Prawa wielkich liczb, centralne twierdzenia graniczne

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Prawa wielkich liczb, centralne twierdzenia graniczne"

Transkrypt

1 , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne

2 Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

3 Niech X, X n (n = 1, 2,...) będą zmiennymi losowymi określonymi na przestrzeni probabilistycznej (Ω, M, P). Omówimy rodzaje zbieżności ciągu (X n ) do zmiennej losowej X., centralne twierdzenia graniczne

4 Niech X, X n (n = 1, 2,...) będą zmiennymi losowymi określonymi na przestrzeni probabilistycznej (Ω, M, P). Omówimy rodzaje zbieżności ciągu (X n ) do zmiennej losowej X. Definicja Mówimy, że ciąg zmiennych losowych (X n ) jest zbieżny według prawdopodobieństwa (lub stochastycznie) do zmiennej losowej X wtedy i tylko wtedy, gdy lim P ({ω Ω : X n(ω) X (ω) ε}) = 0 n dla każdego ε > 0. Zbieżność stochastyczną oznaczamy przez X n p X., centralne twierdzenia graniczne

5 Definicja Mówimy, że ciąg zmiennych losowych (X n ) jest zbieżny z prawdopodobieństwem 1 (lub prawie na pewno) do zmiennej losowej X wtedy i tylko wtedy, gdy ({ }) P ω Ω : lim X n(ω) = X (ω) = 1. n Piszemy wówczas X n X., centralne twierdzenia graniczne

6 Definicja Mówimy, że ciąg zmiennych losowych (X n ) jest zbieżny z prawdopodobieństwem 1 (lub prawie na pewno) do zmiennej losowej X wtedy i tylko wtedy, gdy ({ }) P ω Ω : lim X n(ω) = X (ω) = 1. n Piszemy wówczas X n X. Twierdzenie Jeśli ciąg (X n ) jest zbieżny z prawdopodobieństwem 1 do zmiennej losowej X, to ciąg (X n ) jest zbieżny według prawdopodobieństwa do zmiennej losowej X., centralne twierdzenia graniczne

7 Twierdzenie odwrotne do powyższego twierdzenia jest fałszywe, świadczy o tym następujący przykład. Przykład Niech (Ω, M, P) będzie przestrzenią probabilistyczną, gdzie Ω = (0, 1, M jest rodziną zbiorów borelowskich na przedziale (0, 1, P jest prawdopodobieństwem określonym wzorem P(A) = A. Określamy ciąg (A n ) podzbiorów zbioru Ω taki, że ( ( ( ( A 1 = 0, 1 2, A 2 = 1 2, 1, A 3 = 0, 1 4, A 4 = 1 4 4, 2, ( ( A 5 = 2 4 4, 3, A 6 = 3 4, 1, ( ( A 7 = 0, 1 8, A 8 = 1 8 8, 2,... itd., centralne twierdzenia graniczne

8 Przykład (cd) Dla dowolnej liczby naturalnej n przyjmujemy X n (ω) = { 1 dla ω An, 0 dla ω / A n. Łatwo można sprawdzić, że dla dowolnej liczby ε > 0 spełniony jest warunek lim P ({ω (0, 1 : X n(ω) ε}) = 0. n, centralne twierdzenia graniczne

9 Przykład (cd) Istotnie, jeśli ε > 1, to dla każdego n N. Dla 0 < ε 1 mamy natomiast P ({ω (0, 1 : X n (ω) ε}) = 0 P ({ω (0, 1 : X n (ω) ε}) = A n 0, gdy n. Oznacza to, że ciąg (X n ) jest zbieżny według prawdopodobieństwa do zmiennej losowej X 0 (tzn. do zmiennej losowej X o rozkładzie jednopunktowym skoncentrowanym w punkcie 0). Z drugiej strony, dla dowolnego ustalonego ω 0 (0, 1 ciąg liczbowy (X n (ω 0 )) zawiera dwa podciągi, jeden o wyrazach równych 0, drugi o wyrazach równych 1. Wynika stąd, że ciąg funkcyjny (X n ) nie jest zbieżny punktowo do żadnej granicy., centralne twierdzenia graniczne

10 Załóżmy, że zmienne X n (n = 1, 2,...), X mają skończone momenty drugiego rzędu., centralne twierdzenia graniczne

11 Załóżmy, że zmienne X n (n = 1, 2,...), X mają skończone momenty drugiego rzędu. Definicja Mówimy, że ciąg zmiennych losowych (X n ) jest zbieżny przeciętnie z kwadratem (lub średnio kwadratowo) do zmiennej losowej X wtedy i tylko wtedy, gdy lim n E(X n X ) 2 = 0. Piszemy wówczas l.i.m. n X n = X., centralne twierdzenia graniczne

12 Załóżmy, że zmienne X n (n = 1, 2,...), X mają skończone momenty drugiego rzędu. Definicja Mówimy, że ciąg zmiennych losowych (X n ) jest zbieżny przeciętnie z kwadratem (lub średnio kwadratowo) do zmiennej losowej X wtedy i tylko wtedy, gdy lim n E(X n X ) 2 = 0. Piszemy wówczas l.i.m. n X n = X. Twierdzenie Jeśli ciąg (X n ) jest zbieżny przeciętnie z kwadratem do zmiennej losowej X, to ciąg (X n ) jest zbieżny według prawdopodobieństwa do zmiennej losowej X., centralne twierdzenia graniczne

13 Obok zbieżności ciągów zmiennych losowych możemy również rozpatrywać zbieżność rozkładów prawdopodobieństwa tych zmiennych. Ponieważ rozkład prawdopodobieństwa jest jednoznacznie wyznaczony przez dystrybuantę, więc pojęcie zbieżności rozkładów sformułujemy przy pomocy pojęcia zbieżności ciągów dystrybuant., centralne twierdzenia graniczne

14 Obok zbieżności ciągów zmiennych losowych możemy również rozpatrywać zbieżność rozkładów prawdopodobieństwa tych zmiennych. Ponieważ rozkład prawdopodobieństwa jest jednoznacznie wyznaczony przez dystrybuantę, więc pojęcie zbieżności rozkładów sformułujemy przy pomocy pojęcia zbieżności ciągów dystrybuant. Definicja Mówimy, że ciąg dystrybuant (F n ) jest zbieżny podstawowo do dystrybuanty F wtedy i tylko wtedy, gdy w każdym punkcie x R ciągłości dystrybuanty F spełniony jest warunek lim n F n(x) = F (x). O ciągu (P n ) rozkładów o dystrybuantach F n mówimy wtedy, że jest słabo zbieżny do rozkładu P o dystrybuancie F., centralne twierdzenia graniczne

15 Twierdzenie Jeśli ciąg (X n ) zmiennych losowych jest zbieżny według prawdopodobieństwa do zmiennej losowej X, to ciąg (F n ) dystrybuant tych zmiennych jest zbieżny podstawowo do dystrybuanty zmiennej losowej X., centralne twierdzenia graniczne

16 Twierdzenie Jeśli ciąg (X n ) zmiennych losowych jest zbieżny według prawdopodobieństwa do zmiennej losowej X, to ciąg (F n ) dystrybuant tych zmiennych jest zbieżny podstawowo do dystrybuanty zmiennej losowej X. Twierdzenie odwrotne do powyższego twierdzenia jest prawdziwe tylko w szczególnym przypadku, gdy zmienna X ma rozkład jednopunktowy., centralne twierdzenia graniczne

17 , centralne twierdzenia graniczne

18 Niech (X n ) będzie ciągiem zmiennych losowych określonych na przestrzeni probabilistycznej (Ω, M, P) o skończonych wartościach oczekiwanych. Przyjmijmy następujące oznaczenia: m k = EX k dla k = 1, 2,..., S n = X 1 + X X n, M n = m 1 + m m n dla n = 1, 2,..., centralne twierdzenia graniczne

19 Niech (X n ) będzie ciągiem zmiennych losowych określonych na przestrzeni probabilistycznej (Ω, M, P) o skończonych wartościach oczekiwanych. Przyjmijmy następujące oznaczenia: m k = EX k dla k = 1, 2,..., S n = X 1 + X X n, M n = m 1 + m m n dla n = 1, 2,... Definicja Mówimy, że ciąg (X n ) spełnia słabe prawo wielkich liczb wtedy i tylko wtedy, gdy 1 n (S n M n ) p 0., centralne twierdzenia graniczne

20 Niech (X n ) będzie ciągiem zmiennych losowych określonych na przestrzeni probabilistycznej (Ω, M, P) o skończonych wartościach oczekiwanych. Przyjmijmy następujące oznaczenia: m k = EX k dla k = 1, 2,..., S n = X 1 + X X n, M n = m 1 + m m n dla n = 1, 2,... Definicja Mówimy, że ciąg (X n ) spełnia słabe prawo wielkich liczb wtedy i tylko wtedy, gdy 1 n (S n M n ) p 0. Definicja Mówimy, że ciąg (X n ) spełnia mocne prawo wielkich liczb wtedy i tylko wtedy, gdy 1 n (S n M n ) 0., centralne twierdzenia graniczne

21 Podamy warunki dostateczne na to, aby ciąg (X n ) spełniał prawo wielkich liczb., centralne twierdzenia graniczne

22 Podamy warunki dostateczne na to, aby ciąg (X n ) spełniał prawo wielkich liczb. Definicja Ciąg (X n ) nazywamy ciągiem niezależnych zmiennych losowych wtedy i tylko, gdy dla każdego k N zmienne X 1, X 2,..., X k są niezależne., centralne twierdzenia graniczne

23 Podamy warunki dostateczne na to, aby ciąg (X n ) spełniał prawo wielkich liczb. Definicja Ciąg (X n ) nazywamy ciągiem niezależnych zmiennych losowych wtedy i tylko, gdy dla każdego k N zmienne X 1, X 2,..., X k są niezależne. Definicja Mówimy, że ciąg (X n ) spełnia warunek Markowa wtedy i tylko wtedy, gdy σ1 lim 2+σ σ2 n = 0, n n 2 gdzie σ 2 n = D 2 X n dla n N., centralne twierdzenia graniczne

24 Twierdzenie (prawo wielkich liczb Markowa) Niech (X n ) będzie ciągiem niezależnych zmiennych losowych mających skończone wariancje σ 2 n = D 2 X n. Jeśli ciąg (X n ) spełnia warunek Markowa, to ciąg (X n ) spełnia słabe prawo wielkich liczb., centralne twierdzenia graniczne

25 Twierdzenie (prawo wielkich liczb Markowa) Niech (X n ) będzie ciągiem niezależnych zmiennych losowych mających skończone wariancje σ 2 n = D 2 X n. Jeśli ciąg (X n ) spełnia warunek Markowa, to ciąg (X n ) spełnia słabe prawo wielkich liczb. Przykład Wykażemy, że ciąg (X n ) niezależnych zmiennych losowych o rozkładach N(0, 3 n) spełnia słabe prawo wielkich liczb., centralne twierdzenia graniczne

26 Przykład (cd) Zadanie sprowadza się do wykazania, że ciąg (X n ) zmiennych losowych spełnia warunek Markowa. Ponieważ zmienna X k ma rozkład normalny N(0, 3 k), więc σ 2 k = 3 k 2. Stąd otrzymujemy oszacowanie lim n 0 < σ2 1 +σ σ2 n n 2 = n 2 n 2 n 3 n 2 n 2 = 1 3 n. Z twierdzenia o trzech ciągach wynika zatem, że σ1 2+σ σ2 n = 0. n 2, centralne twierdzenia graniczne

27 Definicja Mówimy, że ciąg (X n ) spełnia warunek Kołmogorowa wtedy i tylko wtedy, gdy szereg jest zbieżny. n=1 σ 2 n n 2, centralne twierdzenia graniczne

28 Definicja Mówimy, że ciąg (X n ) spełnia warunek Kołmogorowa wtedy i tylko wtedy, gdy szereg jest zbieżny. n=1 σ 2 n n 2 Twierdzenie (pierwsze prawo wielkich liczb Kołmogorowa) Niech (X n ) będzie ciągiem niezależnych zmiennych losowych mających skończone wariancje σ 2 n = D 2 X n. Jeśli ciąg (X n ) spełnia warunek Kołmogorowa, to ciąg (X n ) spełnia mocne prawo wielkich liczb., centralne twierdzenia graniczne

29 Przykład Wykażemy, że ciąg zmiennych losowych (X n ) z przykładu 16 spełnia mocne prawo wielkich liczb. Rozwiązanie. Ponieważ σ2 n = 1 n 2 3, więc szereg σn 2 jest zbieżny, n 4 n 2 n=1 a zatem ciąg (X n ) spełnia warunek Kołmogorowa. Oznacza to, że ciąg (X n ) spełnia mocne prawo wielkich liczb., centralne twierdzenia graniczne

30 Przykład Wykażemy, że ciąg zmiennych losowych (X n ) z przykładu 16 spełnia mocne prawo wielkich liczb. Rozwiązanie. Ponieważ σ2 n = 1 n 2 3, więc szereg σn 2 jest zbieżny, n 4 n 2 n=1 a zatem ciąg (X n ) spełnia warunek Kołmogorowa. Oznacza to, że ciąg (X n ) spełnia mocne prawo wielkich liczb. Wynika stąd oczywiście, że ciąg (X n ) spełnia również słabe prawo wielkich liczb. Tak więc, aby wykazać, że ciąg niezależnych zmiennych losowych spełnia słabe prawo wielkich liczb można korzystać albo z twierdzenia Markowa, albo z twierdzenia Kołmogorowa., centralne twierdzenia graniczne

31 Załóżmy teraz, że niezależne zmienne losowe X 1,X 2,... mają identyczny rozkład z wartością oczekiwaną m = m k dla k = 1, 2,... Zbieżność ciągu ( 1 n (S n M n )) do zmiennej losowej X 0 jest równoważna warunkowi, że ciąg średnich 1 n S n dąży do zmiennej losowej przyjmującej wartość m z prawdopodobieństwem 1. W tym przypadku zachodzi następujące twierdzenie., centralne twierdzenia graniczne

32 Załóżmy teraz, że niezależne zmienne losowe X 1,X 2,... mają identyczny rozkład z wartością oczekiwaną m = m k dla k = 1, 2,... Zbieżność ciągu ( 1 n (S n M n )) do zmiennej losowej X 0 jest równoważna warunkowi, że ciąg średnich 1 n S n dąży do zmiennej losowej przyjmującej wartość m z prawdopodobieństwem 1. W tym przypadku zachodzi następujące twierdzenie. Twierdzenie (drugie prawo wielkich liczb Kołmogorowa) Niech (X n ) będzie ciągiem niezależnych zmiennych losowych o identycznych rozkładach. Ciąg (X n ) spełnia mocne prawo wielkich liczb wtedy i tylko wtedy, gdy istnieje wartość oczekiwana m = EX n, gdzie n = 1, 2,...., centralne twierdzenia graniczne

33 , centralne twierdzenia graniczne

34 Niech (X n ) będzie ciągiem niezależnych zmiennych losowych określonych na przestrzeni probabilistycznej (Ω, M, P) mających skończoną wartość oczekiwaną i skończoną dodatnią wariancję. Przyjmijmy, tak jak w poprzednim paragrafie: m k = EX k dla k = 1, 2,..., S n = X 1 + X X n, M n = m 1 + m m n, oraz σ k 2 = D2 X k dla k = 1, 2,..., Bn 2 = σ1 2 + σ σ2 n, B n = Bn. 2 Niech Y n będzie zmienną otrzymaną przez standaryzację zmiennej S n, tzn. Y n = S n M n. B n, centralne twierdzenia graniczne

35 Definicja Mówimy, że dla ciągu (X n ) spełnione jest centralne twierdzenie graniczne wtedy i tylko wtedy, gdy ciąg dystrybuant zmiennych losowych Y n jest zbieżny podstawowo do dystrybuanty rozkładu normalnego N(0, 1). O ciągu (Y n ) mówimy wtedy, że jest asymptotycznie normalny., centralne twierdzenia graniczne

36 Przykładem centralnego twierdzenia granicznego jest twierdzenie integralne de Moivre a-laplace a, które sformułowaliśmy nie korzystając z pojęcia zmiennej losowej. Podany w tym twierdzeniu wzór ( ) lim P a < k np n npq < b = F (b) F (a), gdzie F jest dystrybuantą rozkładu normalnego N(0, 1), możemy obecnie zinterpretować następująco. Liczba sukcesów k w schemacie n prób Bernoulliego jest wartością zmiennej losowej S n o rozkładzie Bernoulliego z parametrami n, p. Zmienna S n jest sumą n niezależnych zmiennych losowych X k, gdzie k = 1, 2,..., n, o identycznym rozkładzie zero-jedynkowym z parametrem p., centralne twierdzenia graniczne

37 Standaryzując zmienne S n, otrzymujemy Y n = S n M n B n = S n np npq. Tak więc twierdzenie integralne de Moivre a-laplace a orzeka, że dla ciągu niezależnych zmiennych losowych o identycznych rozkładach zero-jedynkowych spełnione jest centralne twierdzenie graniczne., centralne twierdzenia graniczne

38 Twierdzenie integralne de Moivre a-laplace a jest szczególnym przypadkiem następującego twierdzenia. Twierdzenie (Lindeberga-Levy ego) Jeśli (X n ) jest ciągiem niezależnych zmiennych losowych o identycznych rozkładach z wartością oczekiwaną m i skończoną dodatnią wariancją σ 2, to ciąg (X n ) spełnia centralne twierdzenie graniczne., centralne twierdzenia graniczne

39 Twierdzenie integralne de Moivre a-laplace a jest szczególnym przypadkiem następującego twierdzenia. Twierdzenie (Lindeberga-Levy ego) Jeśli (X n ) jest ciągiem niezależnych zmiennych losowych o identycznych rozkładach z wartością oczekiwaną m i skończoną dodatnią wariancją σ 2, to ciąg (X n ) spełnia centralne twierdzenie graniczne. Przykład Dany jest ciąg niezależnych zmiennych losowych (X n ) o jednakowych rozkładach takich, że EX n = 3, D 2 X n = 2. Wyznaczymy ( przybliżoną wartość prawdopodobieństwa P 580 < 200 ) X n < 660. n=1, centralne twierdzenia graniczne

40 Przykład (cd) Zauważmy, że ciąg (X n ) spełnia założenia twierdzenia Lindeberga-Levy ego. Niech S 200 = 200 X n, wówczas n=1 M 200 = ES 200 = = 600, a z niezależności zmiennych X n wynika, że B200 2 = D 2 S 200 = = 400, czyli B 200 = 400 = 20., centralne twierdzenia graniczne

41 Przykład (cd) Stąd otrzymujemy ( P 580 < 200 = P n=1 ) X n < 660 ( ) 1 < S < 3 ( ) = P < S < = F (3) F ( 1) = F (3) + F (1) 1, gdzie F jest dystrybuantą rozkładu normalnego N (0, 1)., centralne twierdzenia graniczne

42 Podamy teraz twierdzenie graniczne dla ciągu zmiennych losowych o niejednakowych rozkładach. Definicja Mówimy, że ciąg (X n ) zmiennych losowych o skończonych wartościach oczekiwanych m n = EX n spełnia warunek Lapunowa wtedy i tylko wtedy, gdy istnieje taka liczba δ > 0, że a) ck 2+δ = E X k m k 2+δ < + dla k = 1, 2,...; C b) lim n n B n = 0, gdzie C n = ( n k=1 c 2+δ k ) 1/(2+δ)., centralne twierdzenia graniczne

43 Podamy teraz twierdzenie graniczne dla ciągu zmiennych losowych o niejednakowych rozkładach. Definicja Mówimy, że ciąg (X n ) zmiennych losowych o skończonych wartościach oczekiwanych m n = EX n spełnia warunek Lapunowa wtedy i tylko wtedy, gdy istnieje taka liczba δ > 0, że a) ck 2+δ = E X k m k 2+δ < + dla k = 1, 2,...; C b) lim n n B n = 0, gdzie C n = Twierdzenie (Lapunowa) ( n k=1 c 2+δ k ) 1/(2+δ). Jeśli ciąg (X n ) niezależnych zmiennych losowych spełnia warunek Lapunowa, to ciąg (X n ) spełnia centralne twierdzenie graniczne., centralne twierdzenia graniczne

44 Twierdzenie Lapunowa stosowane jest najczęściej dla δ = 1. Przykład Niech (X n ) będzie ciągiem niezależnych zmiennych losowych o rozkładach dwupunktowych określonych następująco P(X n = n) = P(X n = n) = 1 2. Wykażemy, że ciąg (X n ) spełnia centralne twierdzenie graniczne., centralne twierdzenia graniczne

45 Przykład (cd) Zauważmy, że σ 2 k = k2, c 3 k = k3, więc Stąd otrzymujemy C lim n n B n = lim n B 2 n = C 3 n = n k=1 n k=1 k 2 = 1 6n(n + 1)(2n + 1), ( ) 2 k 3 = 1 2 n(n + 1). 3 ( 1 2 n(n+1))2 1 6 n(n+1)(2n+1) = lim n n ( 1 2 (1+ 1 n ))2 n (1+ 1 n )(2+ 1 n ) = 0. Ciąg (X n ) niezależnych zmiennych losowych spełnia zatem warunek Lapunowa, a więc spełnia także centralne twierdzenie graniczne., centralne twierdzenia graniczne

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast

Bardziej szczegółowo

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Przestrzeń probabilistyczna

Przestrzeń probabilistyczna Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga

Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga RAP 412 21.01.2009 Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga Wykładowca: Andrzej Ruciński Pisarz: Łukasz Waszak 1 Wstęp Na ostatnim wykładzie przedstawiliśmy twierdzenie o zbieżności

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

5 Przegląd najważniejszych rozkładów

5 Przegląd najważniejszych rozkładów 5 Przegląd najważniejszych rozkładów 5. Rozkład Bernoulliego W niezmieniających się warunkach wykonujemy n razy pewne doświadczenie. W wyniku każdego doświadczenia może nastąpić zdarzenie A lub A. Zakładamy,

Bardziej szczegółowo

Statystyka matematyczna. Wykład III. Estymacja przedziałowa

Statystyka matematyczna. Wykład III. Estymacja przedziałowa Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne Teoria estymacji Jędrzej Potoniec Bibliografia Bibliografia Próba losowa (x 1, x 2,..., x n ) Próba losowa (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) Próba losowa (x 1, x 2,...,

Bardziej szczegółowo

Analiza matematyczna. 1. Ciągi

Analiza matematyczna. 1. Ciągi Analiza matematyczna 1. Ciągi Definicja 1.1 Funkcję a: N R odwzorowującą zbiór liczb naturalnych w zbiór liczb rzeczywistych nazywamy ciągiem liczbowym. Wartość tego odwzorowania w punkcie n nazywamy n

Bardziej szczegółowo

STATYSTYKA

STATYSTYKA Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym

Bardziej szczegółowo

Rachunek Prawdopodobieństwa i Statystyka

Rachunek Prawdopodobieństwa i Statystyka Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Statystyka i eksploracja

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości

Bardziej szczegółowo

F t+ := s>t. F s = F t.

F t+ := s>t. F s = F t. M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną

Bardziej szczegółowo

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III. Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej

Bardziej szczegółowo

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe

Bardziej szczegółowo

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy

Bardziej szczegółowo

Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: F(x) = sin(x),

Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: F(x) = sin(x), Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: Fx sinx, Fx a e x mogą być dystrybuantami?. Podaj twierdzenie Lindeberga

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

granicą ciągu funkcyjnego (f n ) n N W symbolicznym zapicie fakt, że f jest granicą ciągu funkcyjnego (f n ) n N możemy wyrazić następująco: ε>0 N N

granicą ciągu funkcyjnego (f n ) n N W symbolicznym zapicie fakt, że f jest granicą ciągu funkcyjnego (f n ) n N możemy wyrazić następująco: ε>0 N N 14. Określenie ciągu i szeregu funkcyjnego, zbieżność punktowa i jednostajna. Własności zbieżności jednostajnej. Kryterium zbieżności jednostajnej szeregu funkcyjnego. 1 Definicja Ciąg funkcyjny Niech

Bardziej szczegółowo

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F; Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne.

Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne. Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne. 6.2. Centralne Twierdzenie Graniczne Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Słabe prawo wielkich liczb przypomnienie Słabe

Bardziej szczegółowo

Elementy Rachunek prawdopodobieństwa

Elementy Rachunek prawdopodobieństwa Elementy rachunku prawdopodobieństwa Rachunek prawdopodobieństwa zajmuje się analizą praw rządzących zdarzeniami losowymi Pojęciami pierwotnymi są: zdarzenie elementarne ω oraz zbiór zdarzeń elementarnych

Bardziej szczegółowo

Wybrane rozkłady zmiennych losowych. Statystyka

Wybrane rozkłady zmiennych losowych. Statystyka Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1

Bardziej szczegółowo

Ośrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski,

Ośrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski, Procesy Stochastyczne, wykład, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 27 luty, 2012 Ośrodkowość procesów Dalej zakładamy, że (Ω, Σ, P) jest zupełną przestrzenią miarową. Definicja.

Bardziej szczegółowo

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie

Bardziej szczegółowo

Ważne rozkłady i twierdzenia

Ważne rozkłady i twierdzenia Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne

Bardziej szczegółowo

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015 Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa II Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,

Zadania z Rachunku Prawdopodobieństwa II Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ, Zadania z Rachunku Prawdopodobieństwa II -. Udowodnij, że dla dowolnych liczb x n, x, δ xn δ x wtedy i tylko wtedy, gdy x n x.. Wykaż, że n n k= δ k/n λ, gdzie λ jest miarą Lebesgue a na [, ].. Podać przykład

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1 STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany.

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

jest ciągiem elementów z przestrzeni B(R, R)

jest ciągiem elementów z przestrzeni B(R, R) Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład

Bardziej szczegółowo

SZEREGI LICZBOWE I FUNKCYJNE

SZEREGI LICZBOWE I FUNKCYJNE Mając dowolny ciąg można z niego utworzyć nowy ciąg sum częściowych: Ten nowy rodzaj ciągu nazywamy szeregiem liczbowym, a jeśli to mamy do czynienia z nieskończonym szeregiem liczbowym, który oznaczany

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.1. Zmienne losowe dyskretne. Katarzyna Rybarczyk-Krzywdzińska Definicja/Rozkład Zmienne losowe dyskretne Definicja Zmienną losową, która skupiona

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.0. Rozkłady zmiennych losowych, dystrybuanta. Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2016/2017 Wprowadzenie Przykład 1 Bolek, Lolek i Tola

Bardziej szczegółowo

4,5. Dyskretne zmienne losowe (17.03; 31.03)

4,5. Dyskretne zmienne losowe (17.03; 31.03) 4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie

Bardziej szczegółowo

Statystyka. Magdalena Jakubek. kwiecień 2017

Statystyka. Magdalena Jakubek. kwiecień 2017 Statystyka Magdalena Jakubek kwiecień 2017 1 Nauka nie stara się wyjaśniać, a nawet niemal nie stara się interpretować, zajmuje się ona głównie budową modeli. Model rozumiany jest jako matematyczny twór,

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa II Podaj przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,

Zadania z Rachunku Prawdopodobieństwa II Podaj przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ, Zadania z Rachunku Prawdopodobieństwa II -. Udowodnij, że dla dowolnych liczb x n, x, δ xn δ x wtedy i tylko wtedy, gdy x n x.. Wykaż, że n n k= δ k/n λ, gdzie λ jest miarą Lebesgue a na [, ].. Podaj przykład

Bardziej szczegółowo

Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n)

Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n) MODELE STATYSTYCZNE Punktem wyjścia w rozumowaniu statystycznym jest zmienna losowa (cecha) X i jej obserwacje opisujące wyniki doświadczeń bądź pomiarów. Zbiór wartości zmiennej losowej X (zbiór wartości

Bardziej szczegółowo

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska)

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Twierdzenie (o mnożeniu) Podstawowe pojęcia i wzory kombinatoryczne. Niech,, będą zbiorami mającymi odpowiednio,,

Bardziej szczegółowo

METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych

METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład - Parametry i wybrane rozkłady zmiennych losowych Parametry zmiennej losowej EX wartość oczekiwana D X wariancja DX odchylenie standardowe inne, np. kwantyle,

Bardziej szczegółowo

Zadania z RP 2. seria Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n

Zadania z RP 2. seria Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n Zadania z RP 2. seria 1. 1. Dla x R n, niech δ x oznacza miarę Diraca, skupioną w punkcie x. Wykazać, że dla dowolnego ciągu x n R n zachodzi δ xn δ x wtedy i tylko wtedy, gdy x n x. 2. Podać przykład

Bardziej szczegółowo

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Podstawowe rozkłady zmiennych losowych Rozkłady zmiennych skokowych Rozkład zero-jedynkowy Rozpatrujemy doświadczenie, którego rezultatem może

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

6.4 Podstawowe metody statystyczne

6.4 Podstawowe metody statystyczne 156 Wstęp do statystyki matematycznej 6.4 Podstawowe metody statystyczne Spóbujemy teraz w dopuszczalnym uproszczeniu przedstawić istotę analizy statystycznej. W szczególności udzielimy odpowiedzi na postawione

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak

Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Redakcja i korekta Bogdan Baran Projekt graficzny okładki Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2011 ISBN

Bardziej szczegółowo

Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012

Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012 Wykład 2 Wrocław, 11 października 2012 Próba losowa Definicja. Zmienne losowe X 1, X 2,..., X n nazywamy próba losową rozmiaru n z rozkładu o gęstości f (x) (o dystrybuancie F (x)) jeśli X 1, X 2,...,

Bardziej szczegółowo

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) = Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x

Bardziej szczegółowo

SPIS TEŚCI CZĘŚĆ I RACHUNEK PRAWDOPODOBIEŃSTWA

SPIS TEŚCI CZĘŚĆ I RACHUNEK PRAWDOPODOBIEŃSTWA SPIS TEŚCI PRZEDMOWA...13 CZĘŚĆ I RACHUNEK PRAWDOPODOBIEŃSTWA 1. ZDARZENIA LOSOWE I PRAWDOPODOBIEŃSTWO...17 1.1. UWAGI WSTĘPNE... 17 1.2. ZDARZENIA LOSOWE... 17 1.3. RELACJE MIĘDZY ZDARZENIAMI... 18 1.4.

Bardziej szczegółowo

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = : 4. Zbiory borelowskie. Zbiór wszystkich podzbiorów liczb naturalnych będziemy oznaczali przez ω. Najmniejszą topologię na zbiorze ω, w której zbiory {A ω : x A ω \ y}, gdzie x oraz y są zbiorami skończonymi,

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno.

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno. Rachunek prawdopodobieństwa Podstawowym celem rachunku prawdopodobieństwa jest określanie szans zajścia pewnych zdarzeń. Pojęcie podstawowe rachunku prawdopodobieństwa to: zdarzenie losowe - zdarzenie

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. 3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X

Bardziej szczegółowo

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami. M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A

Bardziej szczegółowo

Wstęp do rachunku prawdopodobieństwa

Wstęp do rachunku prawdopodobieństwa Wstęp do rachunku prawdopodobieństwa Rozdział 06: Zmienne losowe. Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Wprowadzenie Przykład 6.1 Adam, Bolek i Czesiu wstąpili do kasyna. Postanowili

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

21 maja, Mocna własność Markowa procesu Wienera. Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126

21 maja, Mocna własność Markowa procesu Wienera. Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 Mocna własność Markowa procesu Wienera Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 21 maja, 2012 Mocna własność Markowa W = (W 1,..., W d ) oznaczać

Bardziej szczegółowo

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Marcin Michalski 14.11.014 1 Wprowadzenie Jedną z intuicji na temat liczb rzeczywistych jest myślenie o nich jako liczbach,

Bardziej szczegółowo

Dokładne i graniczne rozkłady statystyk z próby

Dokładne i graniczne rozkłady statystyk z próby Dokładne i graniczne rozkłady statystyk z próby Przypomnijmy Populacja Próba Wielkość N n Średnia Wariancja Odchylenie standardowe 4.2 Rozkład statystyki Mówimy, że rozkład statystyki (1) jest dokładny,

Bardziej szczegółowo

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15 II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH Szkic wykładu 1 Podstawowe rozkłady zmiennej losowej skokowej Rozkład dwupunktowy Rozkład dwumianowy Rozkład Poissona 2 Rozkład dwupunktowy Rozkład dwumianowy Rozkład

Bardziej szczegółowo

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe

Bardziej szczegółowo

Najczęściej spotykane rozkłady dyskretne:

Najczęściej spotykane rozkłady dyskretne: I. Rozkład dwupunktowy: Najczęściej spotykane rozkłady dyskretne: Def. Zmienna X ma rozkład dwupunktowy z prawdopodobieostwem 1 przyjmuje tylko dwie wartości, tzn. P(X = x 1 ) = p i P(X = x 2 ) = 1 p =

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

KARTA PRZEDMIOTU. 12. Przynależność do grupy przedmiotów: Prawdopodobieństwo i statystyka

KARTA PRZEDMIOTU. 12. Przynależność do grupy przedmiotów: Prawdopodobieństwo i statystyka (pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: RACHUNEK PRAWDOPODOBIEŃSTWA 2. Kod przedmiotu: RPr 3. Karta przedmiotu ważna od roku akademickiego: 20152016 4. Forma

Bardziej szczegółowo

Laboratorium nr 7. Zmienne losowe typu skokowego.

Laboratorium nr 7. Zmienne losowe typu skokowego. Laboratorium nr 7. Zmienne losowe typu skokowego.. Zmienna losowa X ma rozkład dany tabelką: - 0 3 0, 0,3 0, 0,3 0, Naszkicować dystrybuantę zmiennej X. Obliczyć EX oraz VarX.. Zmienna losowa ma rozkład

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład I: Formalizm statystyki matematycznej 17 lutego 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Zagadnienia omawiane na wykładach Forma zaliczenia przedmiotu Forma zaliczenia Literatura

Bardziej szczegółowo

8 Całka stochastyczna względem semimartyngałów

8 Całka stochastyczna względem semimartyngałów M. Beśka, Całka Stochastyczna, wykład 8 148 8 Całka stochastyczna względem semimartyngałów 8.1 Całka stochastyczna w M 2 Oznaczmy przez Ξ zbiór procesów postaci X t (ω) = ξ (ω)i {} (t) + n ξ i (ω)i (ti,

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 4.04.0 r. Zadanie. Przy danej wartości λ parametru ryzyka Λ liczby szkód generowane przez ubezpieczającego się w kolejnych latach to niezależne zmienne losowe o rozkładzie

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005 RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. Literatura: Marek Cieciura, Janusz Zacharski, Metody probabilistyczne w ujęciu praktycznym, L. Kowalski, Statystyka, 2005 R.Leitner, J.Zacharski, "Zarys matematyki

Bardziej szczegółowo

i=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 =

i=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 = Kombinatoryka W tej serii zadań można znaleźć pojawiające się na egzaminach zadania dotyczące problemu wyznaczania prostych parametrów rozkładu w przypadku zgadnień kombinatorycznych. Zadania te wymagają

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład I: Formalizm teorii prawdopodonieństwa 6 października 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Dostępność treści wykładów 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin dwuczęściowy:

Bardziej szczegółowo

Z Wikipedii, wolnej encyklopedii.

Z Wikipedii, wolnej encyklopedii. Rozkład normalny Rozkład normalny jest niezwykle ważnym rozkładem prawdopodobieństwa w wielu dziedzinach. Nazywa się go także rozkładem Gaussa, w szczególności w fizyce i inżynierii. W zasadzie jest to

Bardziej szczegółowo

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A) Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P

Bardziej szczegółowo

Rachunek Prawdopodobieństwa Rozdział 5. Rozkłady łączne

Rachunek Prawdopodobieństwa Rozdział 5. Rozkłady łączne Rachunek Prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.0 Definicje Katarzyna Rybarczyk-Krzywdzińska Wprowadzenie Przykład 1 Bolek, Lolek i Tola wstąpili do kasyna. (A) Bolek postawił na czerwone, (B)

Bardziej szczegółowo

ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO

ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO Na egzaminie magisterskim student powinien: 1) omówić wyniki zawarte w pracy magisterskiej posługując się swobodnie pojęciami i twierdzeniami zamieszczonymi w pracy

Bardziej szczegółowo

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Statystyka i opracowanie danych W4 Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny wykres funkcji gęstości

Bardziej szczegółowo