. KONKURENCJA MONOPOLISTYCZNA. 1. MODEL KONKURENCJI DOSKONAŁEJ W modelu konkurencji doskonałej

Bardziej szczegółowo

1-2. Formułowanie zadań decyzyjnych. Metoda geometryczna

1-2. Formułowanie zadań decyzyjnych. Metoda geometryczna -. Formułowanie zadań decyzyjnych. Metoda geometryczna Zagadnienie wyznaczania optymalnego asortymentu produkcji Firma zamierza uruchomić produkcję dwóch wyrobów A i B. Cenę zbytu oszacowano na zł/kg dla

Bardziej szczegółowo

Uniwersytet Śląski Wydział Matematyki, Fizyki i Chemii. Wstęp do teorii gier. Autor: Mateusz Szymański

Uniwersytet Śląski Wydział Matematyki, Fizyki i Chemii. Wstęp do teorii gier. Autor: Mateusz Szymański Uniwersytet Śląski Wydział Matematyki, Fizyki i Chemii Wstęp do teorii gier Autor: Mateusz Szymański 21 grudnia 2012 Wstęp do teorii gier 1 Spis treści 1 Cotojestgra? 2 2 Podział gier 2 3 Podstawowe założenia

Bardziej szczegółowo

Przykładowe rozwiązania

Przykładowe rozwiązania Przykładowe rozwiązania Poniższy dokument zawiera przykładowe rozwiązania zadań z I etapu I edycji konkursu (2014 r.). Rozwiązania w formie takiej jak przedstawiona niżej uzyskałyby pełną liczbę punktów

Bardziej szczegółowo

MATEMATYK od ZARUSKIEGO KLASY I-III

MATEMATYK od ZARUSKIEGO KLASY I-III MATEMATYK od ZARUSKIEGO KLASY I-III ZADANIA OBOWIĄZKOWE: ZADANIE 1: Policz lub zmierz, a następnie podaj liczby: a) policz ile jest schodów w szkole, z szatni na drugie piętro... b) policz ile jest drzwi

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

Uczeń. KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012. 90 minut. Pracuj samodzielnie. Powodzenia! Finał 20 kwietnia 2012 roku

Uczeń. KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012. 90 minut. Pracuj samodzielnie. Powodzenia! Finał 20 kwietnia 2012 roku KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012 Finał 20 kwietnia 2012 roku Zestaw dla uczniów klas III Uczeń Liczba zdobytych punktów Drogi Uczniu, witaj na finale konkursu Omnibus Matematyczny. Przeczytaj

Bardziej szczegółowo

Materiały wykładowe (fragmenty)

Materiały wykładowe (fragmenty) Materiały wykładowe (fragmenty) 1 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7

Bardziej szczegółowo