ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA

Wielkość: px
Rozpocząć pokaz od strony:

Download "ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA"

Transkrypt

1 ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA DYNAMICZNYCH LOKAT KAPITAŁOWYCH Krzysztof Gąsior Uniwersytet Rzeszowski Streszczenie Celem referatu jest zaprezentowanie praktycznego zastosowania zasady maksimum Pontriagina. Dla matematycznego formułowania problemu korzystamy ze znanego modelu dynamicznych lokat kapitałowych, który w badanym przez nas zagadnieniu jest liniowym układem równań różniczkowych. W naszych rozważaniach będziemy się starać wyznaczyć warunki w jaki sposób podzielić nasze zasoby tak, aby przy zadanych ograniczeniach finansowych w końcowym momencie czasu uzyskać maksymalny zysk z inwestycji. 1. Wprowadzenie Niech =, oznacza przedział osi liczbowej czasu o elementach t. Niech X oznacza n wymiarową przestrzeń Euklidesa. Element tej przestrzeni () R nazywamy wektorem stanu. Niech U oznacza r wymiarową przestrzeń sterowania. Element tej przestrzeni () R nazywamy wektorem sterowania. Dany jest zbiór będący iloczynem kartezjańskim. Przekrój tego zbioru oznaczamy przez () dla każdego. Odpowiednio rzut () na przestrzeń X oznaczamy przez (), a przekrój () przy ustalonym przez (,). Niech pary funkcji ((),()) określone na przedziale, spełniają następujące warunki: 1. Wektor stanu () jest ciągły i przedziałami różniczkowalny. 2. Wektor sterowania () jest przedziałami ciągły. 3. Dla każdego ustalonego funkcja ((),()) przyjmuje wartości ze zbioru (), to jest (),() (), czyli (), (,()). (1) W szczególności przy =, = ( ) ( ),( ) ( ) (2) ISSN , Nr 1 (1) 2009, s

2 4. W przestrzeni sterowań określony jest obszar dopuszczalnych sterowań wypukły, ograniczony i domknięty. 5. Funkcja wektorowa określona na oraz ma ciągłe pochodne względem. 6. Pary (),() są określone na przedziale prawie wszędzie, to jest z wyjątkiem być może skończonej liczby punktów i spełniają równanie różniczkowe w postaci wektorowej =(,,) (3) 7. Na funkcjach, spełniających (3) oraz dana jest całka,(),(). Definicja (por. [2], str. 329). Zbiór par (),() spełniających wymienione założenia nazywamy zbiorem dopuszczalnych procesów sterowania D i odpowiednio () nazywamy zbiorem dopuszczalnych trajektorii, zaś () nazywamy zbiorem dopuszczalnych sterowań. Związki (1) nazywamy zwykle ograniczeniami odpowiednio na wektor stanu oraz wektor sterowania, a ograniczenia (2) warunkami granicznymi. Definicja (por.[2], str. 329). Na obszarze dopuszczalnym D dany jest funkcjonał =,,+ ( ),( ). Funkcja ( ),( ) jest określona w przestrzeni. Problem sterowania optymalnego () polega na znalezieniu takich ( (), ()) dla których powyższy funkcjonał osiąga minimalną wartość: (), (). 1. Zasada maksimum Pontriagina Twierdzenie 1 (por. [2], str. 379,Twierdzenie 8.1, Zasada maksimum Pontriagina). Jeżeli para ( (), ()) jest odpowiednio sterowaniem optymalnym i trajektorią optymalną stanu i jeżeli zbiór nie zależy od x oraz t, to prawie wszędzie w przedziale, spełniony jest warunek maksimum funkcji H dla każdego : (), (), (), (), (),,, (4) gdzie ( ):, R jest rozwiązaniem równania z warunkiem końcowym (),(),(), (),(),, () = (),, (), () ( )= (). ( ) 64

3 Wniosek (por. [2], str. 384). Jeżeli istnieje sterowanie optymalne znajdujące się w zbiorze sterowań dopuszczalnych, to spełnione są warunki: () = (),(),(),, ( () )=, () = (),(),(),, ( () )= ( ) ( ), (5) oraz spełniony jest warunek (4) dla prawie wszystkich,. Uwaga. Powyższe warunki nazywamy równaniami kanonicznymi Hamiltona. Funkcje H nazywamy funkcją Hamiltona (hamiltonianem), a zmiennymi sprzężonymi (dualnymi). 2. Zastosowanie zasady maksimum do analizy optymalności dynamiki lokat kapitałowych Niech będą dane dwa konta bankowe dla których możemy zaplanować pewną inwestycję kapitałową. Należy w jak najbardziej ekonomiczny sposób podzielić nasze zasoby tak, aby w końcowym momencie czasu uzyskać maksymalny zysk. Dla matematycznego formułowania zagadnienia korzystamy z modelu dynamicznych lokat kapitałowych (por. [3], str. 210): = +,=1,2, (6) przy warunkach brzegowych (0)=, (0)=, (7) ( ), ( ) swobodne, dane, oraz ograniczeniach na sterowanie: +,,, (8) gdzie:, jest oprocentowaniem na koncie (, R \0 oraz ),, jest saldem wpływów i wydatków (, R),, jest stanem konta w momencie czasu t (, R ), jest ilością wolnych środków możliwych do zainwestowania w chwili t ( R ). Aby zbadać jakość analizowanego zjawiska określimy funkcjonał celu, postaci: = ( + ) ( ( )+ ( )) Pierwszy składnik jest sumą przepływów pieniężnych dokonywanych pomiędzy kontami, zaś drugi sumą pieniędzy ulokowanych na kontach w momencie zakończenia procesu. Zatem minimalizacja funkcjonału będzie polegała na minimalizacji pierwszego składnika, a maksymalizacji drugiego. Współczynnik 0, uwzględnia preferencje składnika w funkcjonale. Gdyby drugi człon funkcjonału był stały i nie zależał od ( ), ( ), moglibyśmy go pominąć w obliczeniach. Jego równoważna forma ma postać: 65

4 = (0) (0) (9) O ile powyższy funkcjonał zawiera dodatkowe wyrażenie poza całką, to jednak to wyrażenie jest stałe. Wpływa ono na optymalną wartość J, ale nie na optymalne ścieżki k,k oraz optymalną wartość k (t ), k (t ). Korzystając z zasady maksimum Pontriagina, problem sprowadza się do maksymalizacji funkcji H, gdzie, zastępujemy równaniami procesu (6): =(λ +1)( + ) s (10) na obszarze wyznaczonym przez zależności (8). Oznaczmy przez = = λ +1,=1,2, (11) Otrzymujemy, że znalezienie wartości optymalnych s,s polega na maksymalizacji funkcji: = s + s, na obszarze dopuszczalnym. D W zależności od przyjmowanych wartości przez zmienne, otrzymujemy: =, =,, <0, (12) =, = +, 0, (13) = +, =, 0. (14) W warunkach (13 ) i (14 ) zakładamy, że co najmniej jedna zmienna (), () jest dodatnia. Wyznaczmy teraz zmienne sprzężone. Korzystając z (5) oraz (10) otrzymujemy: λ = = μ (λ +1),=1,2. 66

5 Rozwiązanie szczegółowe po uwzględnieniu warunku (5) dla funkcjonału (9) ma postać: λ ()= ( ) 1,=1,2. Podstawiając otrzymany wynik do (11) mamy: ()= ( ),=1,2. Wstawiając powyższe zależności do warunków (12) (14), uwzględniając warunek, że, a dodatkowo w warunkach (13) i (14) logarytmując oraz rugując czas, otrzymujemy następujące zależności: =, =,, (12 ) = +, =, <, (13 ) =, = +, <, (14 ) Z warunku (12 ) otrzymujemy, że dla =, które wynosi: = 1 obie zmienne (), () są ujemne, czyli następuje zmiana sterowania z (13 ) lub (14 ) na (12 ). Rozważmy przypadki sterowania ze względu na wartość współczynnika preferencji w funkcjonale (9): Przypadek 1. Dla 0<<1, gdy zachodzi zależność (13 ) równania procesu są postaci: = + +, =0 a rozwiązania tego układu z warunkami początkowymi (7) wyrażają się wzorami: ()= (15) ()= Natomiast, gdy spełniony jest warunek (14 ) poprzez analogie, otrzymujemy: ()= gdzie w obu przypadkach 0,. ()= + + +, Przypadek 2. Gdy =, wtedy spełniony jest warunek (12 ), a proces kapitalizacji opisany jest w następujący sposób: ()=, 0,. ()= Przypadek 3. Gdy 1 <, wtedy zamiana procesu następuje podczas jego trwania. Niech w I etapie procesu spełniony jest warunek (13 ). Optymalne trajektorie przy warunkach początkowych (7) wyrażone są przez zależności (15), gdzie 0, ). Natomiast w II etapie opisane są równaniami: 67

6 ()=,,, ()= gdzie wartości, nie możemy wyznaczyć z warunków początkowych (7), ponieważ nie jesteśmy w momencie czasu =0. Korzystając z faktu, że proces musi być ciągły i wartości w momencie czasu = etapu I i II muszą być równe, otrzymujemy: = = Połączenie tych dwóch ścieżek daje nam, na całym przedziale czasu 0,. W analogiczny sposób możemy uzyskać ścieżkę, gdy zmiana sterowania następuje z (14 ) na (12 ). 3. Interpretacja ekonomiczna Analiza ekonomiczna wyodrębnionych przez nas przypadków jest następująca: Przypadek 1. System inwestowania polega na wybieraniu przez cały okres 0, z konta o niższym oprocentowaniu, kwot równych iloczynowi oprocentowania razy wartość kapitału początkowego ulokowanych na koncie i wpłacaniu wraz z maksymalną możliwą wartością pieniędzy równą na konto o wyższym oprocentowaniu. Przypadek 2. Strategia polega na wybieraniu z kont przez cały okres trwania procesu kwot równych iloczynowi oprocentowania i kwoty początkowej z obu kont. Również na konta nie wpłacamy żadnych nadwyżek finansowych. Przypadek 3. System polega na prowadzeniu strategii inwestowania jak w przypadku 1 przez okres czasu 0, ), a w przedziale czasu, strategii z przypadku 2. Uwaga. Maksymalny zysk z inwestowania możemy uzyskać, gdy stosujemy strategie z przypadku 1, a najmniejszy w przypadku 2. Robert Dorfman w swoim artykule podaje, że każdemu elementowi zasady maksimum możemy przypisać znaczenie ekonomiczne odwołujące się do naszej intuicji(zob. [1]). W porównaniu do omawianego w artykule, nasz Hamiltonian przyjmuje postać: (),(),(),= (),(),+ (),(),, (16) gdzie F jest wyrażeniem podcałkowym z funkcjonału (9), a drugi człon jest iloczynem skalarnym zmiennych dualnych oraz równań procesu(6). Zasada maksimum wymaga maksymalizacji funkcji H względem,. Znaczy, to że musimy w każdej chwili starać się maksymalizować łączne perspektywy zysku poprzez optymalny wybór salda. W szczególności wymaga to równoważenia spodziewanego bieżącego zysku, ze spodziewanym zwiększeniem przyszłego. Dla jaśniejszego przedstawienia, zbadamy słabą wersję zasady maksimum: = + () =0,=1,2. Po sprowadzeniu do postaci: = (),=1,2, 68

7 warunek ten pokazuje, że optymalnie wybrane, muszą równoważyć każdy krańcowy wzrost bieżącego zysku umożliwiony przez tę strategię(lewa strona równania) z krańcowym zwiększeniem przyszłego zysku, która będzie wołane tą strategią poprzez zwiększanie zasobów kapitału. Zasada Pontriagina korzysta z dwóch równań ruchu. Jedno równanie, dla zmiennej stanu jest bezpośrednio opisane równaniami (6). Charakteryzuje ono sposób, w jaki nasze decyzje wpływają na stopę zmiany kapitału. Równania ruchu dla zmiennej dualnej opisują wzory: = = () =1,2, lub też po przemnożeniu przez 1: = + () =1,2, Lewa strona powyższego równania określa stopę deprecjacji(spadku) w czasie ceny dualnej. Z równań ruchu wynika, że stopa ta jest równa co do wielkości różnicy dwóch składowych po prawej stronie. Pierwszy z nich reprezentuje krańcowy wpływ kapitału na bieżący zysk. Natomiast drugi, krańcowy wzrost kapitału na zwiększenie wartości kapitału. Zasada maksimum w tym przypadku oznacza, że stopa deprecjacji ceny dualnej jest równa stopie wzrostu różnicy bieżącego i przyszłego zysku, dzięki gromadzeniu kapitału. Na zakończenie wyjaśnimy znaczenie warunku zakończenia procesu w twierdzeniu 1. Przy sztywnym horyzoncie zakładamy, że liczą się tylko zyski uzyskane w okresie 0,. W naszym przypadku λ ( )=0,=1,2. Oznacza, to że cena dualna kapitału powinna spaść do zera w końcowym momencie. Dzieje się tak, ponieważ wartość kapitału zależy wyłącznie od tego, ile może nam przynieść zysku. Wynika stąd, że zajmowanie się gromadzenie kapitału pod koniec okresu planowania nie przyniesie nam znaczących korzyści. Zatem powinniśmy starać się zgromadzić jak najwięcej kapitału do chwili. 4. Bibliografia 1. Dorfman R., An Economic Interpretation of Optimal Control Theory, The American Economic Review, Vol. 59, No. 5., Grudzień 1969r. 2. Górecki H., Optymalizacja systemów dynamicznych, PWN, Warszawa Panek E., Elementy ekonomii matematycznej równowaga i wzrost, PWN, Warszawa

Zasada maksimum Pontriagina

Zasada maksimum Pontriagina 25.04.2015 Abstrakt Wiele zagadnień praktycznych dotyczących układów dynamicznych wymaga optymalizacji pewnych wielkości. Jednakże zwykła teoria gładkich układów dynamicznych zajmuje się jednak tylko opisem

Bardziej szczegółowo

Optymalne inwestowanie w rozwój firmy. Zastosowanie teorii sterowania.

Optymalne inwestowanie w rozwój firmy. Zastosowanie teorii sterowania. Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Izabela Asiewicz Nr albumu: 305038 Optymalne inwestowanie w rozwój firmy. Zastosowanie teorii sterowania. Praca licencjacka na kierunku

Bardziej szczegółowo

1. Podstawowe pojęcia

1. Podstawowe pojęcia 1. Podstawowe pojęcia Sterowanie optymalne obiektu polega na znajdowaniu najkorzystniejszej decyzji dotyczącej zamierzonego wpływu na obiekt przy zadanych ograniczeniach. Niech dany jest obiekt opisany

Bardziej szczegółowo

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby Zadania 1 Przedsiębiorstwo wytwarza cztery rodzaje wyrobów: A, B, C, D, które są obrabiane na dwóch maszynach M 1 i M 2. Czas pracy maszyn przypadający na obróbkę jednostki poszczególnych wyrobów podany

Bardziej szczegółowo

Matematyka bankowa 1 1 wykład

Matematyka bankowa 1 1 wykład Matematyka bankowa 1 1 wykład Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address: klimdr@math.uni.ldz.pl

Bardziej szczegółowo

Nieskończona jednowymiarowa studnia potencjału

Nieskończona jednowymiarowa studnia potencjału Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

9 Przekształcenia liniowe

9 Przekształcenia liniowe 9 Przekształcenia liniowe Definicja 9.1. Niech V oraz W będą przestrzeniami liniowymi nad tym samym ciałem F. Przekształceniem liniowym nazywamy funkcję ϕ : V W spełniającą warunek (LM) v1,v 2 V a1,a 2

Bardziej szczegółowo

A. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe 1

A. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe 1 A. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe ZAGADNIENIE DUALNE Z każdym zagadnieniem liniowym związane jest inne zagadnienie nazywane dualnym. Podamy teraz teraz jak budować zagadnienie

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo

Bardziej szczegółowo

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko.

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko. Inwestycje finansowe Wycena obligacji. Stopa zwrotu z akcji. yzyko. Inwestycje finansowe Instrumenty rynku pieniężnego (np. bony skarbowe). Instrumenty rynku walutowego. Obligacje. Akcje. Instrumenty pochodne.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE] Spis treści 1 Metoda geometryczna... 2 1.1 Wstęp... 2 1.2 Przykładowe zadanie... 2 2 Metoda simpleks... 6 2.1 Wstęp... 6 2.2 Przykładowe zadanie... 6 1 Metoda geometryczna Anna Tomkowska 1 Metoda geometryczna

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE A. RÓWNANIA RZĘDU PIERWSZEGO Uwagi ogólne Równanie różniczkowe zwyczajne rzędu pierwszego zawiera. Poza tym może zawierać oraz zmienną. Czyli ma postać ogólną Na przykład

Bardziej szczegółowo

Wartość przyszła pieniądza

Wartość przyszła pieniądza O koszcie kredytu nie można mówić jedynie na podstawie wysokości płaconych odsetek. Dla pożyczającego pieniądze najważniejszą kwestią jest kwota, jaką będzie musiał zapłacić za korzystanie z cudzych środków

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych

Bardziej szczegółowo

Teoria popytu. Popyt indywidualny konsumenta

Teoria popytu. Popyt indywidualny konsumenta Teoria popytu Popyt indywidualny konsumenta Koszyk towarów Definicja 1 Wektor x=(x 1,x 2,x 3,...,x n ) taki, że x i 0 dla każdego i,w którym i-ta współrzędna oznacza ilość towaru nr i, którą konsument

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Programowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a

Programowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a Programowanie nieliniowe Badania operacyjne Wykład 3 Metoda Lagrange a Plan wykładu Przykład problemu z nieliniową funkcją celu Sformułowanie problemu programowania matematycznego Podstawowe definicje

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Ekonomia matematyczna - 1.2

Ekonomia matematyczna - 1.2 Ekonomia matematyczna - 1.2 6. Popyt Marshalla, a popyt Hicksa. Poruszać się będziemy w tzw. standardowym polu preferencji X,, gdzie X R n i jest relacją preferencji, która jest: a) rosnąca (tzn. x y x

Bardziej szczegółowo

1 Całki funkcji wymiernych

1 Całki funkcji wymiernych Całki funkcji wymiernych Definicja. Funkcją wymierną nazywamy iloraz dwóch wielomianów. Całka funkcji wymiernej jest więc postaci: W (x) W (x) = an x n + a n x n +... + a x + a 0 b m x m + b m x m +...

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH

PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Mariusz Próchniak Katedra Ekonomii II, SGH PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Ekonomia menedżerska 1 2 Wartość przyszła (FV future value) r roczna stopa procentowa B kwota pieniędzy, którą

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

Algorytm simplex i dualność

Algorytm simplex i dualność Algorytm simplex i dualność Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 15, 2016 Łukasz Kowalik (UW) LP April 15, 2016 1 / 35 Przypomnienie 1 Wierzchołkiem wielościanu P nazywamy

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (I)

Równanie przewodnictwa cieplnego (I) Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

Metody niedyskontowe. Metody dyskontowe

Metody niedyskontowe. Metody dyskontowe Metody oceny projektów inwestycyjnych TEORIA DECYZJE DŁUGOOKRESOWE Budżetowanie kapitałów to proces, który ma za zadanie określenie potrzeb inwestycyjnych przedsiębiorstwa. Jest to proces identyfikacji

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna

Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna Pochodna funkcji c.d.-wykład 5 (5.11.07) Funkcja logistyczna Rozważmy funkcję logistyczną y = f 0 (t) = 40 1+5e 0,5t Funkcja f może być wykorzystana np. do modelowania wzrostu masy ziaren kukurydzy (zmienna

Bardziej szczegółowo

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,

Bardziej szczegółowo

Metoda mnożników Lagrange a i jej zastosowania w ekonomii

Metoda mnożników Lagrange a i jej zastosowania w ekonomii Maciej Grzesiak Metoda mnożników Lagrange a i jej zastosowania w ekonomii 1 Metoda mnożników Lagrange a znajdowania ekstremum warunkowego Pochodna kierunkowa i gradient Dla prostoty ograniczymy się do

Bardziej szczegółowo

10. Wstęp do Teorii Gier

10. Wstęp do Teorii Gier 10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo

PROGRAMOWANIE KWADRATOWE

PROGRAMOWANIE KWADRATOWE PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem

Bardziej szczegółowo

9 Funkcje Użyteczności

9 Funkcje Użyteczności 9 Funkcje Użyteczności Niech u(x) oznacza użyteczność wynikającą z posiadania x jednostek pewnego dobra. Z założenia, 0 jest punktem referencyjnym, czyli u(0) = 0. Należy to zinterpretować jako użyteczność

Bardziej szczegółowo

Zadanie. Oczywiście masa sklejonych ciał jest sumą poszczególnych mas. Zasada zachowania pędu: pozwala obliczyć prędkość po zderzeniu

Zadanie. Oczywiście masa sklejonych ciał jest sumą poszczególnych mas. Zasada zachowania pędu: pozwala obliczyć prędkość po zderzeniu Zderzenie centralne idealnie niesprężyste (ciała zlepiają się i po zderzeniu poruszają się razem). Jedno z ciał przed zderzeniem jest w spoczynku. Oczywiście masa sklejonych ciał jest sumą poszczególnych

Bardziej szczegółowo

1. Podstawy matematyki

1. Podstawy matematyki 1. Podstawy matematyki 1.1. Pola Pole wiąże wielkość fizyczną z położeniem punktu w przestrzeni W przypadku, gdy pole jest zależne od czasu, możemy je zapisać jako. Najprostszym przykładem pola jest pole

Bardziej szczegółowo

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny Funkcja Falowa Postulat 1 Dla każdego układu istnieje funkcja falowa (funkcja współrzędnych i czasu), która jest ciągła, całkowalna w kwadracie,

Bardziej szczegółowo

Spis treści. O autorach 13. Wstęp 15. Przedmowa do wydania szóstego 19

Spis treści. O autorach 13. Wstęp 15. Przedmowa do wydania szóstego 19 Matematyka dla kierunków ekonomicznych : przykłady i zadania wraz z repetytorium ze szkoły średniej / Henryk Gurgul, Marcin Suder. wyd. 6 uzup. i popr., uwzględniające podstawowy program matematyki również

Bardziej szczegółowo

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,

Bardziej szczegółowo

1 Podstawowe oznaczenia

1 Podstawowe oznaczenia Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

Definicja pochodnej cząstkowej

Definicja pochodnej cząstkowej 1 z 8 gdzie punkt wewnętrzny Definicja pochodnej cząstkowej JeŜeli iloraz ma granicę dla to granicę tę nazywamy pochodną cząstkową funkcji względem w punkcie. Oznaczenia: Pochodną cząstkową funkcji względem

Bardziej szczegółowo

MECHANIKA II. Praca i energia punktu materialnego

MECHANIKA II. Praca i energia punktu materialnego MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

Rozdział 1 PROGRAMOWANIE LINIOWE

Rozdział 1 PROGRAMOWANIE LINIOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.1 Opis programów Do rozwiązania zadań programowania

Bardziej szczegółowo

Zadania z ekonomii matematycznej Teoria produkcji

Zadania z ekonomii matematycznej Teoria produkcji Paweł Kliber Zadania z ekonomii matematycznej Teoria produkcji Zadania Zad Dla podanych funkcji produkcji a fk z k + z b fk z 6k z c fk z k z d fk z k 4 z e fk z k + z wykonaj następujące polecenia: A

Bardziej szczegółowo

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy MODEL REGRESJI LINIOWEJ. METODA NAJMNIEJSZYCH KWADRATÓW Analiza regresji zajmuje się badaniem zależności pomiędzy interesującymi nas wielkościami (zmiennymi), mające na celu konstrukcję modelu, który dobrze

Bardziej szczegółowo

Całki niewłaściwe. Całki w granicach nieskończonych

Całki niewłaściwe. Całki w granicach nieskończonych Całki niewłaściwe Całki w granicach nieskończonych Wiemy, co to jest w przypadku skończonego przedziału i funkcji ograniczonej. Okazuje się potrzebne uogólnienie tego pojęcia w różnych kierunkach (przedział

Bardziej szczegółowo

Wprowadzenie do badań operacyjnych - wykład 2 i 3

Wprowadzenie do badań operacyjnych - wykład 2 i 3 Wprowadzenie do badań operacyjnych - wykład 2 i 3 Hanna Furmańczyk 14 listopada 2008 Programowanie liniowe (PL) - wszystkie ograniczenia muszą być liniowe - wszystkie zmienne muszą być ciągłe n j=1 c j

Bardziej szczegółowo

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie

Bardziej szczegółowo

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie podstawowym dla uczniów technikum część II Figury na płaszczyźnie kartezjańskiej L.p. Temat lekcji Uczeń demonstruje opanowanie

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 4 (Materiały)

Badania Operacyjne Ćwiczenia nr 4 (Materiały) Analiza wrażliwości Rozwiązanie programu liniowego jest dopiero początkiem analizy. Z punktu widzenia decydenta (menadżera) jest istotne, żeby wiedzieć jak na rozwiązanie optymalne wpływają zmiany parametrów

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO D. Miszczyńska, M.Miszczyński KBO UŁ GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata,

Bardziej szczegółowo

Kombinacje liniowe wektorów.

Kombinacje liniowe wektorów. Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =

Bardziej szczegółowo

MODELE STRUKTUR RYNKOWYCH

MODELE STRUKTUR RYNKOWYCH MODELE STRUKTUR RYNKOWYCH ZADANIE. Mamy trzech konsumentów, którzy zastanawiają się nad nabyciem trzech rożnych programów komputerowych. Właściwości popytu konsumentów przedstawiono w następującej tabeli:

Bardziej szczegółowo

(b) Oblicz zmianę zasobu kapitału, jeżeli na początku okresu zasób kapitału wynosi kolejno: 4, 9 oraz 25.

(b) Oblicz zmianę zasobu kapitału, jeżeli na początku okresu zasób kapitału wynosi kolejno: 4, 9 oraz 25. Zadanie 1 W pewnej gospodarce funkcja produkcji może być opisana jako Y = AK 1/2 N 1/2, przy czym A oznacza poziom produktywności, K zasób kapitału, a N liczbę zatrudnionych. Stopa oszczędności s wynosi

Bardziej szczegółowo

Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych

Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych Arytmetyka liczb całkowitych Wykład 1 Na początku zajmować się będziemy zbiorem liczb całkowitych Z = {0, ±1, ±2,...}. Zakładamy, że czytelnik zna relację

Bardziej szczegółowo

2.1 Wartość Aktualna Renty Stałej

2.1 Wartość Aktualna Renty Stałej 2.1 Wartość Aktualna Renty Stałej Zakładamy że dana osoba ma dostać kwotę o stałej wartości nominalnej x przez N okresów (zwykle miesięcznie lub rocznie), np. stała renta/emerytura. Zakładamy że pierwsza

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (II)

Równanie przewodnictwa cieplnego (II) Wykład 5 Równanie przewodnictwa cieplnego (II) 5.1 Metoda Fouriera dla pręta ograniczonego 5.1.1 Pierwsze zagadnienie brzegowe dla pręta ograniczonego Poszukujemy rozwiązania równania przewodnictwa spełniającego

Bardziej szczegółowo

Model przepływów międzygałęziowych (model Leontiewa)

Model przepływów międzygałęziowych (model Leontiewa) Model przepływów międzygałęziowych (model Leontiewa) Maciej Grzesiak Przedstawimy tzw. analizę wejścia-wyjścia jako narzędzie do badań ekonomicznych. Stworzymy matematyczny model gospodarki, w którym można

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=

Bardziej szczegółowo

Formy kwadratowe. Rozdział 10

Formy kwadratowe. Rozdział 10 Rozdział 10 Formy kwadratowe Rozważmy rzeczywistą macierz symetryczną A R n n Definicja 101 Funkcję h : R n R postaci h (x) = x T Ax (101) nazywamy formą kwadratową Macierz symetryczną A występującą w

Bardziej szczegółowo

Wstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych

Wstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych Wstęp Ruch po okręgu jest najprostszym przypadkiem płaskich ruchów krzywoliniowych. W ogólnym przypadku ruch po okręgu opisujemy równaniami: gdzie: dowolna funkcja czasu. Ruch odbywa się po okręgu o środku

Bardziej szczegółowo

zaznaczymy na osi liczbowej w ten sposób:

zaznaczymy na osi liczbowej w ten sposób: 1. Zagadnienia teoretyczne. 1.1. Przedział domknięty Przykład 1. Pisząc mamy na myśli wszystkie liczby rzeczywiste od -4 do 7, razem z -4 i 7. Jeśli napiszemy, będziemy mówić o zbiorze wszystkich liczb

Bardziej szczegółowo

Dobija M., Smaga E.; Podstawy matematyki finansowej i ubezpieczeniowej, PWN Warszawa- -Kraków 1995.

Dobija M., Smaga E.; Podstawy matematyki finansowej i ubezpieczeniowej, PWN Warszawa- -Kraków 1995. Bibliografia Dobija M., Smaga E.; Podstawy matematyki finansowej i ubezpieczeniowej, PWN Warszawa- -Kraków 1995. Elton E.J., Gruber M.J., Nowoczesna teoria portfelowa i analiza papierów wartościowych,

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

WPROWADZENIE DO EKONOMII MENEDŻERSKIEJ.

WPROWADZENIE DO EKONOMII MENEDŻERSKIEJ. Wykład 1 Wprowadzenie do ekonomii menedżerskiej 1 WPROWADZENIE DO EKONOMII MENEDŻERSKIEJ. PODEJMOWANIE OPTYMALNYCH DECYZJI NA PODSTAWIE ANALIZY MARGINALNEJ. 1. EKONOMIA MENEDŻERSKA ekonomia menedżerska

Bardziej szczegółowo

LVIII Olimpiada Matematyczna

LVIII Olimpiada Matematyczna LVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2007 r. (pierwszy dzień zawodów) Zadanie 1. W trójkącie ostrokątnym A punkt O jest środkiem okręgu opisanego,

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

WSTĘP ZAŁOŻENIA DO PROJEKTU

WSTĘP ZAŁOŻENIA DO PROJEKTU UNIWERSYTET ZIELONOGÓRSKI WYDZIAŁ ZARZĄDZANIA Przykład analizy opłacalności przedsięwzięcia inwestycyjnego WSTĘP Teoria i praktyka wypracowały wiele metod oceny efektywności przedsięwzięć inwestycyjnych.

Bardziej szczegółowo

Optymalizacja liniowa w liczbach całkowitych (PLC)

Optymalizacja liniowa w liczbach całkowitych (PLC) * ) && &&& % ( - &&(() n && - n% ( ' n!"#$ Optymalizacja liniowa w liczbach całkowitych (PLC) (( & ' nn nn Zadanie (-) nazywamy zadaniem regularnym Zadanie (-) nazywamy zadaniem PLC Stosownie do tego podziału

Bardziej szczegółowo

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję

Bardziej szczegółowo

Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE

Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE Zmianą wartości pieniądza w czasie zajmują się FINANSE. Finanse to nie to samo co rachunkowość. Rachunkowość to opowiadanie JAK BYŁO i JAK JEST Finanse zajmują

Bardziej szczegółowo

Ekonometria - ćwiczenia 10

Ekonometria - ćwiczenia 10 Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna wykład 1: Indukcja i zależności rekurencyjne Gniewomir Sarbicki Literatura Kenneth A. Ross, Charles R. B. Wright Matematyka Dyskretna PWN 005 J. Jaworski, Z. Palka, J. Szymański Matematyka

Bardziej szczegółowo

Wykład 5 Kurs walutowy parytet stóp procentowych

Wykład 5 Kurs walutowy parytet stóp procentowych Wykład 5 Kurs walutowy parytet stóp procentowych dr Leszek Wincenciak WNUW 2/30 Plan wykładu: Kurs walutowy i stopy procentowe Kursy walutowe i dochody z aktywów Rynek pieniężny i rynek walutowy fektywność

Bardziej szczegółowo

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Wykład 4. Określimy teraz pewną ważną klasę pierścieni. Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia

Bardziej szczegółowo

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Wydział Matematyki i Informatyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Łódź 2008 Rozdział

Bardziej szczegółowo