TEORIA GIER - semestr zimowy 2011

Wielkość: px
Rozpocząć pokaz od strony:

Download "TEORIA GIER - semestr zimowy 2011"

Transkrypt

1 TEORIA GIER - semestr zimowy 2011 Przykładowe rozwiązania 4. Gracz I, mąż, wychodzi pod wieczór z domu mówiąc, że idzie jeszcze popracować. W rzeczywistości dopiero zdecyduje, czy naprawdę pójdzie do pracy, czy spotka się z inną kobietą. Gracz II, żona, domyśla się tego i musi zdecydować, czy wysłać w ślad za mężem detektywa. Jeśli tego nie zrobi, nie dowie się niczego nowego i jej użyteczność wyniesie 0. Jeśli detektyw wyśledzi męża na spotkaniu z inną, użyteczność męża wyniesie 10, a żony 8. Jeśli mąż spotka się z inną, a żona nie dowie się o tym, użyteczność męża wyniesie 5. Użyteczność męża z pójścia do pracy wynosi p, przy czym 0 < p < 5. Za wynajęcie detektywa trzeba zapłacić c jednostek użyteczności. Detektyw jest lojalny wobec zleceniodawcy i na tyle sprawny, że mąż go nie zgubi. (a) Podać postać ekstensywną i normalną dwóch wersji tej gry: pierwszej z niepełną informacją i drugiej z pełną (w której mąż jest w stanie stwierdzić, czy detektyw go śledzi). (b) Przyjmując p = c = 2 wyznaczyć równowagi obu gier i podać wypłaty obu graczy w tych równowagach. (c) Jak droga musiałaby być praca detektywa, by gra z niepełną informacją miała równowagę w czystych strategiach? 5. Dwie firmy A i B konkurujące na pewnym rynku podejmują jednocześnie i niezależnie od siebie decyzję, czy rozpocząć kampanię negatywnej reklamy skierowanej przeciw konkurentowi. Obecnie każda z firm osiąga ze sprzedaży na tym rynku 10 i tak też pozostanie, jeżeli nikt nie zdecyduje się na rozpoczęcie kampanii. Prowadzenie kampanii kosztuje 15. Jeśli obie firmy prowadzą kampanię, podział rynku i dochody ze sprzedaży nie zmieniają się. Jeśli kampanię prowadzi tylko jedna firma, to jej konkurent zostaje wyeliminowany z rynku, a dochód ze sprzedaży produktu firmy, która pozostaje na rynku, wzrasta o 20 w przypadku firmy A i o r > 20 w przypadku firmy B. (a) Podać postać normalną i ekstensywną tej gry i wyznaczyć wszystkie jej równowagi Nasha. (b) Oznaczmy przez p(r) prawdopodobieństwo wyeliminowania z rynku firmy A w równowadze w strategiach mieszanych. Czy p jest rosnącą, czy malejącą funkcją zmiennej r? (c) Podać postać normalną i ekstensywną wersji tej gry z pełną informacją, w której firma A podejmuje decyzję jako pierwsza, a B decyduje znając już wybór konkurenta. (d) Czy w grze z pełną informacją korzystniej dla gracza jest decydować jako pierwszy, czy jako drugi? Uzasadnić odpowiedź.

2 Rozwiązanie 4 (a) W obu wersjach gry żona ma dwie strategie: wynająć detektywa (D) lub nie (ND). Mąż w wersji z niepełną informacją też ma 2 strategie: pójść do pracy (Pr) lub do innej (In), a w wersji z pełną informacją 4: Pr, In i dwie strategie warunkowe : (D Pr, ND In) oraz (D In, ND Pr). Pr In Postać normalna przy niepełnej informacji: Ż D c ; p 8 c ; 10 ND 0 ; p 0 ; 5 przy pełnej : Ż Pr In D Pr, ND In D In, ND Pr D c; p 8 c ; 10 c ; 5 8 c ; 10 ND 0 ; p 0 ; 5 0 ; 5 0 ; p Postać ekstensywna: Ż jako pierwsza wybiera między D a ND, następnie M wybiera między Pr a In. W wersji z niepełną informacją oba jego wierzchołki decyzyjne są w jednym zbiorze informacyjnym. Oczywiście, jak w każdym takim zadaniu, trzeba porządnie narysować drzewo, podać wypłaty, etykiety wierzchołków i łuków i zaznaczyć ew. zbiory informacyjne. (b) Z postaci normalnej gry z niepełną informacją widać od razu, że jeżeli c < 8, to żadna para czystych strategii nie jest równowagą (co od razu jest odpowiedzią na (c)). Jeśli c 8, to ND jest dominującą strategią żony i jest w równowadze z najlepszą odpowiedzią męża na ND, czyli strategią In. Równowaga w strategiach mieszanych przy c < 8: Ż wynajmuje detektywa z prawdopodobieństwem x D, M idzie do innej z prawdopodobieństwem y In gdzie y In jest tą wielkością, przy której Ż jest indyferentna między wyborem D a ND rozwiązaniem równania 8y In c = 0 ; y In = c, y 8 P r = 1 c ; 8 x D jest tą wielkością, przy której M jest indyferentny między wyborem Pr a In rozwiązaniem równania 10x D + 5(1 x D ) = p ; x D = 5 p, x 15 ND = p+10 ; 15 dla p = 2 mamy x D = 1, x 5 ND = 4. 5 Wypłaty w tej równowadze: Ż 0, M p (można darować sobie ich obliczanie, bo wiadomo, że muszą być równe (jednakowym) wypłatom każdej ze strategii czystych przeciw tym mieszanym strategiom równowagi). W grze z pełną informacją indukcja wstecz wyznacza jedyną równowagę doskonałą: (ND, (D In, ND Pr)) strategia męża w tej równowadze słabo dominuje każdą inną. Przy c < 8 nie ma innych równowag z tego samego powodu co w grze z niepełną informacją.

3 Rozwiązanie 5 (a) Postać normalna: Równowagi : A RN Nie RN 5 ; 5 15 ; 0 Nie 0 ; r 5 10 ; 10 (1) A prowadzi kampanię, B nie prowadzi z wypłatami A 15, B 0 (RN reklama negatywna). (2) A nie prowadzi kampanii, B prowadzi z wypłatami A 0, B r 5 (3) w strategiach mieszanych: A : prowadzi kampanię z prawdopodobieństwem a, B prowadzi kampanię z prawdopodobieństwem b gdzie a jest tą wielkością, przy której B jest indyferentny między prowadzeniem kampanii a nie rozwiązaniem równania 5a + (r 5)(1 a) = 0a + 10(1 a) ; a = r 15 r 10 ; b jest tą wielkością, przy której A jest indyferentny między prowadzeniem kampanii a nie rozwiązaniem równania 5b + 15(1 b) = 0b + 10(1 b) ; b = 1 2 ; wypłaty w tej równowadze: A 5, B 50 (najłatwiej je wyliczyć biorąc wypłaty r 10 strategii czystych przeciw mieszanej str. równowagi) Postać ekstensywna kolejno A i B wybierają akcje RN bądź Nie, drugi wybierający gracz ma niepełną informację oba jego wierzchołki decyzyjne są w jednym zbiorze informacyjnym. (b) p(r) jest prawdopodobieństwem, że B poprowadzi kampanię informacyjną, a A nie, a zatem p(r) = 1 (1 ) r 15 2 r 10 = 5 maleje przy rosnącym r. 2(r 10) (c) Gracz B ma teraz 4 strategie, a postać ekstensywna różni się od tej z (a) tym, że usunięto 2elementowy zbiór informacyjny. RN Nie To samo co A Inaczej niż A Postać normalna: A RN 5 ; 5 15 ; 0-5 ; ; 0 Nie 0 ; r 5 10 ; ; 10 0 ; r 5 (Strategia to samo co A gracza B jest zdominowana, a inaczej niż A słabo dominująca. W jedynej równowadze doskonałej A gra RN, a B gra inaczej niż A ). (d) W jedynej równowadze doskonałej gry z pełną informacją gracz wybierający jako pierwszy ma wyższą wypłatę niż wybierający jako drugi.

4 16. Gracz 1, napastnik, strzela karnego graczowi 2, bramkarzowi, i ma do wyboru 2 strategie: strzelać w lewy róg (bramki, widziany od strony boiska) lub w prawy. Bramkarz ma do wyboru 3 strategie: rzucić się w lewy róg (jak wyżej), rzucić się w prawy róg lub zaczekać na to, gdzie strzeli gracz 1. Napastnik na pewno trafi tam gdzie chce i wobec tego na pewno strzeli bramkę, gdy bramkarz rzuci się w przeciwny róg. Jeśli bramkarz od razu rzuci się w ten róg, w który strzela napastnik, obroni karnego z prawdopodobieństwem 0,4 przy strzale w lewy róg, a z prawdopodobieństwem 0,3 przy strzale w prawy róg. Jeżeli zaczeka, obroni strzał w każdy z rogów z prawdopodobieństwem o 0,1 mniejszym, niż gdyby od razu rzucił się w dany róg. (a) Podać macierz otrzymanej w tej sytuacji gry o sumie zerowej, w którą wypłatą gracza 1 jest prawdopodobieństwo strzelenia bramki. (b) Wyznaczyć wartość tej gry i strategie optymalne obu graczy. (c) Czy i ewentualnie jak zmieni się odpowiedź na pytanie (b), gdy gracz 1 ma dodatkowo trzecią strategię strzelania w środek bramki? (Bramkarz na pewno obroni taki strzał, gdy zaczeka, a na pewno nie obroni, gdy rzuci się w któryś z rogów). Uzasadnić odpowiedź. Roziwązanie (a) Przy ponumerowaniu strategii: gracza 1 : 1. L (strzela w lewy), 2. P (strzela w prawy) gracza 2 : 1. L (rzuca się w lewy), 2. P (rzuca się w prawy) 3. Cz (czeka) [ ] 0, 6 1 0, 7 macierzą wypłat gracza 1 jest. 1 0, 7 0, 8 (b) Gra oczywiście nie ma równowagi w strategiach czystych, a ponieważ jeden z graczy ma więcej niż 2 strategie, najprostszy algorytm szukania równowag dla gier 2 2 nie zadziała. Znajdziemy strategię optymalną gracza 1 wiemy z teorii, że w grach o sumie zerowej (bądź stałej) jest to strategia równowagi. a więc maksymalizująca (w takich grach) wypłatę gracza 1 przeciw najlepszej odpowiedzi gracza 2. Gracz 1 rozwiązuje więc (przy oznaczeniu x = x L, 1 x = x P ) problem max min(u 1((x, 1 x), L), u 1 ((x, 1 x), P), u 1 ((x, 1 x), Cz)) = x [0,1] max min(1 0, 4x, 0, 7 + 0, 3x, 0, 8 0, 1x). x [0,1] Można wyliczyć (a prościej: narysować) te obszary x, w których minimum w nawiasie jest realizowane przez pierwszą, drugą lub trzecią funkcję czyli strategie bramkarza. Rozwiązaniem jest x = 0, 25 ; wówczas [ ] 1 u 1 (x, P) = u 1 (x, Cz) = [0, 25 0, 75] = [0, 25 0, 75] 0, 7 [ ] 0, 6 u 1 (x, L) = [0, 25 0, 75] = 0, 9. 1 [ 0, 7 0, 8 ] = 0, 775, Optymalną strategią napastnika (x) jest więc strzał w lewy róg z prawdopodobieństwem 0,25, a w prawy z prawd. 0,75. Wartość gry wynosi 0,775.

5 Ponieważ najlepszymi odpowiedziami bramkarza na x są P i Cz, a L nie jest, strategia optymalna bramkarza jest tą strategią mieszaną używającą wyłącznie P i Cz, przy której napastnik jest indyferentny między strzałem w lewy a prawy róg bramki. Rozwiązaniem jest y L = 0, y P = 0, 25, y Cz = 0, 75. (Lub równoważnie: najbezpieczniejsza strategia bramkarza, przy czym wystarczy szukać wśród tych z y L = 0)., (c) Przeciw starej strategii optymalnej bramkarza, y, ta dodatkowa strategia daje napastnikowi oczekiwaną wypłatę 0,25, a więc nie obniża poziomu bezpieczeństwa bramkarza. Strategia optymalna bramkarza pozostaje bez zmian, a wobec tego strategia optymalna napastnika (jego najlepsza odpowiedź na y) i wartość gry też się nie zmienią. 12. W trzyosobowej grze konformiści gracze równocześnie podnoszą rękę. Jeśli wszyscy podniosą lewą lub wszyscy prawą, każdy otrzymuje wypłatę 0. Jeśli jeden z graczy podniesie inną rękę niż dwaj pozostali np. jako jedyny podniesie lewą to płaci po 1 zł obu pozostałym graczom. (a) Podać poziomy bezpieczeństwa wszystkich strategii czystych i mieszanych gracza 1. Jaka strategia jest najbezpieczniejsza? Czy układ, w którym wszyscy gracze używają swoich najbezpieczniejszych strategii, jest równowagą Nasha? (b) Znaleźć równowagę Nasha, w której gracze nie grają swoich najbezpieczniejszych strategii. Roziwązanie (a) Każdy z graczy ma dwie strategie czyste, L i P. Poziom bezpieczeństwa strategii to jej wypłata w najgorszym możliwym przypadku czyli wtedy, gdy obaj pozostali gracze zagrają drugą strategię czystą, czyli 2. Formalnie, poziom bezpieczeństwa dowolnej strategii x = (x L, x P ) gracza np. 1 (czystej lub mieszanej) to β(x) = min(u 1 (x, L, L), u 1 (x, L, P ), u 1 (x, P, L), u 1 (x, P, P )) czyli min(u 1 (x, L, L), u 1 (x, P, P )), bo u 1 (x, L, P ), u 1 (x, P, L) = 1 gdy dwaj gracze grają różne strategie czyste, trzeci zawsze wygrywa. Zaś u 1 (x, L, L) = 0x L 2x P, u 1 (x, P, P ) = 2x L + 0x P, a więc najbezpieczniejsza jest strategia maksymalizująca min( 2x L, 2x P ) x L = x P = 0, 5. (b) Wszyscy grają tę samą strategię czystą.

6 12. Trzy siostry dzielą między siebie trzy odziedziczone obiekty: mieszkanie, jacht i cenny obraz. Uzgodniono następującą procedurę podziału: najmłodsza siostra oznajmia, z którego obiektu rezygnuje, najstarsza zgodnie z tym przydziela jej jeden z dwóch innych obiektów, a na koniec spośród dwóch, których nie dostała najmłodsza, jeden wybiera dla siebie średnia siostra. Ostatni z obiektów zostaje dla najstarszej siostry. Każda z sióstr kieruje się tylko swą preferencją co do przypadającego jej dobra, nie interesując się tym, której przypadły inne obiekty. (a) Podać postać ekstensywną gry, w której wszystkie siostry najbardziej chciałyby dostać mieszkanie, ale najstarsza woli dostać jacht niż obraz, a obie pozostałe odwrotnie. (Można przyjąć dla każdego gracza wypłatę 2 za najbardziej preferowany obiekt, 1 za średni i 0 za najmniej preferowany). Znaleźć w tej grze dwie równowagi doskonałe, w których najmłodsza siostra rezygnuje z różnych obiektów. Która z tych dwóch jej strategii wydaje się Pani / Panu rozsądniejsza i dlaczego? (b) Pokazać, że gdy każda z sióstr najwyżej ceni sobie inny obiekt, to w równowadze doskonałej każda dostanie najbardziej preferowany. Opisać dokładnie strategie wszystkich trzech w tej równowadze. Roziwązanie (a) Opis drzewa: Zaczyna najmnłodsza siostra (Mł), wybiera jedną z 3 akcji: RM (rezygnuje z mieszkania), RJ i RO. Następnie najstarsza (St) wybiera jedną z 2 możliwych akcji: po RM są to J Mł (przydziela młodszej jacht) i O Mł, po RJ M Mł i O Mł, a po RO są to J Mł i M Mł. Następnie średnia (Śr) wybiera dla siebie jeden z 2 dostępnych obiektów np. po akcjach RM i O Mł wybiera pomiędzy J a M. Na końcu tej ścieżki Mł dostaje obraz, Śr mieszkanie, a St jacht. Gra jest z pełną informacją. Oczywiście trzeba narysować całe drzewo, poetykietować wszystkie łuki i wypisać wypłaty (lub lepiej podział obiektów) w każdym wierzchołku końcowym. Trzeba także zaznaczyć akcje wybierane w trakcie indukcji wstecz. Analiza przy preferencjach z p. (a) : Śr zawsze wybierze mieszkanie jeśli jest dostępne, a jeśli nie tj. jeśli St zagrała M Mł to obraz. Wiedząc to, St nigdy nie zagra J Mł, bo wtedy po optymalnej reakcji Śr sama zostanie z obrazem. Jeśli natomiast Mł sama zrezygnuje z jachtu, RJ, to St będzie indyferentna między przydzieleniem jej mieszkania bądź obrazu, bo w obu przypadkach zostanie jej jacht. Mł spodziewa się zatem M jeśli zagra RO, O jeśli zagra RM, a jeśli zagra RJ, to M lub O w zależności od tego, co wtedy zdecyduje St. Jeśli spodziewa się, że St po RJ wynierze M Mł, może zagrać RJ; jeśli spodziewa się O Mł, powinna zagrać RO. Są więc 3 równowagi doskonałe w czystych strategiach: (1) Mł : RO, Śr : zawsze wybiera lepszy obiekt, St: nigdy nie J Mł a po RJ O Mł ; (2) Mł : RO, Śr : zawsze wybiera lepszy obiekt, St: nigdy nie J Mł a po RJ M Mł ;

7 (3) Mł : RJ, Śr : zawsze wybiera lepszy obiekt, St: nigdy nie J Mł a po RJ M Mł i w każdej z nich wynik (podział obiektów) jest taki sam. Wszystko to widać na drzewie gry w procesie indukcji wstecz. Dla Mł bezpieczniej jest zrezygnować z obrazu, bo wtedy w jedynej równowadze doskonałej podgry następującej po jej decyzji dostaje mieszkanie. Po RJ ryzykuje że spośród równowag doskonałych podgry może zostać rozegrana ta, w której dostanie obraz. (b) Załóżmy że najmłodsza siostra preferuje obraz, średnia mieszkanie, a najstarsza jacht. Wtedy: jeżeli Mł nie zagra RO, St zagra O Mł bo wtedy gwarantuje sobie J (Śr wybierze mieszkanie). Zatem w każdej równowadze doskonałej St zagra O Mł jeśli tylko może; jeżeli Mł zagra RO HGW, ale w takim wypadku Mł nie dostanie obrazu który dostałaby rezygnując z czegokolwiek innego, Czyli RO nie jest najlepszą odpowiedzią Mł na jakiekolwiek strategie równowagi dosk. a zatem nie trzeba dokładnie badać strategii równowagi w podgrze po RO. W każdej równowadze doskonałej Mł gra RM lub RJ, a St przydziela jej obraz i sama dostaje jacht.

8 13. Dwaj gracze targują się o podział sumy 19,99 zł. Pierwszą propozycję podziału składa gracz I. Jeśli gracz II ją odrzuci, to z sumy 19,99 ubywa 6 zł i gracz II składa propozycję podziału mniejszej sumy; jeśli ta z kolei zostanie odrzucona przez gracza I, to gra się kończy i obaj gracze dostają po 5,50 zł, a resztę zabiera arbiter. Przyjęcie którejkolwiek propozycji także kończy grę i wtedy następuje uzgodniony podział. Zakładamy, że legalne są tylko takie propozycje podziału, w których oferent otrzymuje całkowitą liczbę złotówek (czyli np. pierwsza propozycja gracza I musi być postaci: n zł 99 gr dla ciebie, 19 n zł dla mnie). Gracze nie dyskontują wypłat. Narysować fragment drzewa tej gry z co najmniej jedną gałęzią każdej możliwej długości. Znaleźć jej równowagę doskonałą i podać pełny opis tworzących ją strategii oraz otrzymany podział. Roziwązanie Opis drzewa: Zaczyna gracz I, wybiera jedną z 20 propozycji: (0, 19,99),..., (19, 0,99). Każdą z nich II może zaakceptować albo odrzucić. Gdy zaakceptuje (k, 19 k zł 99 gr), gra kończy się z tymi wypłatami, Gdy odrzuci, składa jedną z 14 kontrpropozycji: (0,99, 13),..., (13,99, 0). Jeśli I ją przyjmie, gra kończy się z tymi wypłatami; jeśli odrzuci, gra kończy się z wypłatami (5,50, 5,50). Informacja jest pełna nie ma nietrywialnych zbiorów informacyjnych. Oczywiście reprezentatywny fragment drzewa trzeba narysować, najlepiej istotny dla znajdowania równowagi. Trzeba też zaznaczyć akcje wybierane w trakcie indukcji wstecz. Analiza: Pierwszy etap indukcji wstecz: Jeśli gracz I odrzuci kontrprppozycję gracza II, otrzyma 5,50, a zatem odrzuci (0,99, 13),..., (4,99, 9), a przyjmie (5,99, 8),..., (13,99, 0). Wiedząc to, II spodziewa się, że po odrzuceniu pierwszej propozycji gracza I otrzyma 8 najwyższą z wypłat po optymalnej reakcji I. Wobec tego pójdzie na tę możliwość tj. odrzuci propozycję I i sam zaproponuje (5,99, 8) jeśli I zaoferuje mu mniej niż 8. Tzn. odrzuci (19, 0,99),..., (12, 7,99), a przyjmie (11, 8,99), (0, 19,99). Wiedząc to, I spodziewa się, że po odrzuceniu swej pierwszej propozycji otrzyma 5,99. Złoży więc najlepszą dla siebie ofertę spośród tych, które będą przyjęte i zarazam dadzą mu co najmniej 6. Jest nią oczywiście (11, 8,99). Równowaga doskonała: Gracz I proponuje (11, 8,99), zgadza się na propozycje II dające mu co najmniej 5,99 i odrzuca pozostałe. Gracz II przyjmuje propozycje I wtedy i tylko wtedy, gdy proponuje mu się co najmniej 8,99, a po ew. odrzuceniu proponuje podział (5,99, 8). Wypłaty w tej rówonowadze: : 11 zł dla I, 8,99 zł dla II. Przykład równowagi niedoskonałej: Każdy z graczy składa tylko propozycje (1,99 dla ciebie, reszta dla mnie), a przyjmuje tylko takie, w których oferuje mu się co najmniej 9,99 zł.

TEORIA GIER- semestr zimowy 2011. ZADANIA 3. Gry w postaci ekstensywnej

TEORIA GIER- semestr zimowy 2011. ZADANIA 3. Gry w postaci ekstensywnej TEORIA GIER- semestr zimowy 2011 ZADANIA 3. Gry w postaci ekstensywnej 1. Jaś i Małgosia dostali do podziału między siebie cztery zabawki, z których każda jest niepodzielna: dwie identyczne lalki, misia

Bardziej szczegółowo

10. Wstęp do Teorii Gier

10. Wstęp do Teorii Gier 10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej

Bardziej szczegółowo

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,

Bardziej szczegółowo

Gry o sumie niezerowej

Gry o sumie niezerowej Gry o sumie niezerowej Równowagi Nasha 2011-12-06 Zdzisław Dzedzej 1 Pytanie Czy profile równowagi Nasha są dobrym rozwiązaniem gry o dowolnej sumie? Zaleta: zawsze istnieją (w grach dwumacierzowych, a

Bardziej szczegółowo

LEKCJA 4. Gry dynamiczne z pełną (kompletną) i doskonałą informacją. Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności.

LEKCJA 4. Gry dynamiczne z pełną (kompletną) i doskonałą informacją. Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności. LEKCJA 4 Gry dynamiczne z pełną (kompletną) i doskonałą informacją Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności. Czy w dowolnej grze dynamicznej lepiej być graczem,

Bardziej szczegółowo

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ

TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Definicja gry o sumie zerowej Powiemy, że jest grą o

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 5: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE NIESTAŁEJ

TEORIA GIER W EKONOMII WYKŁAD 5: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE NIESTAŁEJ TEORI GIER W EKONOMII WYKŁD 5: GRY DWUOSOOWE KOOPERCYJNE O SUMIE NIESTŁEJ dr Robert Kowalczyk Katedra nalizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwumacierzowe Skończoną grę dwuosobową o

Bardziej szczegółowo

1 S t r o n a. Teoria Gier Praca domowa 1 - rozwiązania

1 S t r o n a. Teoria Gier Praca domowa 1 - rozwiązania 1 S t r o n a Teoria Gier Praca domowa 1 - rozwiązania Zadanie 1 Gdy korzystamy z toalet publicznych dominującą strategią jest: nie sprzątać po sobie. Skorzystanie z toalety przynosi dodatnią wypłatę,

Bardziej szczegółowo

TEORIA GIER HISTORIA TEORII GIER. Rok 1944: powszechnie uznana data narodzin teorii gier. Rok 1994: Nagroda Nobla z dziedziny ekonomii

TEORIA GIER HISTORIA TEORII GIER. Rok 1944: powszechnie uznana data narodzin teorii gier. Rok 1994: Nagroda Nobla z dziedziny ekonomii TEORIA GIER HISTORIA TEORII GIER Rok 1944: powszechnie uznana data narodzin teorii gier Monografia: John von Neumann, Oskar Morgenstern Theory of Games and Economic Behavior (Teoria gier i postępowanie

Bardziej szczegółowo

-Teoria gier zajmuje się logiczną analizą sytuacji konfliktu i kooperacji

-Teoria gier zajmuje się logiczną analizą sytuacji konfliktu i kooperacji 1 -Teoria gier zajmuje się logiczną analizą sytuacji konfliktu i kooperacji 2 Teoria gier bada,w jaki sposób gracze powinnirozgrywać grę, a każdy dąży do takiego wyniku gry, który daje mu jak największą

Bardziej szczegółowo

TEORIA GIER - semestr zimowy 2011. ZADANIA 1. Indywidualne podejmowanie decyzji

TEORIA GIER - semestr zimowy 2011. ZADANIA 1. Indywidualne podejmowanie decyzji TEORIA GIER - semestr zimowy 2011 ZADANIA 1. Indywidualne podejmowanie decyzji 1. Decydent mający do zainwestowania 100 000 zł ma do wyboru trzy fundusze powiernicze, A, B i C, które w zależności od stanu

Bardziej szczegółowo

Mikroekonomia. O czym dzisiaj?

Mikroekonomia. O czym dzisiaj? Mikroekonomia Joanna Tyrowicz jtyrowicz@wne.uw.edu.pl http://www.wne.uw.edu.pl/~jtyrowicz 1.12.2007r. Mikroekonomia WNE UW 1 O czym dzisiaj? Macierze wypłat, czyli ile trzeba mieć w razie się straci...

Bardziej szczegółowo

a) Znajdź równowagi Nasha tej gry oraz wypłaty w równowadze obu tenisistek...

a) Znajdź równowagi Nasha tej gry oraz wypłaty w równowadze obu tenisistek... Egzamin z przedmiotu: Wstęp do Teorii Gier Zadanie 1 Prowadzący: dr Michał Lewandowski gnieszka Radwańska gra w tenisa z Karoliną Woźniacki. gnieszka może zaserwować na backhand lub na forehand Woźniacki.

Bardziej szczegółowo

Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego

Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego Instytut Informatyki Uniwersytetu Śląskiego Wykład 2 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.

Bardziej szczegółowo

Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe

Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe Teorię gier można określić jako teorię podejmowania decyzji w szczególnych warunkach. Zajmuje się ona logiczną analizą sytuacji konfliktu

Bardziej szczegółowo

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria

Bardziej szczegółowo

Elementy teorii gier

Elementy teorii gier Elementy teorii gier. Podaj wszystkie czyste równowagi Nasha. Zaznacz pary strategii, które są Pareto optymalne. U 2,3-2,7 D 6,-5 0,- U 2,3-2,7 D 6,-5 3,5 2. Pewien ojciec ma dwóch synów. Umierając zostawia

Bardziej szczegółowo

Dłuższy przykład: Dwie firmy, Zeus i Atena, produkują sprzęt muzyczny. Zeus jest większy, Atena jest ceniona za HF. Wprowadzają nowy produkt, np.

Dłuższy przykład: Dwie firmy, Zeus i Atena, produkują sprzęt muzyczny. Zeus jest większy, Atena jest ceniona za HF. Wprowadzają nowy produkt, np. Dłuższy przykład: Dwie firmy, Zeus i Atena, produkują sprzęt muzyczny. Zeus jest większy, Atena jest ceniona za HF. Wprowadzają nowy produkt, np. kula wyłożona głośnikami od wewnątrz. Popyt jest nieznany:

Bardziej szczegółowo

Daria Sitkowska Katarzyna Urbaniak

Daria Sitkowska Katarzyna Urbaniak Teorię gier można określić jako teorię podejmowania decyzji w szczególnych warunkach. Zajmuje się ona logiczną analizą sytuacji konfliktu i kooperacji; bada jak gracze racjonalnie powinni rozgrywać grę.

Bardziej szczegółowo

GRY W POSTACI EKSTENSYWNEJ (rozwiniętej)

GRY W POSTACI EKSTENSYWNEJ (rozwiniętej) GRY W POSTACI EKSTENSYWNEJ (rozwiniętej) Gra w postaci ekstensywnej formalny opis wszystkich możliwych przebiegów gry, z uwzględnieniem struktury czasowej, możliwości wielokrotnego podejmowania decyzji

Bardziej szczegółowo

ZADANIE 1/GRY. Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

ZADANIE 1/GRY. Modele i narzędzia optymalizacji w systemach informatycznych zarządzania ZADANIE 1/GRY Zadanie: Dwaj producenci pewnego wyrobu sprzedają swe wyroby na rynku, którego wielkość jest stała. Aby zwiększyć swój udział w rynku (przejąć część klientów konkurencyjnego przedsiębiorstwa),

Bardziej szczegółowo

Mikroekonomia II Semestr Letni 2014/2015 Ćwiczenia 4, 5 & 6. Technologia

Mikroekonomia II Semestr Letni 2014/2015 Ćwiczenia 4, 5 & 6. Technologia Mikroekonomia II 050-792 Semestr Letni 204/205 Ćwiczenia 4, 5 & 6 Technologia. Izokwanta produkcji to krzywa obrazująca różne kombinacje nakładu czynników produkcji, które przynoszą taki sam zysk. P/F

Bardziej szczegółowo

Czym zajmuje się teroia gier

Czym zajmuje się teroia gier Czym zajmuje się teroia gier Analiza zachowań graczy (czyli strategii graczy) jak zachowują się gracze jakie są ich możliwe zachowania czy postępują racjonalnie i co to znaczy Poszukiwanie optymalnych

Bardziej szczegółowo

Aukcje groszowe. Podejście teoriogrowe

Aukcje groszowe. Podejście teoriogrowe Aukcje groszowe Podejście teoriogrowe Plan działania Aukcje groszowe Budowa teorii Sprawdzenie teorii Bibliografia: B. Platt, J. Price, H. Tappen, Pay-to-Bid Auctions [online]. 9 lipca 2009 [dostęp 3.02.2011].

Bardziej szczegółowo

EKONOMIA MENEDŻERSKA. Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER.

EKONOMIA MENEDŻERSKA. Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER. Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER. 1. OLIGOPOL Oligopol - rynek, na którym działa niewiele przedsiębiorstw (od do 10) Cecha charakterystyczna

Bardziej szczegółowo

TEORIA GIER W NAUKACH SPOŁECZNYCH. Równowagi Nasha. Rozwiązania niekooperacyjne.

TEORIA GIER W NAUKACH SPOŁECZNYCH. Równowagi Nasha. Rozwiązania niekooperacyjne. TEORIA GIER W NAUKACH SPOŁECZNYCH Równowagi Nasha. Rozwiązania niekooperacyjne. Przypomnienie Gra o sumie zerowej Kryterium dominacji Kryterium wartości oczekiwanej Diagram przesunięć Równowaga Can a Round

Bardziej szczegółowo

a) Znajdź równowagi Nasha tej gry oraz wypłaty w równowadze obu tenisistek.

a) Znajdź równowagi Nasha tej gry oraz wypłaty w równowadze obu tenisistek. Egzamin z przedmiotu: Wstęp do Teorii Gier Zadanie 1 Prowadzący: dr Michał Lewandowski Agnieszka Radwańska gra w tenisa z Karoliną Woźniacki. Agnieszka może zaserwować na backhand lub na forehand Woźniacki.

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO D. Miszczyńska, M.Miszczyński KBO UŁ GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata,

Bardziej szczegółowo

Drzewka gry. Teoria gier a biznes.

Drzewka gry. Teoria gier a biznes. Drzewka gry. Teoria gier a biznes. Drzewka gry Gra jest to sytuacja konfliktowa, w której gracze podejmują decyzję, co do strategii, w sposób sekwencyjny i sukcesywny, w miarę przebiegu gry poznając kolejne

Bardziej szczegółowo

13. Teoriogrowe Modele Konkurencji Gospodarczej

13. Teoriogrowe Modele Konkurencji Gospodarczej 13. Teoriogrowe Modele Konkurencji Gospodarczej Najpierw, rozważamy model monopolu. Zakładamy że monopol wybiera ile ma produkować w danym okresie. Jednostkowy koszt produkcji wynosi k. Cena wynikająca

Bardziej szczegółowo

1. Opierał się wyłącznie na strategiach czystych, a, jak wiadomo, gra może mieć jedyne równowagi w strategiach mieszanych.

1. Opierał się wyłącznie na strategiach czystych, a, jak wiadomo, gra może mieć jedyne równowagi w strategiach mieszanych. Rozdział 4 Uczenie się w grach Na dzisiejszym wykładzie robimy krok w tył w stosunku do tego, o czym mówiliśmy przez ostatnie tygodnie. Dotychczas mówiliśmy o dowolnych grach wieloetapowych, dziś opowiem

Bardziej szczegółowo

Elementy teorii gier. Badania operacyjne

Elementy teorii gier. Badania operacyjne 2016-06-12 1 Elementy teorii gier Badania operacyjne Plan Przykład Definicja gry dwuosobowej o sumie zerowej Macierz gry Strategie zdominowane Mieszane rozszerzenie gry Strategie mieszane Rozwiązywanie

Bardziej szczegółowo

Skowrońska-Szmer. Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością. 04.01.2012r.

Skowrońska-Szmer. Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością. 04.01.2012r. mgr inż. Anna Skowrońska-Szmer Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością 04.01.2012r. 1. Cel prezentacji 2. Biznesplan podstawowe pojęcia 3. Teoria gier w

Bardziej szczegółowo

1. Które z następujących funkcji produkcji cechują się stałymi korzyściami ze skali? (1) y = 3x 1 + 7x 2 (2) y = x 1 1/4 + x 2

1. Które z następujących funkcji produkcji cechują się stałymi korzyściami ze skali? (1) y = 3x 1 + 7x 2 (2) y = x 1 1/4 + x 2 1. Które z następujących funkcji produkcji cechują się stałymi korzyściami ze skali? (1) y = 3x 1 + 7x 2 (2) y = x 1 1/4 + x 2 1/3 (3) y = min{x 1,x 2 } + min{x 3,x 4 } (4) y = x 1 1/5 x 2 4/5 a) 1 i 2

Bardziej szczegółowo

1 Funkcja użyteczności

1 Funkcja użyteczności 1 Funkcja użyteczności Funkcja użyteczności to funkcja, której wartościami są wartości użyteczności (satysfakcji, komfortu psychicznego). Można mówić o użyteczności różnych zjawisk. Użyteczność pieniądza

Bardziej szczegółowo

Wprowadzenie do teorii gier

Wprowadzenie do teorii gier Instytut Informatyki Uniwersytetu Śląskiego Wykład 1 1 Klasyfikacja gier 2 Gry macierzowe, macierz wypłat, strategie czyste i mieszane 3 Punkty równowagi w grach o sumie zerowej 4 Gry dwuosobowe oraz n-osobowe

Bardziej szczegółowo

TEORIA GIER W NAUKACH SPOŁECZNYCH

TEORIA GIER W NAUKACH SPOŁECZNYCH TEORIA GIER W NAUKACH SPOŁECZNYCH Teoria gier a wojskowość: Partyzanci, Policjanci i Rakiety. Teoria gier a filozofia: Problem Newcombe a i wolna wola Przypomnienie Strategie mieszane Kryterium wartości

Bardziej szczegółowo

Internetowe Ko³o M a t e m a t yc z n e

Internetowe Ko³o M a t e m a t yc z n e Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 3 szkice rozwiązań zadań 1. Plansza do gry składa się z 15 ustawionych w rzędzie kwadratów. Pierwszy z graczy

Bardziej szczegółowo

Teoria gier. Teoria gier. Odróżniać losowość od wiedzy graczy o stanie!

Teoria gier. Teoria gier. Odróżniać losowość od wiedzy graczy o stanie! Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), 2-osobowe(np. szachy, warcaby, go, itp.), wieloosobowe(np. brydż, giełda, itp.); wygraną/przegraną:

Bardziej szczegółowo

Teoria gier. Wykład7,31III2010,str.1. Gry dzielimy

Teoria gier. Wykład7,31III2010,str.1. Gry dzielimy Wykład7,31III2010,str.1 Gry dzielimy Wykład7,31III2010,str.1 Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), Wykład7,31III2010,str.1 Gry

Bardziej szczegółowo

GRY DWUOSOBOWE O SUMIE NIEZEROWEJ. Równowaga Nasha Rozwiązania niekooperacyjne

GRY DWUOSOBOWE O SUMIE NIEZEROWEJ. Równowaga Nasha Rozwiązania niekooperacyjne GRY DWUOSOBOWE O SUMIE NIEZEROWEJ 1. 2. Równowaga Nasha Rozwiązania niekooperacyjne Gdy dwuosobowa gra nie jest grą o sumie zerowej, to aby ją opisać musimy podać wypłaty obu graczy. Jak wiadomo niektóre

Bardziej szczegółowo

Zacznijmy od przypomnienia czym są i jak wyglądają gry jednoczesne oraz sekwencyjne w zapisie ekstensywnym.

Zacznijmy od przypomnienia czym są i jak wyglądają gry jednoczesne oraz sekwencyjne w zapisie ekstensywnym. Oligopol Oligopol jest zagadnieniem, którego zrozumienie wymaga dobrej znajomości teorii gier. Modele Oligopolu badane przez ekonomistów koncentrują się bowiem na znalezieniu rozwiązania (równowagi) w

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Gry dwuosobowe i gry z naturą............... 5

Bardziej szczegółowo

LEKCJA 8. Miara wielkości barier wejścia na rynek = różnica między ceną dla której wejście na rynek nie następuje a min AC.

LEKCJA 8. Miara wielkości barier wejścia na rynek = różnica między ceną dla której wejście na rynek nie następuje a min AC. LEKCJA 8 KOSZTY WEJŚCIA NA RYNEK Miara wielkości barier wejścia na rynek = różnica między ceną dla której wejście na rynek nie następuje a min AC. Na wysokość barier wpływ mają: - korzyści skali produkcji,

Bardziej szczegółowo

Czym zajmuje się teroia gier

Czym zajmuje się teroia gier Czym zajmuje się teroia gier Analiza zachowań graczy (czyli strategii graczy) jak zachowują się gracze jakie są ich możliwe zachowania czy postępują racjonalnie i co to znaczy Poszukiwanie optymalnych

Bardziej szczegółowo

Gry w postaci normalnej

Gry w postaci normalnej Gry w postaci normalnej Rozgrzewka Przykład 1. (Dylemat więźnia) Dwóch przestępców, którzy zorganizowali napad na bank, zostało tymczasowo aresztowanych i czeka ich rozprawa. Jeżeli obaj będa zeznawać

Bardziej szczegółowo

Maksymalizacja zysku

Maksymalizacja zysku Maksymalizacja zysku Na razie zakładamy, że rynki są doskonale konkurencyjne Firma konkurencyjna traktuje ceny (czynników produkcji oraz produktów jako stałe, czyli wszystkie ceny są ustalane przez rynek

Bardziej szczegółowo

Matematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe

Matematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe Matematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe Empik każdego inspiruje inaczej Aleksander Puszkin (1799 1837) Andrey (Andrei) Andreyevich Markov (1856 1922) Wśród 20 tysięcy początkowych

Bardziej szczegółowo

Arka Noego. Ptaki Polski 33

Arka Noego. Ptaki Polski 33 26 25 15 24 16 28 23 17 12 29 22 18 11 30 21 19 10 27 31 20 14 13 Arka Noego 32 9 8 Ptaki Polski 33 7 34 6 35 5 36 4 37 3 38 39 1 2 Wstęp Grasz jako Noe i dostałeś od Boga zadanie. Masz zebrać po parze

Bardziej szczegółowo

Lista zadań. 1. Podaj wszystkie czyste równowagi Nasha. Zaznacz pary strategii, które są Pareto optymalne.

Lista zadań. 1. Podaj wszystkie czyste równowagi Nasha. Zaznacz pary strategii, które są Pareto optymalne. Lista zadań 1. Podaj wszystkie czyste równowagi Nasha. Zaznacz pary strategii, które są Pareto optymalne. (a) U 2,3-2,7 D 6,-5 0,-1 (b) U 2,3-2,7 D 6,-5 3,5 2. Rozwiąż gry używając algorytmu eliminacji

Bardziej szczegółowo

Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo.

Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Zagadnienia szczegółowe: obliczanie wartości wyrażeń arytmetycznych; działania na pierwiastkach i potęgach;

Bardziej szczegółowo

Warsztaty Trenerskie MZPN

Warsztaty Trenerskie MZPN Warsztaty Trenerskie MZPN Trening pokazowy 13/03/2013 Warszawa Rafał Ulatowski Ćwiczenia i Gry w nauczaniu i doskonaleniu ataku szybkiego w piłce nożnej Trening w systemie gry 1-4-3-3 Rozgrzewka Podania

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Wysokie Napięcie: Roboty

Wysokie Napięcie: Roboty Wysokie Napięcie: Roboty To rozszerzenie umożliwia grę tylko z posiadanym zestawem podstawowym gry Wysokie Napięcie. Podstawowe zasady gry pozostają niezmienione. Następne paragrafy opisują tylko zmiany

Bardziej szczegółowo

Uniwersytet Warszawski Mikroekonomia zaawansowana Studia zaoczne dr Olga Kiuila LEKCJA 9

Uniwersytet Warszawski Mikroekonomia zaawansowana Studia zaoczne dr Olga Kiuila LEKCJA 9 LEKCJA 9 Oligopol równoczesnej konkurencji cenowej przy wyborze zdolności produkcyjnych (model Kreps a) Jeżeli zdolności produkcyjne co najmniej jednej z firm są ograniczone, to na rynku będziemy obserwować

Bardziej szczegółowo

Temat: Doskonalenie umiejętności podawania piłki bez/i z przyjęciem oraz z wyjściem na pozycję. - zawodnik, - bramkarz, - piłka, - słupek,

Temat: Doskonalenie umiejętności podawania piłki bez/i z przyjęciem oraz z wyjściem na pozycję. - zawodnik, - bramkarz, - piłka, - słupek, Temat: Doskonalenie umiejętności podawania piłki bez/i z przyjęciem oraz z wyjściem na pozycję. Miejsce: boisko piłkarskie zajęć: 80 minut Wiek: U12/U13 Liczba ćwiczących: 16 Przybory: piłki, słupki, znaczniki,

Bardziej szczegółowo

WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB VIII ASSESS

WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB VIII ASSESS WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI AB VIII ASSESS. oteria oteria = rozkład prawdopodobieństwa na zbiorze zdarzeń x (możliwych ocen wariantu) - odpowiada mu rozkład użyteczności. W praktyce, loteria

Bardziej szczegółowo

INSTRUKCJA MONTAŻU. Najpierw złożyć bandę, a następnie całość odwrócić.

INSTRUKCJA MONTAŻU. Najpierw złożyć bandę, a następnie całość odwrócić. INSTRUKCJA MONTAŻU Najpierw złożyć bandę, a następnie całość odwrócić. Wokół zaznaczeń w narożnikach nakleić obustronnie wzmocnienia otworów. Przedmiotem o ostrym końcu przekłuć zaznaczone miejsce. Boisko

Bardziej szczegółowo

SUKNIE ŚLUBNE - MODA I MODELKI

SUKNIE ŚLUBNE - MODA I MODELKI INSTRUKCJA SUKNIE ŚLUBNE - MODA I MODELKI Zabawa układanka dla 1-4 osób rekwizyty: 96 elementów tworzących 24 modelki Umieszczone w pudełku 24 kreacje zostały stworzone na wielki pokaz mody sukni ślubnych.

Bardziej szczegółowo

PHASE 10 LICZBA GRACZY: 2-6

PHASE 10 LICZBA GRACZY: 2-6 PHASE 10 LICZBA GRACZY: 2-6 CEL GRY: Być pierwszym graczem, który ukończy wszystkie 10 faz. W przypadku remisu gracz z mniejszym wynikiem zostaje zwycięzcą. ZAWARTOŚĆ: Karty ściągi (opisujące 10 faz) oraz

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 3 Definicja prawdopodobieństwa Kołmogorowa. Prawdopodobieństwa warunkowe i niezależne. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko

Bardziej szczegółowo

METODA ANALITYCZNA Postać klasyczna: z = 5 x 1 + 6x 2 MAX 0,2 x 1 + 0,3x 2 < 18 0,6 x 1 + 0,6x 2 < 48 x 1, x 2 > 0

METODA ANALITYCZNA Postać klasyczna: z = 5 x 1 + 6x 2 MAX 0,2 x 1 + 0,3x 2 < 18 0,6 x 1 + 0,6x 2 < 48 x 1, x 2 > 0 METODA ANALITYCZNA Postać klasyczna: z = 5 x 1 + 6x 2 MAX 0,2 x 1 + 0,3x 2 < 18 0,6 x 1 + 0,6x 2 < 48 x 1, x 2 > 0 cx MAX Ax < b x > 0 Postać standardowa (kanoniczna): z = 5 x 1 + 6x 2 + 0x 3 + 0x 4 MAX

Bardziej szczegółowo

Zadanie: FIL Ścieżki. Wejście. polish. BOI 2015, dzień 2. Dostępna pamięć: 256 MB. 1.05.2015

Zadanie: FIL Ścieżki. Wejście. polish. BOI 2015, dzień 2. Dostępna pamięć: 256 MB. 1.05.2015 Zadanie: FIL Ścieżki polish BOI 2015, dzień 2. Dostępna pamięć: 256 MB. 1.05.2015 Bajtazar uwielbia życie na krawędzi: zamiast łatać dziury bezpieczeństwa swoich systemów, blokuje IP hakerów; wysyła rozwiązania

Bardziej szczegółowo

Quantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński

Quantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński czyli jak tanio i dobrze zabezpieczyć opcję Michał Krawiec Piotr Piestrzyński Koło Naukowe Probabilistyki i Statystyki Matematycznej Uniwersytet Wrocławski Niedziela, 19 kwietnia 2015 Przykład (opis problemu)

Bardziej szczegółowo

Schemat sprawdzianu. 25 maja 2010

Schemat sprawdzianu. 25 maja 2010 Schemat sprawdzianu 25 maja 2010 5 definicji i twierdzeń z listy 12(po 10 punktów) np. 1. Proszę sformułować twierdzenie Brouwera o punkcie stałym. 2. Niech X będzie przestrzenią topologiczną. Proszę określić,

Bardziej szczegółowo

PODSTAWOWE KONSTRUKCJE GEOMETRYCZNE

PODSTAWOWE KONSTRUKCJE GEOMETRYCZNE PODSTAWOWE KONSTRUKCJE GEOMETRYCZNE Dane będę rysował na czarno. Różne etapy konstrukcji kolorami: (w kolejności) niebieskim, zielonym, czerwonym i ewentualnie pomarańczowym i jasnozielonym. 1. Prosta

Bardziej szczegółowo

Przykładowe rozwiązania

Przykładowe rozwiązania Przykładowe rozwiązania Poniższy dokument zawiera przykładowe rozwiązania zadań z I etapu I edycji konkursu (2014 r.). Rozwiązania w formie takiej jak przedstawiona niżej uzyskałyby pełną liczbę punktów

Bardziej szczegółowo

OTWARTE MISTRZOSTWA DĄBROWY TARNOWSKIEJ W HALOWEJ PIŁCE NOZNEJ REGULAMIN

OTWARTE MISTRZOSTWA DĄBROWY TARNOWSKIEJ W HALOWEJ PIŁCE NOZNEJ REGULAMIN OTWARTE MISTRZOSTWA DĄBROWY TARNOWSKIEJ W HALOWEJ PIŁCE NOZNEJ REGULAMIN Organizator MLKS Dąbrovia Dąbrowa Tarnowska i Urząd Miasta Dąbrowa Tarnowska Miejsce Hala Sportowa Agaty Mróz-Olszewskiej Dąbrowa

Bardziej szczegółowo

Nie przyznawać się wsypać kompana Nie przyznawać się 1 rok 1 rok 10 lat 0 lat Wsypać kompana 0 lat 10 lat 5 lat 5 lat

Nie przyznawać się wsypać kompana Nie przyznawać się 1 rok 1 rok 10 lat 0 lat Wsypać kompana 0 lat 10 lat 5 lat 5 lat TEORIA GIER Teoria gier definiowana jako teoria podejmowania decyzji w warunkach interaktywnych (gry strategicznej) lub inaczej matematyczna teoria sytuacji konfliktowych - została stworzona przez J. von

Bardziej szczegółowo

PRZEKLEŃSTWO GENIUSZY FUTBOLU, czyli: jak strzelać rzuty karne? Sławomir Kulesza, WMiI UWM Olsztyn

PRZEKLEŃSTWO GENIUSZY FUTBOLU, czyli: jak strzelać rzuty karne? Sławomir Kulesza, WMiI UWM Olsztyn PRZEKLEŃSTWO GENIUSZY FUTBOLU, czyli: jak strzelać rzuty karne? Sławomir Kulesza, WMiI UWM Olsztyn Czemu akurat rzut karny? Bo jest wyjątkowym elementem piłki nożnej: - w czasie meczu pada niewiele bramek,

Bardziej szczegółowo

OGRAĆ BUKMACHERA. DLACZEGO JEST TO MOŻLIWE? KAMIL STUPAK SKN BUSINESS ANALYTICS SGH

OGRAĆ BUKMACHERA. DLACZEGO JEST TO MOŻLIWE? KAMIL STUPAK SKN BUSINESS ANALYTICS SGH OGRAĆ BUKMACHERA. DLACZEGO JEST TO MOŻLIWE? KAMIL STUPAK SKN BUSINESS ANALYTICS SGH PODSTAWOWE DEFINICJE KURS oferowana przez bukmachera stopa zwrotu z pojedynczego zakładu, w Europie wyrażana najczęściej

Bardziej szczegółowo

Teoria gier. Katarzyna Koman Maria Koman. Politechnika Gdaoska Wydział Fizyki Technicznej i Matematyki Stosowanej

Teoria gier. Katarzyna Koman Maria Koman. Politechnika Gdaoska Wydział Fizyki Technicznej i Matematyki Stosowanej Teoria gier Katarzyna Koman Maria Koman Politechnika Gdaoska Wydział Fizyki Technicznej i Matematyki Stosowanej GRA NIM HISTORIA Pochodzenie gry NIM nie jest do końca znane. Najprawdopodobniej powstała

Bardziej szczegółowo

I Liceum Ogólnokształcące w Warszawie

I Liceum Ogólnokształcące w Warszawie I Liceum Ogólnokształcące w Warszawie... Imię i Nazwisko... Klasa... Nauczyciel PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY...... Liczba punktów...... Wynik procentowy Informacje dla ucznia

Bardziej szczegółowo

Oligopol. Jest to rynek, na którym niewielka liczba firm zachowuje się w sposób b strategiczny i ają niezależnie od siebie, ale uwzględniaj

Oligopol. Jest to rynek, na którym niewielka liczba firm zachowuje się w sposób b strategiczny i ają niezależnie od siebie, ale uwzględniaj Oligopol Jest to rynek, na którym niewielka liczba firm zachowuje się w sposób b strategiczny i działaj ają niezależnie od siebie, ale uwzględniaj dniają istnienie pozostałych firm. Na decyzję firmy wpływaj

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Teoria Decyzji Wykład 12 N-OSOBOWE GRY KOOPERACYJNE - POSTAĆ CHARAKTERYSTYCZNA GRY

Teoria Decyzji Wykład 12 N-OSOBOWE GRY KOOPERACYJNE - POSTAĆ CHARAKTERYSTYCZNA GRY Teoria Decyzji Wykład 12 N-OSOBOWE GRY KOOPERACYJNE - POSTAĆ CHARAKTERYSTYCZNA GRY Na poprzednich wykładach zajmowaliśmy się głównie takimi sytuacjami, w których gracze podejmowali decyzje jednocześnie

Bardziej szczegółowo

TEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ

TEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ TEORIA GIER W EKONOMII dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Informacje Ogólne Wykład: Sobota/Niedziela Ćwiczenia: Sobota/Niedziela Dyżur: Czwartek 14.00-16.00

Bardziej szczegółowo

Regulamin GRAND PRIX WOJEWÓDZTWA EKPOL 2015

Regulamin GRAND PRIX WOJEWÓDZTWA EKPOL 2015 Regulamin GRAND PRIX WOJEWÓDZTWA EKPOL 2015 1. Osoby uprawnione do zdobywania punktów w GPW oraz kwestie ogólne A. W GPW 2015 klasyfikowani będą tylko zawodnicy, będący aktualnie (czyli w dniu rozgrywania

Bardziej szczegółowo

PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3

PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 Rozwiązania zadań nie były w żaden sposób konsultowane z żadnym wiarygodnym źródłem informacji!!!

Bardziej szczegółowo

Algorytmy ewolucyjne (3)

Algorytmy ewolucyjne (3) Algorytmy ewolucyjne (3) http://zajecia.jakubw.pl/nai KODOWANIE PERMUTACJI W pewnych zastosowaniach kodowanie binarne jest mniej naturalne, niż inne sposoby kodowania. Na przykład, w problemie komiwojażera

Bardziej szczegółowo

EMERYTURY KAPITAŁOWE WYPŁATY Z II FILARA

EMERYTURY KAPITAŁOWE WYPŁATY Z II FILARA EMERYTURY KAPITAŁOWE WYPŁATY Z II FILARA Emerytury indywidualne, renta rodzinna dla wdów i wdowców, waloryzacja według zysków takie emerytury kapitałowe proponuje rząd. Dlaczego? Dlatego, że taki system

Bardziej szczegółowo

Kto jeszcze gra w domino?

Kto jeszcze gra w domino? Mirosław Dąbrowski Kto jeszcze gra w domino? Domino, choć wciąż jeszcze można jego zestawy kupić w sklepach z zabawkami, nie należy już chyba do bardzo popularnych dziecięcych rozrywek. Szkoda, bo gra

Bardziej szczegółowo

Przykład wykorzystania dodatku SOLVER 1 w arkuszu Excel do rozwiązywania zadań programowania matematycznego

Przykład wykorzystania dodatku SOLVER 1 w arkuszu Excel do rozwiązywania zadań programowania matematycznego Przykład wykorzystania dodatku SOLVER 1 w arkuszu Ecel do rozwiązywania zadań programowania matematycznego Firma produkująca samochody zaciągnęła kredyt inwestycyjny w wysokości mln zł na zainstalowanie

Bardziej szczegółowo

AUKCJE Interaktywne wykłady z cyklu pt. Teoria ekonomii w praktyce dr Przemysław Kusztelak dr Tomasz Kopczewski

AUKCJE Interaktywne wykłady z cyklu pt. Teoria ekonomii w praktyce dr Przemysław Kusztelak dr Tomasz Kopczewski AUKCJE Interaktywne wykłady z cyklu pt. Teoria ekonomii w praktyce dr Przemysław Kusztelak dr Tomasz Kopczewski Przemysław Kusztelak Slajd 1 /27 Aukcje Aukcja to mechanizm oparty na konkurencji używany

Bardziej szczegółowo

ur. 28 Czerwca 1928 w Bluefield w Wirginii, matematyk i ekonomista, profesor Uniwersytetu Princeton

ur. 28 Czerwca 1928 w Bluefield w Wirginii, matematyk i ekonomista, profesor Uniwersytetu Princeton ur. 28 Czerwca 1928 w Bluefield w Wirginii, matematyk i ekonomista, profesor Uniwersytetu Princeton Przygotowali Ostrowski Damian Ryciak Norbert Ryciuk Wiktor Seliga Marcin Lata młodości ojciec John Forbes

Bardziej szczegółowo

O czym trzeba pamiętać, pomniejszając pensję zatrudnionego

O czym trzeba pamiętać, pomniejszając pensję zatrudnionego O czym trzeba pamiętać, pomniejszając pensję zatrudnionego Autor: Marta Nowakowicz-Jankowia, ekspert ds. płac Potrąceń z wynagrodzenia dokonuje się po odliczeniu składek na ubezpieczenia społeczne i zaliczki

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, 25.06.2009 Biomatematyka

EGZAMIN MAGISTERSKI, 25.06.2009 Biomatematyka Biomatematyka 80...... Zadanie 1. (8 punktów) Rozpatrzmy prawo Hardy ego Weinberga dla loci związanej z chromosomem X o dwóch allelach A 1 i A 2. Załóżmy, że początkowa częstość allelu A 2 u kobiet jest

Bardziej szczegółowo

Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu - metodologia badań

Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu - metodologia badań Raport 1/2015 Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu - metodologia badań autor: Michał Osmoła INIME Instytut nauk informatycznych i matematycznych z zastosowaniem

Bardziej szczegółowo

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję.

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję. Zad Rozkład zmiennej losowej dyskretnej : a)dane są wartości zmiennej losowej: 2, 4, 2,,, 3, 2,. Obliczyć wartość średnią i wariancję. b)oceny z pracy klasowej w tabeli: Ocena 2 3 4 5 6 Liczba uczniów

Bardziej szczegółowo

Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu dla odczytu Australia Employment Change

Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu dla odczytu Australia Employment Change Raport 4/2015 Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu dla odczytu Australia Employment Change autor: Michał Osmoła INIME Instytut nauk informatycznych i matematycznych

Bardziej szczegółowo

Instytut Informatyki Uniwersytet Wrocławski. Dane w sieciach. (i inne historie) Marcin Bieńkowski

Instytut Informatyki Uniwersytet Wrocławski. Dane w sieciach. (i inne historie) Marcin Bieńkowski Dane w sieciach (i inne historie) Marcin Bieńkowski Jak przechowywać dane w sieciach (strony WWW, bazy danych, ) tak, żeby dowolne ciągi odwołań do (części) tych obiektów mogły być obsłużone małym kosztem?

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 2 Klasyczna definicja prawdopodobieństwa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Według klasycznej

Bardziej szczegółowo

Przykładowe rozwiązania

Przykładowe rozwiązania Przykładowe rozwiązania (E. Ludwikowska, M. Zygora, M. Walkowiak) Zadanie 1. Rozwiąż równanie: w przedziale. ( ) ( ) ( )( ) ( ) ( ) ( ) Uwzględniając, że x otrzymujemy lub lub lub. Zadanie. Dany jest czworokąt

Bardziej szczegółowo

Mariusz Próchniak Katedra Ekonomii II Szkoła Główna Handlowa w Warszawie WARTOŚĆ INFORMACJI. Ekonomia menedżerska

Mariusz Próchniak Katedra Ekonomii II Szkoła Główna Handlowa w Warszawie WARTOŚĆ INFORMACJI. Ekonomia menedżerska Mariusz Próchniak Katedra Ekonomii II Szkoła Główna Handlowa w Warszawie WARTOŚĆ INFORMACJI Ekonomia menedżerska 1 2 Przykład Problem poszukiwacza ropy Firma poszukująca ropy musi zdecydować, czy rozpocząć

Bardziej szczegółowo

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut

Bardziej szczegółowo

Wojna morska algorytmy przeszukiwania

Wojna morska algorytmy przeszukiwania Temat 6 Wojna morska algorytmy przeszukiwania Streszczenie Wyszukiwanie informacji w wielkich zbiorach danych wymagają często użycia komputerów. Wymaga to ciągłego doskonalenia szybkich i efektywnych metod

Bardziej szczegółowo

Podzielność liczb; iloczyn i suma dzielników

Podzielność liczb; iloczyn i suma dzielników Podzielność liczb; iloczyn i suma dzielników Liczba dzielników Postać (rozkład) kanoniczna każdej liczby N = p α1 1 pα2 2... pαr 1 pαr r. Każdy dzielnik d naszej liczby ma swojego partnera d 1 : N = d

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Dynamiczne metody oceny opłacalności inwestycji tonażowych

Dynamiczne metody oceny opłacalności inwestycji tonażowych Dynamiczne metody oceny opłacalności inwestycji tonażowych Dynamiczne formuły oceny opłacalności inwestycji tonażowych są oparte na założeniu zmiennej (malejącej z upływem czasu) wartości pieniądza. Im

Bardziej szczegółowo