Plan. Prosty model aukcji: Aukcja drugiej ceny - równowaga Nasha w strategiach słabo dominujących Aukcja pierwszej ceny - równowaga Nasha

Wielkość: px
Rozpocząć pokaz od strony:

Download "Plan. Prosty model aukcji: Aukcja drugiej ceny - równowaga Nasha w strategiach słabo dominujących Aukcja pierwszej ceny - równowaga Nasha"

Transkrypt

1 Plan Przypomnienie: Dominacja oraz równowaga Nasha Model konkurencji ilościowej Cournot Model konkurencji cenowej Bertranda jednakowe produkty produkty zróżnicowane Prosty model aukcji: Aukcja drugiej ceny - równowaga Nasha w strategiach słabo dominujących Aukcja pierwszej ceny - równowaga Nasha Model przetrzennego głosowania

2 Aukcja drugiej ceny Najwyższa oferta wygrywa, wygrany płaci drugą najwyższą cenę. W przypadku równych ofert, obiekt dostaje gracz 1 Przypuśćmy, że v 1 > v 2 > 0 Forma strategiczna: N = {1, 2} A 1 = A 2 = R + Funkcje wypłaty: Dla każdego (b 1, b 2 ) R 2 + u 1 (b 1, b 2 ) = u 2 (b 1, b 2 ) = { v1 b 2, jeśli b 1 b 2, 0, w przeciwnym przypadku { v2 b 1, jeśli b 2 > b 1, 0, w przeciwnym przypadku

3 Równowaga w strategiach słabo-dominujących w aukcji drugiej ceny On the le(: bidding higher than your value is weakly dominated. On the right: bidding lower than your value is weakly dominated.

4 Aukcja drugiej ceny - strategia słabo dominująca Słabo dominującą akcją dla każdego gracza to: b i = v i. Jest wiele równowag Nasha - na przykład (v 1, 0). Jedna równowaga w strategiach słabo dominujących: (v 1, v 2 )

5 Aukcja pierwszej ceny Najwyższa oferta wygrywa, wygrany płaci swoją ofertę W przypadku równych ofert, obiekt dostaje gracz 1 Forma strategiczna: N = {1, 2} A 1 = A 2 = R + Funkcje wypłaty: Dla każdego (b 1, b 2 ) R 2 + u 1 (b 1, b 2 ) = u 2 (b 1, b 2 ) = { v1 b 1, jeśli b 1 b 2, 0, w przeciwnym przypadku { v2 b 2, jeśli b 2 > b 1, 0, w przeciwnym przypadku

6 Aukcja pierwszej ceny Nie ma równowagi w strategiach dominujących Nie ma takiej akcji, która jest lepsza dla danego gracza niż inna akcja niezależnie od tego, co zrobi drugi gracz Szukamy równowagi Nasha sposobem wprost: Warunki konieczne (jeśli profil strategii jest równowagą, wtedy musi speł niać te warunki) Warunki wystarczające (jeśli profil strategii spełnia te warunki, wtedy jest równowagą w sensie Nasha)

7 Warunki konieczne Niech (b1, b 2 ) będzie równowagą Nasha. Wtedy, Gracz 1 wygrywa: b1 b 2 Przypuśćmy, że nie: b1 < b 2. Mamy dwie możliwości: b 2 v 2 : Gracz 1 mógłby zaoferować v 2 i mieć zysk b2 > v 2 : Gracz 2 mógłby zaoferować zero i zredukować straty do zera Co oznacza, że taki profil nie może być równowagą. b 1 = b 2 Przypuśćmy, że nie: b 1 > b 2. Gracz I może zaoferować b 2 i mieć zysk. v 2 b 1 v 1 Przypuśćmy, że nie. Są dwie możliwości: b 1 < v 2, wtedy gracz II może podnieść swoją ofertę v1 < b1, wtedy gracz I powinien obniżyć swoją ofertę

8 Warunki wystarczające Każda równowaga Nasha (b1, b 2 ) musi spełniać: v 2 b 1 = b 2 v 1 Czy jakaś z par spełniających te nierówności jest równowagą Nasha? TAK, wszystkie

9 Model wyborów politycznych Kandydaci wybierają, jak bardzo chcą być prounijni. Preferencje: Wygrana Remis Przegrana Wyborcy mają swoją ulubioną pozycję prounijności Jednowymiarowa przestrzeń strategii: prounijność w skali [0, 1] Wyborcy głosują na tego, kto jest najbliżej ich ulubionej pozycji Społ eczeństwo jest kontinuum i wyborcy rozmieszczeni są na przedziale [0, 1] według rozkładu jednostajnego

10 Medianowy wyborca N = {1, 2} A 1 = A 2 = [0, 1] Funkcje wypłaty dla obu partii 1, jeśli i wygra 1 u i (p 1, p 2 ) = 2, jeśli remis 0 jeśli i przegra

11 Niech p1, p 2 będzie równowagą Nasha. Wtedy: Wynikiem musi być remis p1 = p 2 Przypuśćmy, że nie: p 1 p2? Wówczas gracz 1 na przykład ma bodziec, aby zbliżyć się do gracza 2. Wynik powinien być dokładnie w połowie p1 = p 2 = 1/2 Przypuśćmy, że nie: p1 = p2 1/2? Wówczas gracz 1 na przykład ma bodziec, aby przesunąć się nieznacznie w stronę środka. Jedyną równowagą Nasha jest (p 1, p 2 ) = ( 1 2, 1 2 )

12

13 Plan Co było: Pojęcie gry w postaci standardowej/normalnej (tabelka) Strategie dominujące Iteracyjna eliminacja strategii dominujących Racjonalność graczy jest wspólną wiedzą Równowaga Nasha w strategiach czystych Funkcje/korespondencje najlepszych odpowiedzi

14 Plan wykładu Więcej o wiedzy wspólnej: Historia trzech pań z brudnymi twarzami Pojęcie preferencji i użyteczności porządkowej (Cantor) i kardynalnej (von Neumann i Morgenstern) Wprowadzenie strategii mieszanych: Eliminacja strategii zdominowanych przez strategię mieszaną Równowaga Nasha w strategiach mieszanych Pijany kierowca Bitwa płci Sherlock Holmes i profesor Moriarty Doniesienie o przestępstwie Co dalej?: Gry dynamiczne i postać ekstensywna W samo południe

15 Brudne twarze Trzy panie ze środkowego zachodu USA mają brudne twarze. Każda pani widzi twarze innych pań, ale nie widzi swojej. Jeśliby którakolwiek z nich wiedziała na 100%, że ma brudną twarz, wówczas zarumieniłaby się. Jednak żadna z nich nie rumieni się. i ogłasza, że jedna pani ma brudną twarz. Po tym ogłoszeniu, jedna z pań zarumieniła się. DLACZEGO??? Czy panie już tego przedtem nie wiedziały??? Wielebny, który zawsze mówi prawdę, przybywa

16 Brudne twarze Jeśli ani Beata ani Cecylia się nie rumieni, Alicja rozumuje następująco: Alicja: Przypuśćmy, że moja twarz jest czysta. Wówczas Beata rozumowałaby następująco: Beata: Widzę, że twarz Alicji jest czysta. Przypuśćmy, że moja twarz jest również czysta. Wówczas Cecylia rozumowałaby następująco: Cecylia: Widzę, że Alicja i Beata mają czyste twarze. Zatem moja twarz musi być brudna. Muszę się zarumienić. Beata: Ponieważ Cecylia się nie zarumieniła, moja twarz musi być brudna. Zatem ja muszę się zarumienić. Alicja: Ponieważ Beata się nie zarumieniła, moja twarz jest brudna. Muszę się zarumienić.

17 Użyteczność ordynalna (porządkowa) Preferencje ujawnione - dedukujemy z obserwowanych wyborów, nie tłumaczymy skąd się biorą. Dwa założenia: Wybory muszą być stabilne Wybory muszą być spójne Relacja preferencji (podzbiór iloczynu kartezjańskiego Ω Ω) spełnia dwa aksjomaty: zupełność: a b lub b a przechodniość: jeśli a b i b c, to a c dla wszystkich a, b, c Ω Twierdzenie (Cantor (1915)) Relacja spełnia zupełność, przechodniość (i separowalność) wtedy i tylko wtedy, gdy istnieje u : Ω R taka, że: u(a) u(b) a b, a, b Ω

18 Aksjomaty von Neumanna Morgensterna Postulat (1) Racjonalny gracz preferuje tą loterię wygraj-lub-przegraj, która daje większą szansę wygranej. (W, p; P, 1 p) (W, q; P, 1 q) p > q Postulat (2) Każda nagroda pomiędzy najgorszą a najlepszą jest równoważna jakiejś loterii wygraj-lub-przegraj. Postulat (3) Racjonalni gracze są obojętni wobec wymiany jednej z wygranej w loterii na inną, którą uważają za jednakowo wartościową. Postulat (4) Racjonalni gracze troszczą się jedynie o całkowite prawdopodobieństwo z jakim dostaną odpowiednią nagrodę w loterii złożonej.

19 Użyteczność kardynalna L = (ω 1, p 1 ;... ; ω n, p n ) [(W, q 1 ; L, 1 q 1 ), p 1 ;... ; (W, q n ; L, 1 q n ), p n ] (W, p 1 q p n q n ; L, 1 (p 1 q p n q n )) gdzie pierwsza relacja obojętnośći wynika z postulatów (2) i (3), a druga relacja wynika z postulatu (4). Zatem zgodnie z postulatem (1) racjonalny gracz preferuje loterię z wyższym prawdopodobieństwem wygranej: r = p 1 q 1 + p 2 q p n q n = p 1 u(ω 1 ) + p 2 u(ω 2 ) p n u(ω n ) = Eu(L) Funkcja u : Ω R jest funkcją kardynalną von Neumanna Morgensterna.

20 Jednoznaczność użyteczności Użyteczność ordynalna (porządkowa): jeśli u : Ω R reprezentuje relację preferencji zdefiniowaną na zbiorze Ω to każda ściśle rosnąca transformacja u również reprezentuje tą relację preferencji. (u = f u, gdzie f jest funkcją rosnącą) Użyteczność kardynalna: jeśli u : Ω R reprezentuje relację preferencji na zbiorze wszystkich loterii lott(ω), to kaźda ściśle rosnąca afiniczna transformacja u również reprezentuje tą relację preferencji. (u = Au + B, gdzie A > 0)

21 Akcje zdominowane i strategie mieszane L P G S D żadna akcja nie dominuje akcji G Lecz strategia mieszana α 1 (S) = 1/2, α 1 (D) = 1/2 ściśle dominuje akcję T ściśle zdominowana akcja nigdy nie będzie grana z dodatnim prawdopodobieństwem w równowadze strategii mieszanych

22 Gra w monety lub strzelanie karnych Bramkarz w lewo Strzelec w lewo w prawo w prawo Jak grać w taką grę? Trzeba być nieprzewidywalnym - czyli grać losowo.

23 Pijany kierowca Szef policji w Warszawie martwi się problemem pijanych kierowców Może zorganizować punkt kontrolny do sprawdzania kierowców punkt kontrolny zawsze złapie pijanego kierowcę ale kosztuje c Kierowca decyduje, czy wypić wino czy colę przed prowadzeniem samochodu. Wypicie wina przynosi o r więcej satysfakcji kierowcy niż cola Koszt prowadzenia po wypiciu wina jest a dla kierowcy i f dla miasta Występuje tylko, gdy kierowca nie jest złapany Złapany pijany kierowca płaci mandat w wysokości d

24 Pijany kierowca policja kierowca kontrola wino cola r d 0 c c brak f r a 0 0 Zakładamy, że f > c > 0 oraz d > r > a 0 Na przykład: f = 2, c = 1, d = 4, r = 2, a = 1 policja kierowca kontrola wino cola brak -2 0

25 Strategia mieszana Strategia mieszana to rozkład prawdpodobieństwa na zbiorze akcji. W równowadze strategii mieszanych każda akcja grana z dodatnim prawdopodobieństwem musi być najlepszą odpowiedzią na strategie mieszane innych graczy. W szczególności gracze muszą być obojętni pomiędzy akcjami granymi z dodatnim prawdopodobieństwem. Przykład z pijanym kierowcą: niech p będzie prawdopodobieństwem picia wina przez kierowcę a q niech będzie prawdopodobieństwem urządzenia punktu kontrolnego przez policję

26 Pijany kierowca Oczekiwana wypłata kierowcy z wypicia: wina: q ( 2) + (1 q) 1 = 1 3q coli: 0 Warunek obojętności: 0 = 1 3q, czyli q = 1 3 Oczekiwana wypłata policji z: urządzenia punktu kontrolnego: 1 nie urządzenia punktu kontrolnego: p ( 2) + (1 p) 0 = 2p Warunek obojętności: 1 = 2p, czyli p = 1 2 (p = 1/2, q = 1/3) to równowaga w strategiach mieszanych

27 Bitwa płci mąż żona balet mecz balet mecz Niech p będzie strategią żony a q będzie strategią męża (prawdopodobieństwo wyboru baletu)

28 Najlepsza odpowiedź żony: Oczekiwana wypłata z pójścia na: balet: 2q mecz: 1 q Jeśli 2q > 1 q lub q > 1/3, najlepszą odpowiedzią żony jest balet (p = 1) Jeśli 2q < 1 q lub q < 1/3, najlepszą odpowiedzią żony jest mecz (p = 0) Jeśli 2q = 1 q lub q = 1/3, żonie wszystko jedno czy balet czy mecz p [0, 1] Korespondencja najlepszej odpowiedzi żony: {1}, jeśli q > 1/3 R 1 (q) = [0, 1], jeśli q = 1/3 {0}, jeśli q < 1/3

29 Najlepsza odpowiedź męża: Oczekiwana wypłata z pójścia na: balet: p mecz: 2(1 p) Jeśli p > 2(1 p) lub p > 2/3, najlepszą odpowiedzią męża jest balet (q = 1) Jeśli p < 2(1 p) lub p < 2/3, najlepszą odpowiedzią męża jest mecz (q = 0) Jeśli p = 2(1 p) lub p = 2/3, mężowi wszystko jedno czy balet czy mecz q [0, 1] Korespondencja najlepszej odpowiedzi męża: {1}, jeśli p > 2/3 R 2 (p) = [0, 1], jeśli p = 2/3 {0}, jeśli p < 2/3

30 W samo południe

31 W samo południe Szeryf Kane oraz Miller idą naprzeciwko sobie Oboje mają tylko jedną kulę w pistolecie Im bliżej siebie są, tym większe prawdopodobieństwo, że trafią Początkowy dystans wynosi D, p i (D) = 0, p i (0) = 1. Prawdopodobieństwo p i jest ciągłą ściśle malejącą funkcją 0 = d 0 < d 1 < d 2 <... < d n = D

11. Gry Macierzowe - Strategie Czyste i Mieszane

11. Gry Macierzowe - Strategie Czyste i Mieszane 11. Gry Macierzowe - Strategie Czyste i Mieszane W grze z doskonałą informacją, gracz nie powinien wybrać akcję w sposób losowy (o ile wypłaty z różnych decyzji nie są sobie równe). Z drugiej strony, gdy

Bardziej szczegółowo

2010 W. W. Norton & Company, Inc. Oligopol

2010 W. W. Norton & Company, Inc. Oligopol 2010 W. W. Norton & Company, Inc. Oligopol Oligopol Monopol jedna firma na rynku. Duopol dwie firmy na rynku. Oligopol kilka firm na rynku. W szczególności decyzje każdej firmy co do ceny lub ilości produktu

Bardziej szczegółowo

Gry o sumie niezerowej

Gry o sumie niezerowej Gry o sumie niezerowej Równowagi Nasha 2011-12-06 Zdzisław Dzedzej 1 Pytanie Czy profile równowagi Nasha są dobrym rozwiązaniem gry o dowolnej sumie? Zaleta: zawsze istnieją (w grach dwumacierzowych, a

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 5: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE NIESTAŁEJ

TEORIA GIER W EKONOMII WYKŁAD 5: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE NIESTAŁEJ TEORI GIER W EKONOMII WYKŁD 5: GRY DWUOSOOWE KOOPERCYJNE O SUMIE NIESTŁEJ dr Robert Kowalczyk Katedra nalizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwumacierzowe Skończoną grę dwuosobową o

Bardziej szczegółowo

Teoria Gier. Piotr Kuszewski 2018L

Teoria Gier. Piotr Kuszewski 2018L Teoria Gier Piotr Kuszewski 2018L Tematyka wykładów plan akcji Wykład I John von Neumann Trochę historii Czym jest gra i strategia Użyteczność Jak wyeliminować niektóre strategie Wykład II John Nash Równowaga

Bardziej szczegółowo

1 S t r o n a. Teoria Gier Praca domowa 1 - rozwiązania

1 S t r o n a. Teoria Gier Praca domowa 1 - rozwiązania 1 S t r o n a Teoria Gier Praca domowa 1 - rozwiązania Zadanie 1 Gdy korzystamy z toalet publicznych dominującą strategią jest: nie sprzątać po sobie. Skorzystanie z toalety przynosi dodatnią wypłatę,

Bardziej szczegółowo

a) Znajdź równowagi Nasha tej gry oraz wypłaty w równowadze obu tenisistek...

a) Znajdź równowagi Nasha tej gry oraz wypłaty w równowadze obu tenisistek... Egzamin z przedmiotu: Wstęp do Teorii Gier Zadanie 1 Prowadzący: dr Michał Lewandowski gnieszka Radwańska gra w tenisa z Karoliną Woźniacki. gnieszka może zaserwować na backhand lub na forehand Woźniacki.

Bardziej szczegółowo

Propedeutyka teorii gier

Propedeutyka teorii gier Propedeutyka teorii gier AUTORZY: KAROLINA STOLARCZYK, WIKTOR SZOPIŃSKI, KONRAD TOMASZEK, MATEUSZ ZAKRZEWSKI WYDZIAŁ MINI POLITECHNIKA WARSZAWSKA ROK AKADEMICKI 2016/2017, SEMESTR LETNI KRÓTKI KURS HISTORII

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 12 Teoria gier II Spis treści Wstęp Oligopol, cła oraz zbrodnia i kara Strategie mieszane Analiza zachowań w warunkach dynamicznych Indukcja wsteczna Gry powtarzane

Bardziej szczegółowo

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,

Bardziej szczegółowo

Hyper-resolution. Śmieciarki w Manncheim

Hyper-resolution. Śmieciarki w Manncheim Hyper-resolution Hyper-resolution Algorytm repeat NGi NGi NGj NGi nowe Nogoods, które da się wywieść z NGi if NGi then NGi NGi NGi roześlij NGi do wszystkich sąsiadów if NGi then stop end until NGi nie

Bardziej szczegółowo

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria

Bardziej szczegółowo

Uniwersytet Warszawski Teoria gier dr Olga Kiuila LEKCJA 3

Uniwersytet Warszawski Teoria gier dr Olga Kiuila LEKCJA 3 LEKCJA 3 Wybór strategii mieszanej nie jest wyborem określonych decyzji, lecz pozornie sztuczną procedurą która wymaga losowych lub innych wyborów. Gracze mieszają nie dlatego że jest im obojętna strategia,

Bardziej szczegółowo

Teoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego

Teoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego Instytut Informatyki Uniwersytetu Śląskiego Wykład 4 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.

Bardziej szczegółowo

Oligopol. dobra są homogeniczne Istnieją bariery wejścia na rynek (rynek zamknięty) konsumenci są cenobiorcami firmy posiadają siłę rynkową (P>MC)

Oligopol. dobra są homogeniczne Istnieją bariery wejścia na rynek (rynek zamknięty) konsumenci są cenobiorcami firmy posiadają siłę rynkową (P>MC) Oligopol Jest to rynek, na którym niewielka liczba firm zachowuje się w sposób strategiczny i działają niezależnie od siebie, ale uwzględniają istnienie pozostałych firm. Na decyzję firmy wpływają decyzje

Bardziej szczegółowo

10. Wstęp do Teorii Gier

10. Wstęp do Teorii Gier 10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej

Bardziej szczegółowo

Aukcje groszowe. Podejście teoriogrowe

Aukcje groszowe. Podejście teoriogrowe Aukcje groszowe Podejście teoriogrowe Plan działania Aukcje groszowe Budowa teorii Sprawdzenie teorii Bibliografia: B. Platt, J. Price, H. Tappen, Pay-to-Bid Auctions [online]. 9 lipca 2009 [dostęp 3.02.2011].

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ

TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwuosobowe z kooperacją Przedstawimy

Bardziej szczegółowo

LEKCJA 4. Gry dynamiczne z pełną (kompletną) i doskonałą informacją. Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności.

LEKCJA 4. Gry dynamiczne z pełną (kompletną) i doskonałą informacją. Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności. LEKCJA 4 Gry dynamiczne z pełną (kompletną) i doskonałą informacją Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności. Czy w dowolnej grze dynamicznej lepiej być graczem,

Bardziej szczegółowo

TEORIA GIER - semestr zimowy 2011

TEORIA GIER - semestr zimowy 2011 TEORIA GIER - semestr zimowy 2011 Przykładowe rozwiązania 4. Gracz I, mąż, wychodzi pod wieczór z domu mówiąc, że idzie jeszcze popracować. W rzeczywistości dopiero zdecyduje, czy naprawdę pójdzie do pracy,

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ

TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Definicja gry o sumie zerowej Powiemy, że jest grą o

Bardziej szczegółowo

Modelowanie Preferencji a Ryzyko. Dlaczego w dylemat więźnia warto grać kwantowo?

Modelowanie Preferencji a Ryzyko. Dlaczego w dylemat więźnia warto grać kwantowo? Modelowanie Preferencji a Ryzyko Dlaczego w dylemat więźnia warto grać kwantowo? Marek Szopa U n iwe r s y t e t Ś l ą s k i INSTYTUT FIZYKI im. Augusta Chełkowskiego Zakład Fizyki Teoretycznej Klasyczny

Bardziej szczegółowo

Elementy teorii gier. Badania operacyjne

Elementy teorii gier. Badania operacyjne 2016-06-12 1 Elementy teorii gier Badania operacyjne Plan Przykład Definicja gry dwuosobowej o sumie zerowej Macierz gry Strategie zdominowane Mieszane rozszerzenie gry Strategie mieszane Rozwiązywanie

Bardziej szczegółowo

EKONOMIA MENEDŻERSKA. Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER.

EKONOMIA MENEDŻERSKA. Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER. Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER. 1. OLIGOPOL Oligopol - rynek, na którym działa niewiele przedsiębiorstw (od do 10) Cecha charakterystyczna

Bardziej szczegółowo

Elementy teorii gier

Elementy teorii gier Elementy teorii gier. Podaj wszystkie czyste równowagi Nasha. Zaznacz pary strategii, które są Pareto optymalne. U 2,3-2,7 D 6,-5 0,- U 2,3-2,7 D 6,-5 3,5 2. Pewien ojciec ma dwóch synów. Umierając zostawia

Bardziej szczegółowo

Optymalizacja decyzji

Optymalizacja decyzji Optymalizacja decyzji Dr hab. inż Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć będa dostępne na stronie www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia

Bardziej szczegółowo

Teoria Gier - wojna, rybołówstwo i sprawiedliwość w polityce.

Teoria Gier - wojna, rybołówstwo i sprawiedliwość w polityce. Liceum Ogólnokształcące nr XIV we Wrocławiu 5 maja 2009 1 2 Podobieństwa i różnice do gier o sumie zerowej Równowaga Nasha I co teraz zrobimy? 3 Idee 1 Grać będą dwie osoby. U nas nazywają się: pan Wiersz

Bardziej szczegółowo

TEORIA GIER W NAUKACH SPOŁECZNYCH. Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą

TEORIA GIER W NAUKACH SPOŁECZNYCH. Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą TEORIA GIER W NAUKACH SPOŁECZNYCH Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą Przypomnienie Gry w postaci macierzowej i ekstensywnej Gry o sumie zerowej i gry o sumie niezerowej Kryterium dominacji

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/

Bardziej szczegółowo

TEORIA GIER W NAUKACH SPOŁECZNYCH. Równowagi Nasha. Rozwiązania niekooperacyjne.

TEORIA GIER W NAUKACH SPOŁECZNYCH. Równowagi Nasha. Rozwiązania niekooperacyjne. TEORIA GIER W NAUKACH SPOŁECZNYCH Równowagi Nasha. Rozwiązania niekooperacyjne. Przypomnienie Gra o sumie zerowej Kryterium dominacji Kryterium wartości oczekiwanej Diagram przesunięć Równowaga Can a Round

Bardziej szczegółowo

Modele lokalizacyjne

Modele lokalizacyjne Modele lokalizacyjne Model Hotelling a Konsumenci jednostajnie rozłożeni wzdłuż ulicy Firmy konkurują cenowo Jak powinny ulokować się firmy? N=1 N=2 N=3 Model Salop a Konsumenci jednostajnie rozłożeni

Bardziej szczegółowo

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria

Bardziej szczegółowo

-Teoria gier zajmuje się logiczną analizą sytuacji konfliktu i kooperacji

-Teoria gier zajmuje się logiczną analizą sytuacji konfliktu i kooperacji 1 -Teoria gier zajmuje się logiczną analizą sytuacji konfliktu i kooperacji 2 Teoria gier bada,w jaki sposób gracze powinnirozgrywać grę, a każdy dąży do takiego wyniku gry, który daje mu jak największą

Bardziej szczegółowo

a) Znajdź równowagi Nasha tej gry oraz wypłaty w równowadze obu tenisistek.

a) Znajdź równowagi Nasha tej gry oraz wypłaty w równowadze obu tenisistek. Egzamin z przedmiotu: Wstęp do Teorii Gier Zadanie 1 Prowadzący: dr Michał Lewandowski Agnieszka Radwańska gra w tenisa z Karoliną Woźniacki. Agnieszka może zaserwować na backhand lub na forehand Woźniacki.

Bardziej szczegółowo

Egzamin z Wstępu do Teorii Gier. 19 styczeń 2016, sala A9, g Wykładowca: dr Michał Lewandowski. Instrukcje

Egzamin z Wstępu do Teorii Gier. 19 styczeń 2016, sala A9, g Wykładowca: dr Michał Lewandowski. Instrukcje Egzamin z Wstępu do Teorii Gier 19 styczeń 2016, sala A9, g. 11.40-13.10 Wykładowca: dr Michał Lewandowski Instrukcje 1) Egzamin trwa 90 minut. 2) Proszę wyraźnie zapisać swoje imię, nazwisko oraz numer

Bardziej szczegółowo

Mikroekonomia. O czym dzisiaj?

Mikroekonomia. O czym dzisiaj? Mikroekonomia Joanna Tyrowicz jtyrowicz@wne.uw.edu.pl http://www.wne.uw.edu.pl/~jtyrowicz 1.12.2007r. Mikroekonomia WNE UW 1 O czym dzisiaj? Macierze wypłat, czyli ile trzeba mieć w razie się straci...

Bardziej szczegółowo

= A. A - liczba elementów zbioru A. Lucjan Kowalski

= A. A - liczba elementów zbioru A. Lucjan Kowalski Lucjan Kowalski ZADANIA, PROBLEMY I PARADOKSY W PROBABILISTYCE Przypomnienie. Ω - zbiór zdarzeń elementarnych. A zdarzenie (podzbiór Ω). A - liczba elementów zbioru A Jeśli zdarzeń elementarnych jest skończenie

Bardziej szczegółowo

Przyk ladowe Kolokwium II. Mikroekonomia II. 2. Na lożenie podatku na produkty produkowane przez monopol w wysokości 10 z l doprowadzi do

Przyk ladowe Kolokwium II. Mikroekonomia II. 2. Na lożenie podatku na produkty produkowane przez monopol w wysokości 10 z l doprowadzi do Przyk ladowe Kolokwium II Mikroekonomia II Imi e i nazwisko:...... nr albumu:... Instrukcje. Bez oszukiwania. Jeżeli masz pytanie podnieś r ek e. Cz eść I. Test wyboru. 1. W zmonopolizowanej branży cena

Bardziej szczegółowo

Model Bertranda. np. dwóch graczy (firmy), ustalają ceny (strategie) p 1 i p 2 jednocześnie

Model Bertranda. np. dwóch graczy (firmy), ustalają ceny (strategie) p 1 i p 2 jednocześnie Model Bertranda Firmy konkurują cenowo np. dwóch graczy (firmy), ustalają ceny (strategie) p 1 i p jednocześnie Jeśli produkt homogeniczny, konsumenci kupują tam gdzie taniej zawsze firmie o wyższej cenie

Bardziej szczegółowo

Tworzenie gier na urządzenia mobilne

Tworzenie gier na urządzenia mobilne Katedra Inżynierii Wiedzy Teoria podejmowania decyzji w grze Gry w postaci ekstensywnej Inaczej gry w postaci drzewiastej, gry w postaci rozwiniętej; formalny opis wszystkich możliwych przebiegów gry z

Bardziej szczegółowo

13. Teoriogrowe Modele Konkurencji Gospodarczej

13. Teoriogrowe Modele Konkurencji Gospodarczej 13. Teoriogrowe Modele Konkurencji Gospodarczej Najpierw, rozważamy model monopolu. Zakładamy że monopol wybiera ile ma produkować w danym okresie. Jednostkowy koszt produkcji wynosi k. Cena wynikająca

Bardziej szczegółowo

Lista zadań. Równowaga w strategiach czystych

Lista zadań. Równowaga w strategiach czystych Lista zadań Równowaga w strategiach czystych 1. Podaj wszystkie czyste równowagi Nasha. Podaj definicję Pareto optymalności i znajdź pary strategii, które są Pareto optymalne. U 2,3-2,7 D 6,-5 0,-1 (b)

Bardziej szczegółowo

TEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ

TEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ TEORIA GIER W EKONOMII dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Informacje Ogólne (dr Robert Kowalczyk) Wykład: Poniedziałek 16.15-.15.48 (sala A428) Ćwiczenia:

Bardziej szczegółowo

TEORIA GIER WNE UW, jesień 2011 PLAN PRZEDMIOTU

TEORIA GIER WNE UW, jesień 2011 PLAN PRZEDMIOTU TEORIA GIER WNE UW, jesień 2011 PLAN PRZEDMIOTU 1. Indywidualne podejmowanie decyzji 2. Gry niekooperacyjne w postaci normalnej w postaci ekstensywnej 3. Gry z niekompletną informacją (w miarę możliwości).

Bardziej szczegółowo

Czym jest użyteczność?

Czym jest użyteczność? Czym jest użyteczność? W teorii gier: Ilość korzyści (czy też dobrobytu ), którą gracz osiąga dla danego wyniku gry. W ekonomii: Zdolność dobra do zaspokajania potrzeb. Określa subiektywną przyjemność,

Bardziej szczegółowo

Stochastyczne dynamiki z opóźnieniami czasowymi w grach ewolucyjnych

Stochastyczne dynamiki z opóźnieniami czasowymi w grach ewolucyjnych Stochastyczne dynamiki z opóźnieniami czasowymi w grach ewolucyjnych Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 10 listopada 2016 Proseminarium licencjackie

Bardziej szczegółowo

Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony.

Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony. GRY (część 1) Zastosowanie: Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony. Najbardziej znane modele: - wybór strategii marketingowych przez konkurujące ze sobą firmy

Bardziej szczegółowo

TEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ

TEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ TEORIA GIER W EKONOMII dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Informacje Ogólne Wykład: Sobota/Niedziela Ćwiczenia: Sobota/Niedziela Dyżur: Czwartek 14.00-16.00

Bardziej szczegółowo

Teoria gier. mgr Przemysław Juszczuk. Wykład 5 - Równowagi w grach n-osobowych. Instytut Informatyki Uniwersytetu Śląskiego

Teoria gier. mgr Przemysław Juszczuk. Wykład 5 - Równowagi w grach n-osobowych. Instytut Informatyki Uniwersytetu Śląskiego Instytut Informatyki Uniwersytetu Śląskiego Wykład 5 - Równowagi w grach n-osobowych Figure: Podział gier Definicje Formalnie, jednoetapowa gra w postaci strategicznej dla n graczy definiowana jest jako:

Bardziej szczegółowo

1. Które z następujących funkcji produkcji cechują się stałymi korzyściami ze skali? (1) y = 3x 1 + 7x 2 (2) y = x 1 1/4 + x 2

1. Które z następujących funkcji produkcji cechują się stałymi korzyściami ze skali? (1) y = 3x 1 + 7x 2 (2) y = x 1 1/4 + x 2 1. Które z następujących funkcji produkcji cechują się stałymi korzyściami ze skali? (1) y = 3x 1 + 7x 2 (2) y = x 1 1/4 + x 2 1/3 (3) y = min{x 1,x 2 } + min{x 3,x 4 } (4) y = x 1 1/5 x 2 4/5 a) 1 i 2

Bardziej szczegółowo

Oligopol. Jest to rynek, na którym niewielka liczba firm zachowuje się w sposób b strategiczny i ają niezależnie od siebie, ale uwzględniaj

Oligopol. Jest to rynek, na którym niewielka liczba firm zachowuje się w sposób b strategiczny i ają niezależnie od siebie, ale uwzględniaj Oligopol Jest to rynek, na którym niewielka liczba firm zachowuje się w sposób b strategiczny i działaj ają niezależnie od siebie, ale uwzględniaj dniają istnienie pozostałych firm. Na decyzję firmy wpływaj

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona

Bardziej szczegółowo

Rachunek prawdopodobieństwa w grach losowych.

Rachunek prawdopodobieństwa w grach losowych. Rachunek prawdopodobieństwa w grach losowych. Lista zawiera kilkadziesiąt zadań dotyczących różnych gier z użyciem kart i kości, w tym tych najbardziej popularnych jak brydż, tysiąc itp. Kolejne zadania

Bardziej szczegółowo

Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego

Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego Instytut Informatyki Uniwersytetu Śląskiego Wykład 2 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.

Bardziej szczegółowo

Ekonomia. Wykład dla studentów WPiA. Wykład 3: (Nie)racjonalność wyborów

Ekonomia. Wykład dla studentów WPiA. Wykład 3: (Nie)racjonalność wyborów Ekonomia Wykład dla studentów WPiA Wykład 3: (Nie)racjonalność wyborów Gospodarka z lotu ptaka. Dobra i usługi finalne Wydatki na dobra i usługi (konsumpcja, C) Gospodarstwa domowe: dysponują czynnikami

Bardziej szczegółowo

TEORIA GIER WPROWADZENIE. Czesław Mesjasz

TEORIA GIER WPROWADZENIE. Czesław Mesjasz TEORIA GIER WPROWADZENIE Czesław Mesjasz 2010 1 GENEZA TEORII GIER Próby budowy matematycznych modeli konfliktów i negocjacji podejmowane były już przez A. Cournota, F. Edgewortha i F. Zeuthena. Koncepcje

Bardziej szczegółowo

TEORIA GIER W NAUKACH SPOŁECZNYCH. Drzewka gry, indukcja wsteczna, informacja

TEORIA GIER W NAUKACH SPOŁECZNYCH. Drzewka gry, indukcja wsteczna, informacja TEORIA GIER W NAUKACH SPOŁECZNYCH Drzewka gry, indukcja wsteczna, informacja Czym się dzisiaj zajmiemy? Rozwiązywaniem gier w postaci ekstensywnej (drzewka) Historią najnowszą Indukcją wsteczną Preferencjami

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO D. Miszczyńska, M.Miszczyński KBO UŁ GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata,

Bardziej szczegółowo

Ubezpieczenia majątkowe

Ubezpieczenia majątkowe Funkcje użyteczności a składki Uniwersytet Przyrodniczy we Wrocławiu Instytut Nauk Ekonomicznych i Społecznych 2016/2017 Funkcja użyteczności Niech ω wielkość majątku decydenta wyrażona w j.p., u (ω) stopień

Bardziej szczegółowo

Mikroekonomia II: Kolokwium, grupa II

Mikroekonomia II: Kolokwium, grupa II Mikroekonomia II: Kolokwium, grupa II Prowadząca: Martyna Kobus 2012-06-11 Piszemy 90 minut. Sprawdzian jest za 70 punktów. Jest 10 pytań testowych, każde za 2 punkty (łącznie 20 punktów za test) i 3 zadania,

Bardziej szczegółowo

Przykład. 1 losuje kartę z potasowanej talii, w której połowa kart ma kolor czarny a połowa czerwony. Postać ekstensywna Postać normalna

Przykład. 1 losuje kartę z potasowanej talii, w której połowa kart ma kolor czarny a połowa czerwony. Postać ekstensywna Postać normalna Przykład Postać ekstensywna Postać normalna Na poczatku gry dwaj gracze wkładaja do puli po 1$. Następnie, gracz 1 losuje kartę z potasowanej talii, w której połowa kart ma kolor czarny a połowa czerwony.

Bardziej szczegółowo

Strategie kwantowe w teorii gier

Strategie kwantowe w teorii gier Uniwersytet Jagielloński adam.wyrzykowski@uj.edu.pl 18 stycznia 2015 Plan prezentacji 1 Gra w odwracanie monety (PQ penny flip) 2 Wojna płci Definicje i pojęcia Równowagi Nasha w Wojnie płci 3 Kwantowanie

Bardziej szczegółowo

b) [3 punkty] Jaka jest oczekiwana wartość doskonałej informacji? 0,875 (=3,625 2,75)

b) [3 punkty] Jaka jest oczekiwana wartość doskonałej informacji? 0,875 (=3,625 2,75) Imię Metody Analizy Decyzji Nazwisko II termin: 7.9. (7:) Nr indeksu Wykładowca: dr M. Lewandowski Zadanie [ punktów] Michał L. wyjeżdża na weekend do Chałup, gdzie chciałby popływać na desce windsurfingowej.

Bardziej szczegółowo

STRATEGIA PRZYBLIŻONA. Inna propozycja: szukanie optymalnej strategii metodą iteracyjną.

STRATEGIA PRZYBLIŻONA. Inna propozycja: szukanie optymalnej strategii metodą iteracyjną. STRATEGIA PRZYBLIŻONA Ogólna strategia rozwiązywania gier NxN może być trudna obliczeniowo. Np. sprawdzenie otrzymanej mieszanej strategii wyrównującej : czy wszystkie strategie przeciwnika dają te same

Bardziej szczegółowo

Dane są następujące reguły gry losowej: losujemy jedną kartę z pełnej talii (bez jokerów) i sprawdzamy wynik:

Dane są następujące reguły gry losowej: losujemy jedną kartę z pełnej talii (bez jokerów) i sprawdzamy wynik: Elementy teorii gier Dane są następujące reguły gry losowej: losujemy jedną kartę z pełnej talii (bez jokerów) i sprawdzamy wynik: wylosowanie karty w kolorze czerwonym (kier lub karo) oznacza wygraną

Bardziej szczegółowo

Teoria gier. Łukasz Balbus Anna Jaśkiewicz

Teoria gier. Łukasz Balbus Anna Jaśkiewicz Teoria gier Łukasz Balbus Anna Jaśkiewicz Teoria gier opisuje sytuacje w których zachodzi konflikt interesów. Znajduje zastosowanie w takich dziedzinach jak: Ekonomia Socjologia Politologia Psychologia

Bardziej szczegółowo

02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w

02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w 02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w A Zadania na ćwiczenia Zadanie A.1. Niech Ω = R oraz F będzie σ-ciałem generowanym przez rodzinę wszystkich przedziałów otwartych typu (,

Bardziej szczegółowo

GRA Przykład. 1) Zbiór graczy. 2) Zbiór strategii. 3) Wypłaty. n = 2 myśliwych. I= {1,,n} S = {polować na jelenia, gonić zająca} S = {1,,m} 10 utils

GRA Przykład. 1) Zbiór graczy. 2) Zbiór strategii. 3) Wypłaty. n = 2 myśliwych. I= {1,,n} S = {polować na jelenia, gonić zająca} S = {1,,m} 10 utils GRA Przykład 1) Zbiór graczy n = 2 myśliwych I= {1,,n} 2) Zbiór strategii S = {polować na jelenia, gonić zająca} S = {1,,m} 3) Wypłaty jeleń - zając - 10 utils 3 utils U i : S n R i=1,,n J Z J Z J 5 0

Bardziej szczegółowo

TEORIA WYBORU PUBLICZNEGO

TEORIA WYBORU PUBLICZNEGO TEORIA WYBORU PUBLICZNEGO Wykład 7 Katarzyna Metelska-Szaniawska 30/03/2009 PLAN WYKŁADU I II Demokracja a ujęcie ekonomiczne I Demokracja a ujęcie ekonomiczne czym jest demokracja? ustrój polityczny,

Bardziej szczegółowo

9 Funkcje Użyteczności

9 Funkcje Użyteczności 9 Funkcje Użyteczności Niech u(x) oznacza użyteczność wynikającą z posiadania x jednostek pewnego dobra. Z założenia, 0 jest punktem referencyjnym, czyli u(0) = 0. Należy to zinterpretować jako użyteczność

Bardziej szczegółowo

Teoria gier w ekonomii - opis przedmiotu

Teoria gier w ekonomii - opis przedmiotu Teoria gier w ekonomii - opis przedmiotu Informacje ogólne Nazwa przedmiotu Teoria gier w ekonomii Kod przedmiotu 11.9-WZ-EkoP-TGE-S16 Wydział Kierunek Wydział Ekonomii i Zarządzania Ekonomia Profil ogólnoakademicki

Bardziej szczegółowo

ZADANIE 1/GRY. Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

ZADANIE 1/GRY. Modele i narzędzia optymalizacji w systemach informatycznych zarządzania ZADANIE 1/GRY Zadanie: Dwaj producenci pewnego wyrobu sprzedają swe wyroby na rynku, którego wielkość jest stała. Aby zwiększyć swój udział w rynku (przejąć część klientów konkurencyjnego przedsiębiorstwa),

Bardziej szczegółowo

Wyznaczanie strategii w grach

Wyznaczanie strategii w grach Wyznaczanie strategii w grach Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Definicja gry Teoria gier i konstruowane na jej podstawie programy stanowią jeden z głównych

Bardziej szczegółowo

Gry w postaci normalnej

Gry w postaci normalnej Gry w postaci normalnej Rozgrzewka Przykład 1. (Dylemat więźnia) Dwóch przestępców, którzy zorganizowali napad na bank, zostało tymczasowo aresztowanych i czeka ich rozprawa. Jeżeli obaj będa zeznawać

Bardziej szczegółowo

EKONOMICZNA ANALIZA POLITYKI

EKONOMICZNA ANALIZA POLITYKI EKONOMICZNA ANALIZA POLITYKI Wykład 6 Katarzyna Metelska-Szaniawska PLAN WYKŁADU I II Demokracja a ujęcie ekonomiczne 2 założenia modelu Downsa model rynku, w którym: dobro: programy polityczne i działania

Bardziej szczegółowo

Teoria gier. Strategie stabilne ewolucyjnie Zdzisław Dzedzej 1

Teoria gier. Strategie stabilne ewolucyjnie Zdzisław Dzedzej 1 Teoria gier Strategie stabilne ewolucyjnie 2012-01-11 Zdzisław Dzedzej 1 John Maynard Smith (1920-2004) 2012-01-11 Zdzisław Dzedzej 2 Hawk- Dove Game Przedstawimy uproszczony model konfliktu omówiony w

Bardziej szczegółowo

Mikroekonomia II Semestr Letni 2014/2015 Ćwiczenia 4, 5 & 6. Technologia

Mikroekonomia II Semestr Letni 2014/2015 Ćwiczenia 4, 5 & 6. Technologia Mikroekonomia II 050-792 Semestr Letni 204/205 Ćwiczenia 4, 5 & 6 Technologia. Izokwanta produkcji to krzywa obrazująca różne kombinacje nakładu czynników produkcji, które przynoszą taki sam zysk. P/F

Bardziej szczegółowo

Wykład 11: Martyngały: definicja, twierdzenia o zbieżności

Wykład 11: Martyngały: definicja, twierdzenia o zbieżności RAP 412 14.01.2009 Wykład 11: Martyngały: definicja, twierdzenia o zbieżności Wykładowca: Andrzej Ruciński Pisarz:Mirosława Jańczak 1 Wstęp Do tej pory zajmowaliśmy się ciągami zmiennych losowych (X n

Bardziej szczegółowo

Konstruktywne metody znajdowania równowag w dużych gospodarkach.

Konstruktywne metody znajdowania równowag w dużych gospodarkach. Konstruktywne metody znajdowania równowag w dużych gospodarkach. Łukasz Balbus 1 Wojewódzki Urza d Pracy w Zielonej Górze, 28 Maja 2014 1 Uniwersytet Zielonogórski. Cele teorii gier w ekonomii: próba zrozumenia

Bardziej szczegółowo

Materiał dydaktyczny dla nauczycieli przedmiotów ekonomicznych. Mikroekonomia. w zadaniach. Gry strategiczne. mgr Piotr Urbaniak

Materiał dydaktyczny dla nauczycieli przedmiotów ekonomicznych. Mikroekonomia. w zadaniach. Gry strategiczne. mgr Piotr Urbaniak Materiał dydaktyczny dla nauczycieli przedmiotów ekonomicznych Mikroekonomia w zadaniach Gry strategiczne mgr Piotr Urbaniak Teoria gier Dział matematyki zajmujący się badaniem optymalnego zachowania w

Bardziej szczegółowo

Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów

Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 14

Bardziej szczegółowo

TEORIA GIER HISTORIA TEORII GIER. Rok 1944: powszechnie uznana data narodzin teorii gier. Rok 1994: Nagroda Nobla z dziedziny ekonomii

TEORIA GIER HISTORIA TEORII GIER. Rok 1944: powszechnie uznana data narodzin teorii gier. Rok 1994: Nagroda Nobla z dziedziny ekonomii TEORIA GIER HISTORIA TEORII GIER Rok 1944: powszechnie uznana data narodzin teorii gier Monografia: John von Neumann, Oskar Morgenstern Theory of Games and Economic Behavior (Teoria gier i postępowanie

Bardziej szczegółowo

Wprowadzenie do teorii gier

Wprowadzenie do teorii gier Instytut Informatyki Uniwersytetu Śląskiego Wykład 1 1 Klasyfikacja gier 2 Gry macierzowe, macierz wypłat, strategie czyste i mieszane 3 Punkty równowagi w grach o sumie zerowej 4 Gry dwuosobowe oraz n-osobowe

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.1 Prawdopodobieństwo warunkowe Katarzyna Rybarczyk-Krzywdzińska Przykład 1 Alicja wylosowała jedną kartę z

Bardziej szczegółowo

EKONOMICZNA ANALIZA POLITYKI

EKONOMICZNA ANALIZA POLITYKI EKONOMICZNA ANALIZA POLITYKI Wykład 6 Katarzyna Metelska-Szaniawska 19/11/2010 PLAN WYKŁADU I II Demokracja a ujęcie ekonomiczne 2 A. Downs (1957): An Economic Theory of Democracy ekonomiczna teoria demokracji

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.1 Prawdopodobieństwo warunkowe Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2016/2017 Przykład 1 Alicja

Bardziej szczegółowo

Czym zajmuje się teroia gier

Czym zajmuje się teroia gier Czym zajmuje się teroia gier Analiza zachowań graczy (czyli strategii graczy) jak zachowują się gracze jakie są ich możliwe zachowania czy postępują racjonalnie i co to znaczy Poszukiwanie optymalnych

Bardziej szczegółowo

Każde pytanie zawiera postawienie problemu/pytanie i cztery warianty odpowiedzi, z których tylko jedna jest prawidłowa.

Każde pytanie zawiera postawienie problemu/pytanie i cztery warianty odpowiedzi, z których tylko jedna jest prawidłowa. Każde pytanie zawiera postawienie problemu/pytanie i cztery warianty odpowiedzi, z których tylko jedna jest prawidłowa. 1. Możliwości finansowe konsumenta opisuje równanie: 2x + 4y = 1. Jeżeli dochód konsumenta

Bardziej szczegółowo

Mikroekonomia. Wykład 4

Mikroekonomia. Wykład 4 Mikroekonomia Wykład 4 Ekonomia dobrobytu Na rynku doskonale konkurencyjnym, na którym występuje dwóch konsumentów scharakteryzowanych wypukłymi krzywymi obojętności, równowaga ustali się w prostokącie

Bardziej szczegółowo

Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe

Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe Teorię gier można określić jako teorię podejmowania decyzji w szczególnych warunkach. Zajmuje się ona logiczną analizą sytuacji konfliktu

Bardziej szczegółowo

GRY W POSTACI EKSTENSYWNEJ (rozwiniętej)

GRY W POSTACI EKSTENSYWNEJ (rozwiniętej) GRY W POSTACI EKSTENSYWNEJ (rozwiniętej) Gra w postaci ekstensywnej formalny opis wszystkich możliwych przebiegów gry, z uwzględnieniem struktury czasowej, możliwości wielokrotnego podejmowania decyzji

Bardziej szczegółowo

Oligopol wieloproduktowy

Oligopol wieloproduktowy Oligopol wieloproduktowy Do tej pory zakładali adaliśmy, że e produkty sąs identyczne (homogeniczne) W rzeczywistości ci produkty sprzedawane przez firmy nie są doskonałymi substytutami. W większo kszości

Bardziej szczegółowo

TEORIA GIER- semestr zimowy 2011. ZADANIA 3. Gry w postaci ekstensywnej

TEORIA GIER- semestr zimowy 2011. ZADANIA 3. Gry w postaci ekstensywnej TEORIA GIER- semestr zimowy 2011 ZADANIA 3. Gry w postaci ekstensywnej 1. Jaś i Małgosia dostali do podziału między siebie cztery zabawki, z których każda jest niepodzielna: dwie identyczne lalki, misia

Bardziej szczegółowo

Algorytmiczne Aspekty Teorii Gier Rozwiązania zadań

Algorytmiczne Aspekty Teorii Gier Rozwiązania zadań Algorytmiczne Aspekty Teorii Gier Rozwiązania zadań Bartosz Gęza 19/06/2009 Zadanie 2. (gra symetryczna o sumie zerowej) Profil prawdopodobieństwa jednorodnego nie musi być punktem równowagi Nasha. Przykładem

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 3 Definicja prawdopodobieństwa Kołmogorowa. Prawdopodobieństwa warunkowe i niezależne. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko

Bardziej szczegółowo

Czym zajmuje się teroia gier

Czym zajmuje się teroia gier Czym zajmuje się teroia gier Analiza zachowań graczy (czyli strategii graczy) jak zachowują się gracze jakie są ich możliwe zachowania czy postępują racjonalnie i co to znaczy Poszukiwanie optymalnych

Bardziej szczegółowo

Schemat sprawdzianu. 25 maja 2010

Schemat sprawdzianu. 25 maja 2010 Schemat sprawdzianu 25 maja 2010 5 definicji i twierdzeń z listy 12(po 10 punktów) np. 1. Proszę sformułować twierdzenie Brouwera o punkcie stałym. 2. Niech X będzie przestrzenią topologiczną. Proszę określić,

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 2 ZADANIA - ZESTAW 2

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 2 ZADANIA - ZESTAW 2 ZADANIA - ZESTAW 2 Zadanie 2.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 1 0 2 p k 1/ 1/6 1/2 a) wyznaczyć dystrybuantę tej zmiennej losowej i naszkicować jej wykres, b) obliczyć

Bardziej szczegółowo

i=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 =

i=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 = Kombinatoryka W tej serii zadań można znaleźć pojawiające się na egzaminach zadania dotyczące problemu wyznaczania prostych parametrów rozkładu w przypadku zgadnień kombinatorycznych. Zadania te wymagają

Bardziej szczegółowo