Działania wewnętrzne i zewnętrzne

Wielkość: px
Rozpocząć pokaz od strony:

Download "Działania wewnętrzne i zewnętrzne"

Transkrypt

1 Autmtyk i Rtyk Alger -Wykłd - dr Adm Ćmiel Dziłi wewętrze i zewętrze Nie X ędzie ustlym iepustym zirem Def Dwurgumetwym dziłiem wewętrzym w zirze X zywmy fukję Jeśli X i y X t y X zywmy wyikiem dziłi rgumet i y : X X X Wygdiejszy jest zpis dziłi y zmist y Przykłdy ddwie + i mżeie są dziłimi wewętrzymi w zir N Z W R dejmwie ie jest dziłiem wewętrzym w N 3 dziłie m m jest dziłiem wewętrzym w N 4 ziór rtów kwdrtu wkół jeg śrdk przeksztłjąy g sieie Ozzmy O k rót π kąt k We teg X { O } 0 O O O3 Jk dziłie wewętrze rzptrzymy skłdie È rtów Mżemy ułżyć stępują telkę dziłi È O 0 O O O 3 O 0 O 0 O O O 3 O O O O 3 O 0 O O O 3 O 0 O O 3 O 3 O 0 O O 5 Dziłi są wewętrze w R Nie A i F ędą dwm ustlym iepustymi zirmi Def Dwurgumetwym dziłiem zewętrzym w zirze X d zirem F zywmy fukję g : F X X Przykłd Nie X ędzie zirem wektrów płszzyźie FR Dziłiem zewętrzym w zirze wektrów X d zirem R jest mżeie wektr przez lizę rzezywistą Uwg Piewż ziry X i F ie muszą yć róże t dziłie wewętrze jest szzególym przypdkiem dziłi zewętrzeg Wyre włsśi dziłi wewętrzeg Nie ędzie dziłiem wewętrzym w zirze X Def Elemet e X zywmy elemetem eutrlym dziłi gdy X ee

2 Autmtyk i Rtyk Alger -Wykłd - dr Adm Ćmiel Tw Jeżeli dziłie wewętrze psid elemet eutrly t jest jedyy Dwiewprst Przypuśćmy że dziłie psid dw róże elemety eutrle e e e e e e sprzezść Pierwsz rówść jest ksekweją fktu że e jest elemetem eutrlym drug ksekweją fktu że e jest elemetem eutrlym Def Dziłie zywmy przemieym gdy y X y y Def Dziłie zywmy łązym gdy yz X y z y z Elemet symetryzy dwrty przeiwy Nie ędzie dziłiem wewętrzym w zirze X psidjąym elemet eutrly e Def Elemet X zywmy elemetem symetryzym dwrtym przeiwym d elemetu X gdy e Tw Jeżeli dziłie łąze psid elemet eutrly t elemet symetryzy d deg elemetu ile istieje jest wyzzy jedzzie Dw iewprst Nie y i y ędą elemetmi symetryzymi d deg elemetu Wówzs y y e y y y y e y y Pdstwwe struktury lgerize Grup Def Nie X «ędzie iepustym zirem dziłiem w zirze X Prę X zywmy grupą jeżeli y X y X dziłie jest wewętrze yz X y z y z dziłie jest łąze 3 e X X ee istieje elemet eutrly dziłi jest jedyy! 4 X X e dl kżdeg elemetu istieje elemet symetryzy Jeżeli ddtkw jest spełiy wruek 5 y X y y przemieść dziłi t grupę X zywmy grupą przemieą l elwą Grupę skńzej lizie elemetów zywmy grupą skńzą Jeżeli X jest grupą skńzą mjąą elemetów t mówimy że rząd grupy X jest rówy zpisujemy X Jeżeli grup jest ieskńz t piszemy X Niels Ael mtemtyk rweski

3 Autmtyk i Rtyk Alger -Wykłd - dr Adm Ćmiel W grupie X ptrfimy rzwiązć rówie rzwiąziem jest rz rówie rzwiąziem jest Addytywy i multipliktywy zpis dziłi Jeżeli dziłie m pde włsśi d ddwi liz t dziłie zywmy ddytywym i używmy symlu + Elemet eutrly e dziłi ddytyweg + zywmy zerem i zzmy e0 tmist elemet symetryzy d elemetu zywmy elemetem przeiwym i zzmy Jeżeli dziłie m pde włsśi d mżei liz t dziłie zywmy multipliktywym i używmy symlu Elemet eutrly e dziłi multipliktyweg zywmy jedyką i zzmy e tmist elemet symetryzy d elemetu zywmy elemetem dwrtym i zzmy Przykłdy grup { } multipliktyw grup elw R + ddytyw grup elw R ie jest grupą multipliktywą 0 ie m elemetu dwrteg R-{0} multipliktyw grup elw ziór X { O0 O O O3} rtów kwdrtu wkół jeg śrdk przeksztłjąy g sieie z dziłiem skłdi È rtów jest grupą elwą Ziór X{03} z dziłiem reszt z dzielei + przez 4 jest grupą elwą Pdgrup Def Nie X ędzie grupą Y X pdzirem ziru X Jeśli Y jest grupą t Y zywmy pdgrupą grupy X Mrfizmy dwzrwi grup Nie X i Y ędą grupmi Def Odwzrwie : X Y zywmy mmrfizmem grupy X w grupę Y gdy X : Gdy dwzrwie jest ijekją t : X Y zywmy izmrfizmem grup X i Y Przykłdy Grupy R + i R + są izmrfize Izmrfizm ustwi fukj lg 3

4 Autmtyk i Rtyk Alger -Wykłd - dr Adm Ćmiel Cił Ituij Ciłem zywmy ziór w którym ptrfimy wykywć 4 pdstwwe dziłi +- : Piewż dejmwie t ddwie elemetu przeiweg dzieleie t mżeie przez dwrtść wystrzy rzwżć dziłi + i Def Nie X «ędzie iepustym zirem i dziłimi X Trójkę X zywmy iłem jeżeli y X y X yz X y z yz 3 0 X X 00 4 X - X y X y y pstulty 5 mż krótk zpisć X jest grupą przemieą 6 y X y X 7 yz X y z yz 8 X X 9 X {0} - X - pstulty 6 9 mż krótk zpisć X-{0} jest grupą 0 yz X y z z y z i z y z z y jest rzdziele względem Jeżeli pdt y X y y t ił zywmy iłem przemieym Przykłdy ił sprwdzić ćwizei przemiee ił liz wymiery W + przemiee ił liz rzezywisty R + A + gdzie A { + : W} Pdił Def Nie X ędzie iłem Y X pdzirem ziru X Jeśli struktur Y jest iłem t Y zywmy pdiłem ił X Łtw pkzć że ił W + jest pdiłem ił A + gdzie A { + : W} tmist ił A + jest pdiłem ił R + 4

5 Autmtyk i Rtyk Alger -Wykłd - dr Adm Ćmiel 5 Dziłi mdul w zirze liz łkwity Z Nie ędzie dwlą ustlą lizą turlą W zirze liz łkwity defiiujemy we dziłi i w stępująy spsó: + reszt z dzielei + przez reszt z dzielei przez Łtw pkzć ćwizei że + + Mrfizmy dwzrwi ił Nie X i Y ędą iłmi Def Odwzrwie : X Y zywmy mmrfizmem ił X w ił Y gdy : X Gdy dwzrwie jest ijekją t : X Y zywmy izmrfizmem ił X i Y

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zsd idukcji mtemtyczej. Dowody idukcyje. W rozdzile sformułowliśmy dl liczb turlych zsdę miimum. Bezpośredią kosekwecją tej zsdy jest brdzo wże twierdzeie, które umożliwi i ułtwi wiele dowodów twierdzeń

Bardziej szczegółowo

MATLAB PODSTAWY. [ ] tworzenie tablic, argumenty wyjściowe funkcji, łączenie tablic

MATLAB PODSTAWY. [ ] tworzenie tablic, argumenty wyjściowe funkcji, łączenie tablic MTLB PODSTWY ZNKI SPECJLNE symbol przypisi [ ] tworzeie tblic, rgumety wyjściowe fukcji, łączeie tblic { } ideksy struktur i tblic komórkowych ( ) wisy do określi kolejości dziłń, do ujmowi ideksów tblic,

Bardziej szczegółowo

MATHCAD 2000 - Obliczenia iteracyjne, macierze i wektory

MATHCAD 2000 - Obliczenia iteracyjne, macierze i wektory MTHCD - Obliczei itercyje, mcierze i wektory Zmiee zkresowe. Tblicowie fukcji Wzór :, π.. π..8.9...88.99..8....8.98. si().9.88.89.9.9.89.88.9 -.9 -.88 -.89 -.9 - Opis, :,, przeciek, Ctrl+Shift+P, /,, ;średik,

Bardziej szczegółowo

MATEMATYKA W EKONOMII I ZARZĄDZANIU

MATEMATYKA W EKONOMII I ZARZĄDZANIU MATEMATYA W EONOMII I ZARZĄDZANIU Wykłd - Alger iiow) eszek S Zre Wektore zywy iąg liz ) p 567) 5) itp W ekooii koszyk dór zpisuje się jko wektory Np 567) jko koszyk dór wyspie Hul Gul oŝe ozzć 5 jłek

Bardziej szczegółowo

TABLICE WZORÓW I TWIERDZEŃ MATEMATYCZNYCH zakres GIMNAZJUM

TABLICE WZORÓW I TWIERDZEŃ MATEMATYCZNYCH zakres GIMNAZJUM TABLICE WZORÓW I TWIERDZEŃ MATEMATYCZNYCH zkres GIMNAZJUM LICZBY Lizy turle: 0,1,,,4, Koleje lizy turle zwsze różią się o 1, zpis, +1, +, gdzie to dowol liz turl ozz trzy koleje lizy turle, Lizy pierwsze:

Bardziej szczegółowo

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A

Bardziej szczegółowo

Ł Ł Ś Ś ź Ć ź ź ź Ń Ł Ż Ś ź Ę Ż Ń Ę ź ź ź Ę ź Ł Ę ź Ę Ę Ę ź ź Ś ź ź Ł Ł Ź Ę Ł Ś ź Ę Ę Ę ń ź Ą ó Ę ĘĘ ź Ę ź Ą Ł Ę Ł Ą ź Ę ó Ź Ś ź Ń Ę Ę ĘĘ Ą Ś Ę Ł Ę Ć Ź ź Ź Ę Ę Ź ź Ź Ź Ź Ł Ż Ł Ę ź Ż Ź ź Ź Ź Ź Ź Ą Ż ŚĆ

Bardziej szczegółowo

Ł Ł ń ń Ą ń ń Ś ń Ź ń ń ń Ż ń Ł ń Ś ń ń ń Ą Ą Ł Ż ń ń Ś ń Ź ń ń ć Ź ń ć Ś ć ć ń Ź ń Ą Ł Ł Ę ĘĘ Ż Ź ć Ł ń Ś Ą Ł Ł Ł Ą Ę Ę ń Ń ń Ź ń ć Ż ń Ż Ś ń Ń ń Ń Ź Ą ć Ł ń ć ć Ź Ą Ą Ą Ź Ą Ł Ą Ś ń ń Ś Ś Ą Ć ŚĆ Ł ć Ż

Bardziej szczegółowo

Ź Ę Ę Ś Ś Ś ć Ę ć Ś ć Ź Ż Ś ć Ż Ź Ż Ą Ż Ę Ś Ź Ę Ź Ż Ó Ś ć ć Ś Ż Ć ź Ś Ń Ź ć Ó ź Ś Ń ź Ń Ź Ź ź Ż Ź Ź Ź Ź Ż Ź ć Ż Ę ź Ę ź ć Ń ć ć ć ć Ź Ę Ą ć Ę ć Ń ć ć Ź Ż ć Ó Ó Ó Ż ć Ó Ż Ę Ą Ź Ó Ń Ł ź ź Ń ć ć Ż ć Ś Ą

Bardziej szczegółowo

Ą Ń Ś Ę ź Ś Ś ź ź Ś Ś ź Ł Ś Ś Ś Ł ĘĘ Ś Ś Ś ć Ś Ś Ś Ś Ł Ó Ś Ł ć Ś Ść Ś Ś Ś Ń ć Ś Ł Ś Ź Ą ć ć Ł ź Ś Ą Ś Ł Ą Ś Ś Ą Ś Ś ź Ś ć Ł ć ć Ł Ł ć Ź ć ć Ś ć ź Ź ć Ś ć ć ć Ś Ą Ś Ś Ś ć Ś Ść Ś ć Ł ć Ś ć Ś Ś Ń ć ć Ł Ś

Bardziej szczegółowo

CIĄGI LICZBOWE. Naturalną rzeczą w otaczającym nas świecie jest porządkowanie różnorakich obiektów, czyli ustawianie ich w pewnej kolejności.

CIĄGI LICZBOWE. Naturalną rzeczą w otaczającym nas świecie jest porządkowanie różnorakich obiektów, czyli ustawianie ich w pewnej kolejności. CIĄGI LICZBOWE Nturlą rzeczą w otczjącym s świecie jest porządkowie różorkich obiektów, czyli ustwiie ich w pewej kolejości. Dl przykłdu tworzymy różego rodzju rkigi, p. rkig jlepszych kierowców rjdowych.

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a

2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a Ciągi liczbowe Defiicj Fukcję : N R zywmy iem liczbowym Wrtość fukcji () ozczmy symbolem i zywmy -tym lub ogólym wyrzem u Ciąg Przykłdy Defiicj róŝic zpisujemy rówieŝ w postci { } + Ciąg liczbowy { } zywmy

Bardziej szczegółowo

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1,

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1, I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczy turle N : N 0,,,,,,..., N,,,,,... liczy cłkowite C : C...,,,, 0,,,,... Kżdą liczę wymierą moż przedstwić z pomocą ułmk dziesiętego skończoego

Bardziej szczegółowo

Wprowadzenie: Do czego służą wektory?

Wprowadzenie: Do czego służą wektory? Wprowdzenie: Do czego służą wektory? Mp połączeń smolotowych Isiget pokzuje skąd smoloty wyltują i dokąd doltują; pokzne jest to z pomocą strzłek strzłki te pokzują przemieszczenie: skąd dokąd jest dny

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi

Bardziej szczegółowo

2. Funktory TTL cz.2

2. Funktory TTL cz.2 2. Funktory TTL z.2 1.2 Funktory z otwrtym kolektorem (O.. open olletor) ysunek poniżej przedstwi odnośny frgment płyty zołowej modelu. Shemt wewnętrzny pojedynzej rmki NAND z otwrtym kolektorem (O..)

Bardziej szczegółowo

2.3.1. Iloczyn skalarny

2.3.1. Iloczyn skalarny 2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi

Bardziej szczegółowo

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostką budżetową Zamawiającym Wykonawcą

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostką budżetową Zamawiającym Wykonawcą W Z Ó R U M O W Y n r 1 4 k J Bk 2 0 Z a ł» c z n i k n r 5 z a w a r t a w G d y n i w d n i u 1 4 ro ku p o m i 2 0d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j ei d n o s t k» b

Bardziej szczegółowo

Wprowadzenie. metody elementów skończonych

Wprowadzenie. metody elementów skończonych Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów

Bardziej szczegółowo

Mamy nadzieję, że zestaw, który przygotowaliśmy maturzystom, spełni swoje zadanie i przyczyni się do egzaminacyjnych sukcesów.

Mamy nadzieję, że zestaw, który przygotowaliśmy maturzystom, spełni swoje zadanie i przyczyni się do egzaminacyjnych sukcesów. Zestw wzoów mtemtyzy zostł pzygotowy dl potze egzmiu mtulego z mtemtyki oowiązująej od oku 00. Zwie wzoy pzydte do ozwiązi zdń z wszystki dziłów mtemtyki, dltego może służyć zdjąym ie tylko podzs egzmiu,

Bardziej szczegółowo

Ź ń Ś Ś ń Ó ń Ó Ó ń Ę ć ń ć ń ń Ó Ą ń Ó ń ń Ż Ć ń Ś ŚĆ ź ń ń ń ń ń Ó ń Ć Ż Ć ń ń ń Ś Ż Ś ń ć ń Ą Ż ń Ó Ś Ż Ż Ś ŻĆ Ś Ó ć ń ć Ą ń ń Ś ń ń Ś Ż ź Ż ń Ś Ź Ż Ś ź Ę ć ź ć ź ń Ę ń ń Ę Ę Ę Ę Ę Ę Ę Ę Ź Ę Ę Ę Ń ć

Bardziej szczegółowo

SKRYPT DO ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI DLA STUDENTÓW I ROKU AKADEMII MORSKIEJ W SZCZECINIE

SKRYPT DO ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI DLA STUDENTÓW I ROKU AKADEMII MORSKIEJ W SZCZECINIE Publikcj współfisow ze środków Uii Europejskiej w rmch Europejskiego Fuduszu Społeczego SKRYPT DO ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI DLA STUDENTÓW I ROKU AKADEMII MORSKIEJ W SZCZECINIE dr iż Ryszrd Krupiński

Bardziej szczegółowo

Ę Ę Ę ż Ę Ę Ł Ż Ż ż Ę ż Ę Ż ź Ż Ź Ż Ł Ł Ż Ż Ż Ą Ą Ą ż Ż Ę Ę Ę Ą Ę ż ż Ę ż ź Ą Ć Ł Ż Ę ź Ś Ż Ż Ś Ł Ę Ę Ó Ł Ę Ę Ń Ę Ż Ż Ą ź Ż Ż Ż Ą Ę Ż Ł Ż ź Ż ź Ń Ą Ę Ę Ó Ę ż Ż ż ż ż Ł Ł Ą Ó ż Ż Ż Ę ż Ę Ż Ż Ż ź ż Ż Ż

Bardziej szczegółowo

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję: YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą

Bardziej szczegółowo

Ś ń Ż Ą Ó Ó Ż Ó ń Ó ń Ą ń Ż Ż Ź Ź Ł Ą Ą Ó Ó ń ń Ź ń Ź Ź ń ź Ó Ę Ó Ś ń ń Ż ń Ż ń ĘĘ Ą ń Ę Ą Ę Ż Ś Ó ń ź Ę Ł Ę Ż ń Ż Ż Ż Ć Ó Ś ń ń Ę Ż Ż Ź Ż ń ń ń ń Ł Ó Ą Ż Ź ń ń ń ń ń ź ń ń ń ń ń Ę Ą Ę Ó Ś ÓŻ Ą Ż Ś Ó

Bardziej szczegółowo

Ć Ź Ć Ż Ż Ą Ą Ż ć Ś Ż Ń Ź ć ć Ą Ź Ń Ś Ż Ź Ę Ą Ą Ą Ć Ż Ą Ś Ź Ś ć ć ź ć ć Ź Ź Ż Ń Ń Ą Ć ć Ż Ę ć Ż Ń ź ź ć Ę Ź Ź Ą ź ć ć Ź Ź ź ź Ź ć Ź Ą Ę Ą Ź Ą Ż ć ć ć ć Ą ć ć Ń ć ć ć ć ć ć ź ź Ń ć ć Ź Ź ć Ż ć Ź ć ć Ń Ę

Bardziej szczegółowo

START JESTEŚ WSPANIAŁYM ODKRYWCĄ!

START JESTEŚ WSPANIAŁYM ODKRYWCĄ! STRT JESTEŚ WSPNIŁYM DKRYWCĄ! TEN ZESZYT JEST WŁSNŚCIĄ ZESZYT ETNSKRB IMIĘ MTYWEM PRZEWDNIM ZESZYTU JEST ETNSKRB, CZYLI SKRB, KTÓRY NWIĄZUJE D ŻYCI NSZYCH PRZDKÓW, D ICH TRDYCJI I BYCZJÓW. NZWISK WIEK

Bardziej szczegółowo

Programowanie z więzami (CLP) CLP CLP CLP. ECL i PS e CLP

Programowanie z więzami (CLP) CLP CLP CLP. ECL i PS e CLP Progrmowie z więzmi (CLP) mjąc w PROLOGu: p(x) :- X < 0. p(x) :- X > 0. i pytjąc :- p(x). dostiemy Abort chcelibyśmy..9 CLP rozrzeszeie progrmowi w logice o kocepcję spełii ogriczeń rozwiązie = logik +

Bardziej szczegółowo

Topologia i podzbiory,

Topologia i podzbiory, Jest to tekst związny z odczytem wygłoszonym n XLV Szkole Mtemtyki Poglądowej, Co mi się podo, Jchrnk, sierpień 2010, z który utor otrzymł Medl Filc. Topologi i podziory, czyli histori jednego twierdzeni

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE M. DSTY STTYKI N ŁSZZYŹNIE. DSTY STTYKI N ŁSZZYŹNIE.. Zsdy dynmiki Newton Siłą nzywmy wektorową wielkość, któr jest mirą mechnicznego oddziływni n ciło ze strony innych cił. dlszej części ędziemy rozptrywć

Bardziej szczegółowo

Laura Opalska. Klasa 1. Gimnazjum nr 1 z Oddziałami Integracyjnym i Sportowymi im. Bł. Salomei w Skale

Laura Opalska. Klasa 1. Gimnazjum nr 1 z Oddziałami Integracyjnym i Sportowymi im. Bł. Salomei w Skale Trójkąt Pscl od kuchni Kls 1 Gimnzjum nr 1 z Oddziłmi Integrcyjnym i Sportowymi im. Bł. Slomei w Skle ul. Ks.St.Połetk 32 32-043 Skł Gimnzjum nr 1 z Oddziłmi Integrcyjnymi i Sportowymi im. Bł. Slomei w

Bardziej szczegółowo

Wykład 9: Różne rodzaje zbieżności ciągów zmiennych losowych. Prawa wielkich liczb.

Wykład 9: Różne rodzaje zbieżności ciągów zmiennych losowych. Prawa wielkich liczb. Rchuek prwopoobieństw MA1181 Wyził T, MS, rok k. 2013/14, sem. zimowy Wykłowc: r hb. A. Jurlewicz Wykł 9: Róże rozje zbieżości ciągów zmieych losowych. rw wielkich liczb. Zbieżość z prwopoobieństwem 1:

Bardziej szczegółowo

Wspomaganie obliczeń za pomocą programu MathCad

Wspomaganie obliczeń za pomocą programu MathCad Wprowdzenie do Mthcd' Oprcowł:M. Detk P. Stąpór Wspomgnie oliczeń z pomocą progrmu MthCd Definicj zmiennych e f g h 8 Przykłd dowolnego wyrŝeni Ay zdefinowc znienną e wyierz z klwitury kolejno: e: e f

Bardziej szczegółowo

Ł Ś ź ź ź ć ć ć Ń ć ź ź ć ć Ń Ń ź Ą ź ć ć Ę ć Ń ź ć ć ć ć ź ć ć ć ć ć Ę ć ć ć ć ć ć Ą ć ć ć ć Ń ć ć ć ć Ę Ą ć ć ć ć ć Ń ć ć ć Ę ć ć ź ć ć ć ć ć ć ć Ż ć Ź ć ć Ź ć ć Ż ć Ą ć Ą ć Ź Ę Ę ĘĘĘ ć ć ć ć ć ć ć ć

Bardziej szczegółowo

DZIAŁ 2. Figury geometryczne

DZIAŁ 2. Figury geometryczne 1 kl. 6, Scenriusz lekcji Pole powierzchni bryły DZAŁ 2. Figury geometryczne Temt w podręczniku: Pole powierzchni bryły Temt jest przeznczony do relizcji podczs 2 godzin lekcyjnych. Zostł zplnowny jko

Bardziej szczegółowo

Ł Ł Ę Ę Ę Ł Ę Ł ć Ę Ę Ń Ę ć ć ć Ń ć Ą ć Ó Ł Ś Ą Ę Ę Ą Ś ĘĘ Ń ć Ń Ż ć Ś Ć Ę Ł ć Ę Ą ć ź ć Ę Ł Ż Ń ź Ł Ń Ą ć Ę ć ć ź ć Ę Ą Ę ć ź Ń Ę Ę ć ć Ę Ę Ę ć ć ć Ę Ą ć Ę Ń Ę ć Ę ć Ą Ę Ę ć Ń Ą ź ć Ó Ą Ą ŁĘ ź ć ć ć

Bardziej szczegółowo

Podstawy programowania obiektowego

Podstawy programowania obiektowego 1/3 Podstwy progrmowni oiektowego emil: m.tedzki@p.edu.pl stron: http://rgorn.p.ilystok.pl/~tedzki/ Mrek Tędzki Wymgni wstępne: Wskzn yły znjomość podstw progrmowni strukturlnego (w dowolnym języku). Temty

Bardziej szczegółowo

, GEOMETRIA NA PŁASZCZYZNIE (PLANIMETRIA)

, GEOMETRIA NA PŁASZCZYZNIE (PLANIMETRIA) Treść:, GEOMETRI N PŁSZCZYZNIE (PLNIMETRI) 1. Podstwowe pojęi geometrii (punkt, prost, płszzyzn, przestrzeń, półprost, odinek, łmn, figur geometryzn (płsk i przestrzenn). -------------------------------------------------------------------------------------------------------------.

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ ĆWICZENIE 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Opis kł pomirowego A) Wyzzie ogiskowej sozewki skpijąej z pomir oległośi przemiot i obrz o sozewki Szzególie proste, rówoześie

Bardziej szczegółowo

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa.

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa. 1. Pirmidiotologi. W obfitej literturze przedmiotu podje się, że pirmid Ceops, lub też z ngielsk Wielk Pirmid (te Gret Pyrmid), zwier w swej konstrukcji pełną i szczegółową istorię rodzju ludzkiego od

Bardziej szczegółowo

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni

Bardziej szczegółowo

Ł Ę Ę ź Ń Ą Ę Ó Ł Ą Ą Ś ć ć ć ć ź Ą Ę Ę Ę Ę ź Ę Ę Ą Ę ć ć ź Ą Ę ć Ł ź ć Ę ć ć Ę Ą ć Ń ć Ę Ś Ś ć Ę Ę Ę Ę Ń ź Ę Ę Ą ź ź ć Ż Ś ź Ń ź ź ź ź ć ź ć ź Ł Ś ć Ł Ę Ę ź Ń Ą Ę ź Ę Ł Ł Ł Ł Ł Ę ć Ń Ę Ń Ę Ł Ł Ł Ł Ł

Bardziej szczegółowo

ý Ą Ż í đ í ż Ż Ż ĺ Ł ĺ ź ż Ż Í Í ĺ ĺ ĺ ĺ ĺ ĺ ĺ ĺ ý ý ń ť Ż Ż ć ż ń Í í ń ż ĺ ĺ Ó Í ĺ ť Ż ĺ ĺ ý Ę Ś ń ĺ ý ý Í ý ĺ í ĺ ĺ ĺ ĺ Í Ę ĺ ĺ ĺ ĺ ĺ ĺ Ś ż ĺ ż ż ć ż ż ć ĺ ý Ż ż đ ĺ ż ż đ í ŕ Ż Ż ő ż Ę í Ż ŕ ń ż Ż

Bardziej szczegółowo

Ć ź Ą Ć ź ź Ę Ę Ę Ę Ń Ą Ę ź ź Ó Ę Ę Ć Ę Ó ź ź ź ź Ń ź ź Ę Ę Ó ź Ć Ę ź ź Ą Ć Ę Ę Ę Ą Ć Ć Ż Ż Ó Ó Ą Ą Ą Ź Ą ź Ę Ą Ę Ó Ę ź Ę Ą Ś Ń Ż Ś Ó Ó Ó Ż Ę Ę Ę Ż Ź Ę Ę Ę Ę Ę Ę Ż Ż Ę Ę Ę Ę Ę Ę Ę Ż Ż Ń Ę Ś Ę Ę ĘĘ ÓŚ Ę

Bardziej szczegółowo

ń Ó ź Ę Ę ń ń ĘĘ ĘĘ Ą ĄĘ Ę Ę ć Ą Ę Ę Ę Ń ń Ń ń ń Ż Ś ń ń ć Ż Ó ń Ś ń ń Ś Ś Ą Ż ć ń ń ń Ą Ó Ę ń Ó Ź ń Ó Ś Ó Ś ĘĘ ń Ż Ó Ó Ó ń Ż Ś ź Ś Ę Ę Ś Ę Ę Ę Ę ń Ę Ę Ę Ń ń ń ć ź Ę Ń ń Ń Ż ć ć ń ń Ę Ę ń Ż ń Ę Ę ć Ę ń

Bardziej szczegółowo

sin sin ε δ Pryzmat Pryzmat Pryzmat Pryzmat Powierzchnia sferyczna Elementy optyczne II sin sin,

sin sin ε δ Pryzmat Pryzmat Pryzmat Pryzmat Powierzchnia sferyczna Elementy optyczne II sin sin, Wykład XI Elemety optycze II pryzmat kąt ajmiejszego odchyleia powierzchia serycza tworzeie obrazów rówaie soczewka rodzaje rówaia szliierzy i Gaussa kostrukcja obrazów moc optycza korekcja wad wzroku

Bardziej szczegółowo

Lista 4 Deterministyczne i niedeterministyczne automaty

Lista 4 Deterministyczne i niedeterministyczne automaty Uniwersytet Zielonogórski Instytut Sterowni i Systemów Informtycznych Teoretyczne Podstwy Informtyki List 4 Deterministyczne i niedeterministyczne utomty Wprowdzenie Automt skończony jest modelem mtemtycznym

Bardziej szczegółowo

KOMPENDIUM MATURZYSTY Matematyka poziom podstawowy

KOMPENDIUM MATURZYSTY Matematyka poziom podstawowy KOMPENDIUM MATURZYSTY Mtemtyk poziom podstwowy Publikcj dystrybuown bezpłtnie Dostępn n stronie: Kompendium do pobrni n stronie: SPIS TREŚCI. Potęgi i pierwistki... W tym:. Wykorzystnie wzorów;. Przeksztłcnie

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego. best in training PRE TEST

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego. best in training PRE TEST Projekt współfinnsowny przez Unię Europejską w rmh Europejskiego Funuszu Społeznego est in trining E-Pr@ownik ojrzłe kry społezeństw informyjnego n Mzowszu Numer Projektu: POKL.08.01.01-14-217/09 PRE TEST

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

CIĄGI LICZBOWE N = zbiór liczb naturalnych. R zbiór liczb rzeczywistych (zbiór reprezentowany przez punkty osi liczbowej).

CIĄGI LICZBOWE N = zbiór liczb naturalnych. R zbiór liczb rzeczywistych (zbiór reprezentowany przez punkty osi liczbowej). MATEMATYKA I - Lucj Kowlski {,,,... } CIĄGI LICZBOWE N zbiór liczb turlych. R zbiór liczb rzeczywistych (zbiór reprezetowy przez pukty osi liczbowej. Nieskończoy ciąg liczbowy to przyporządkowie liczbom

Bardziej szczegółowo

KARTA WZORÓW MATEMATYCZNYCH. (a + b) c = a c + b c. p% liczby a = p a 100 Liczba x, której p% jest równe a 100 a p

KARTA WZORÓW MATEMATYCZNYCH. (a + b) c = a c + b c. p% liczby a = p a 100 Liczba x, której p% jest równe a 100 a p KRT WZORÓW MTEMTYZNY WŁSNOŚI DZIŁŃ Pwo pzemiennośi dodwni + = + Pwo łąznośi dodwni + + = ( + ) + = + ( + ) Pwo zemiennośi mnoŝeni = Pwo łąznośi mnoŝeni = ( ) = ( ) Pwo ozdzielnośi mnoŝeni względem dodwni

Bardziej szczegółowo

a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy

a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy 04 6. Ztoownie metod hemtów lokowh do nliz włśiwośi ukłdów utomtki Shemt lokow ukłdu utomtki jet formą zpiu mtemtznego modelu dnego ukłdu, n podtwie której, wkorztują zd przedtwione rozdzile 3.7, możn

Bardziej szczegółowo

guziny gwar i dialektów polskich nudle kónd Jak wykorzystać Mapę gwar i dialektów polskich na zajęciach? galanty

guziny gwar i dialektów polskich nudle kónd Jak wykorzystać Mapę gwar i dialektów polskich na zajęciach? galanty sie c dzi uk, b łch n be rw n r ysk r cz cz yć p iec przód wiel któr ysik ś t m l by k c tmk w u r si f k glnty p m guziny bin u sz n kónd ek cz ć y s k nudle gwr i dilektów plskich Jk wykrzystć Mpę gwr

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1

Bardziej szczegółowo

ź Ą Ł Ą Ó ź ć ć ć Ą Ń Ń Ń ź ź ć Ą ć Ś Ć Ź Ś Ć Ś Ę Ć ć ć Ś ź Ą ć Ą Ą Ś Ą ć ć Ż ć Ń ć ć ć Ż Ś Ź ć Ń Ć Ż Ń Ń Ś ć Ś Ó Ą Ń Ę Ć Ą ć ć ć ć Ś ć ć ć Ć Ś ć ć Ś ć Ó Ś ć ŚĆ ć ć Ą ć ź ŚĆ Ł Ń ć ć ć Ń Ń Ć Ń ć ć Ę Ń

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

Scenariusz lekcji matematyki w klasie II LO

Scenariusz lekcji matematyki w klasie II LO Autor: Jerzy Wilk Sceriusz lekcji mtemtyki w klsie II LO oprcowy w oprciu o podręczik i zbiór zdń z mtemtyki utorów M. Bryński, N. Dróbk, K. Szymński Ksztłceie w zkresie rozszerzoym Czs trwi: jed godzi

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

Ą ń Ą ó ó Ż Ż ć Ę Ó ó Ą ą ćó Ń Ó Ż Ó Ł ą ą Ę Ę Ę ą ą ż ż ą ć ó Ć Ó Ż Ź ó ó ó ó ć ń ó ą Ó Ó ó Ó ó Ż Ż ó Ó ĘĘ Ż ć ó ą ó ć Ę Ę Ą ń Ę ć ń ż ó ó ć ó ó Ź ó ć Ź Ś Ź Ś ą ż ż ą ą Ć Ż Ż ć Ź Ą ó ż ą Ć Ó ż Ę ż ż

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

GRAFY i SIECI. Graf: G = ( V, E ) - para uporządkowana

GRAFY i SIECI. Graf: G = ( V, E ) - para uporządkowana GRAFY podstwowe definicje GRAFY i SIECI Grf: G = ( V, E ) - pr uporządkown V = {,,..., n } E { {i, j} : i j i i, j V } - zbiór wierzchołków grfu - zbiór krwędzi grfu Terminologi: grf = grf symetryczny,

Bardziej szczegółowo

ANALIZA I BADANIE MAGNETOREOLOGICZNEGO SPRZĘGŁA ROZRUCHOWO-PRZECIĄŻENIOWEGO

ANALIZA I BADANIE MAGNETOREOLOGICZNEGO SPRZĘGŁA ROZRUCHOWO-PRZECIĄŻENIOWEGO ` Mazyy Elektrycze Zezyty Prblemwe Nr 3/25 (7) 27 Cezary Jędryczka, Wjciech Szeląg, Adam Myzkwki, Mariuz Barańki, Plitechika Pzańka ANALIZA I BADANIE MAGNETOREOLOGICZNEGO SPRZĘGŁA ROZRUCHOWO-PRZECIĄŻENIOWEGO

Bardziej szczegółowo

TOTO-MIX. Jak czytać ofertę. Zakłady proste Toto-Mix - wypełnianie blankietu. Kurs w ofercie bukmacherskiej. Typy ZAKŁADY BUKMACHERSKIE

TOTO-MIX. Jak czytać ofertę. Zakłady proste Toto-Mix - wypełnianie blankietu. Kurs w ofercie bukmacherskiej. Typy ZAKŁADY BUKMACHERSKIE TOTO-MI Zkłdy ukmherskie Toto-Mix to zkłdy o wygrne pieniężne, polegjąe n typowniu różnyh, nie tylko sportowyh zdrzeń. Wysokość wygrnej zleży od kursu wyrnego zdrzeni orz wpłonej stwki. Codziennie msz

Bardziej szczegółowo

MOMENTY BEZWŁADNOŚCI FIGUR PŁASKICH

MOMENTY BEZWŁADNOŚCI FIGUR PŁASKICH MOMENT BEZWŁNOŚC FGU PŁSKCH Przekrje pprzeczne prętów włów i elek figur płskie crkterzujące się nstępującmi prmetrmi: plem pwierzcni przekrju [mm cm m ] płżeniem śrdk ciężkści przekrju mmentmi sttcznmi

Bardziej szczegółowo

5.4.1. Ruch unoszenia, względny i bezwzględny

5.4.1. Ruch unoszenia, względny i bezwzględny 5.4.1. Ruch unozeni, zględny i bezzględny Przy ominiu ruchu punktu lub bryły zkłdliśmy, że punkt lub brył poruzły ię zględem ukłdu odnieieni x, y, z użnego z nieruchomy. Możn rozptrzyć tki z przypdek,

Bardziej szczegółowo

RACHUNEK RÓŻNICZKOWY I CAŁKOWY WSB-NLU 2006/7 3

RACHUNEK RÓŻNICZKOWY I CAŁKOWY WSB-NLU 2006/7 3 RACHUNEK RÓŻNICZKOWY I CAŁKOWY WSB-NLU 006/7 3. Liczby nturlne i rzeczywiste; funkcje elementrne.. Funkcje. Niech X i Y będą zbiormi. Definicj.. Funkcją (inczej: odwzorowniem) z X do Y nzyw się przyporządkownie

Bardziej szczegółowo

ź Ł ć Ł Ś ć ć Ą ć ć ć ć Ę Ę Ł Ź Ę Ś Ś ź Ą ć ć Ą ć ć ć ć Ń ć ć ć Ą ć ć ć ć ź ć ź ć ć ć Ń Ł ć ź ź Ń Ę Ą ć ć ć ć ć ć Ę ć ć ć ć ć ć ć Ą Ę ź ć Ś Ł Ł ć ć ć ć ć Ę ć ć ć ź ć ć Ń ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć

Bardziej szczegółowo

POLSKI NARODOWY KATOLICKI KOŚCIÓŁ W RZECZYPOSPOLITEJ POLSKIEJ

POLSKI NARODOWY KATOLICKI KOŚCIÓŁ W RZECZYPOSPOLITEJ POLSKIEJ POLSKI NARODOWY KATOLICKI KOŚCIÓŁ W RZECZYPOSPOLITEJ POLSKIEJ Ekumeniczna Wspólnota Modlitewna świętego Pawła Apostoła REGUŁA Ojcze spraw, aby stanowili jedno (J 17, 21) WARSZAWA 2010 E k u me n i c z

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

SYSTEM WIELKOŚCI CHARAKTERYZUJĄCY POTENCJALNĄ I ODDZIELONĄ CZĄSTKĘ ZUŻYCIA TRIBOLOGICZNEGO

SYSTEM WIELKOŚCI CHARAKTERYZUJĄCY POTENCJALNĄ I ODDZIELONĄ CZĄSTKĘ ZUŻYCIA TRIBOLOGICZNEGO 6-0 T B O L O G 8 Piotr SDOWSK * SYSTEM WELKOŚC CKTEYZUĄCY POTECLĄ ODDZELOĄ CZĄSTKĘ ZUŻYC TBOLOGCZEGO SYSTEM OF VLUES CCTEZED POTETL D SEPTED WE PTCLE Słow kluczowe: prc trci, zużywie ściere, cząstk zużyci,

Bardziej szczegółowo

Ź Ł Ęć ę ę ę ę Ę ń ę ń Ę Ś Ę ę ę ę ę ę ę ć ę ę ę ę Ę ę ń ź ć ć ć Ź ę Ę ć Ś ę ę ń ć Ę ź ę ę Ś Ę ę ę ę ę Ł ę Ź ć Ęę ę ę ń Ł Ś Ą ę ź ę ę Ę Ź Ę ę ń ę Ą ę ę Ę ę ę Ś Ś ź ź ń ń ź Ź ę ń Ę Ą ę Ę Ą ź ć Ę ę ń ę Ę

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

9 6 6 0, 4 m 2 ), S t r o n a 1 z 1 1

9 6 6 0, 4 m 2 ), S t r o n a 1 z 1 1 O p i s p r z e d m i o t u z a m ó w i e n i a - z a k r e s c z y n n o c i f U s ł u g i s p r z» t a n i a o b i e k t ó w G d y s k i e g o O r o d k a S p o r t u i R e ks r e a c j i I S t a d i

Bardziej szczegółowo

Temat I. Warunku współpracy betonu i zbrojenia w konstrukcjach żelbetowych. Wymagania. Beton. Zbrojenie

Temat I. Warunku współpracy betonu i zbrojenia w konstrukcjach żelbetowych. Wymagania. Beton. Zbrojenie Dr inż. Zigniew PLEWAKO Ćwiczeni z konstrukcji żeletowych. Temt I Temt I. Wrunku współprcy etonu i zrojeni w konstrukcjch żeletowych. Wymgni. Beton Zdnie: Przeniesienie sił ściskjących, sclenie i zpewnienie

Bardziej szczegółowo

11:39. Dźwięk, fala akustyczna, hałas. Zagadnienia akustyczne w projektowaniu. Dźwięk i hałas, zakres częstotliwości

11:39. Dźwięk, fala akustyczna, hałas. Zagadnienia akustyczne w projektowaniu. Dźwięk i hałas, zakres częstotliwości Zagadieia akustycze w projektowaiu Jacek NURZYŃSKI Kraków 20 Dźwięk, fala akustycza, hałas Dźwięk; rozprzestrzeiające się falowo drgaie akustycze Drgaie akustycze; ruch cząsteczek ośrodka spręŝystego względem

Bardziej szczegółowo

Zaokrąglanie i zapisywanie wyników obliczeń przybliżonych

Zaokrąglanie i zapisywanie wyników obliczeń przybliżonych Edwrd Musił Oddził Gdński SEP Zokrąglnie i zpisywnie wyników obliczeń przybliżonych Inżynier wykonuje nieml wyłącznie obliczeni przybliżone i powinien mieć nieustnnie n względzie dokłdność, jką chce uzyskć

Bardziej szczegółowo

Adres strony internetowej zamawiającego: www.oppogrodjordanowski.pl I. 2) RODZAJ ZAMAWIAJĄCEGO: Gminna jednostka organizacyjna.

Adres strony internetowej zamawiającego: www.oppogrodjordanowski.pl I. 2) RODZAJ ZAMAWIAJĄCEGO: Gminna jednostka organizacyjna. 1 Adres stry iteretwej, której Zmwijący udstępi Specyfikcję Isttych Wruków Zmówiei: http://edukcj.bip.kzieice.pl/idex.php?id=580 http://ppgrdjrdwski.pl/przetrgi Kzieice: Dstw i mtż urządzeń zbwwych zewętrzych

Bardziej szczegółowo

5. Zasada indukcji matematycznej. Dowody indukcyjne.

5. Zasada indukcji matematycznej. Dowody indukcyjne. Notatki do lekcji, klasa matematycza Mariusz Kawecki, II LO w Chełmie 5. Zasada idukcji matematyczej. Dowody idukcyje. W rozdziale sformułowaliśmy dla liczb aturalych zasadę miimum. Bezpośredią kosekwecją

Bardziej szczegółowo

I C. Biologia. Chemia. Technika w produkcji cukierniczej. Technika w produkcji cukierniczej. Technologia produkcji cukierniczej

I C. Biologia. Chemia. Technika w produkcji cukierniczej. Technika w produkcji cukierniczej. Technologia produkcji cukierniczej Zsdnicz Szkoł Zwodow Rzemiosł i Przedsiębiorcz Bydgoszcz, ul. Kijowsk I C Wychowwc : Cichowsk Mgdlen :0 - : Mtemtyk Biologi Mtemtyk :00 - : Godzin wychowcz Chemi. Grup Informtyk GP. Grup Informtyk :0 -

Bardziej szczegółowo

A.1. Budowa i proporcje znaku. FIDO LOGOTYP. 22a. 5,5a. 0,45a

A.1. Budowa i proporcje znaku. FIDO LOGOTYP. 22a. 5,5a. 0,45a BRANDBOOK FIDO LOGOTYP A.1. Budow i proporje znku. Wielkość logotypu określn jest przy pomoy jednostki - odpowidjąej szerokośi litery i w logotypie, orz jednostki b odpowidjąej przestrzeni między kreskmi

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Ł Ą Ó ŁÓ Ę Ę Ę Ł Ą Ś ŁĄ Ż Ą Ą Ł Ś Ś Ż ŁÓ ć ŁÓ ĘĘ Ą Ę ĘĘ Ą Ł Ą Ś Ą Ć ŁÓ ć ć ć ĄĄ ć ĄĄ Ł ć ć ć ŁÓ Ó Ś Ą Ł Ą ć ć ć Ę ć ć ć Ę Ś Ą ć Ą Ł ĄĄ ĄĄ ć Ę Ś Ą ć Ś Ą Ł ć Ł ć Ś Ś Ś Ś Ą Ł Ś ŁĄ Ż ć Ą Ł Ł ć ć ć ć Ę Ę Ę

Bardziej szczegółowo

Semantyka i Weryfikacja Programów - Laboratorium 7

Semantyka i Weryfikacja Programów - Laboratorium 7 Semntyk i Weryfikj Progrmów - Lortorium 7 Weryfikj twierdzeń logiznyh Cel. Celem ćwizeni jest zpoznnie się z metodą utomtyznego dowodzeni twierdzeń, tzn. weryfikji, zy dne twierdzenie jest tutologią (twierdzenie

Bardziej szczegółowo

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10 Zdnie. Zkłd ubezpieczeń n życie plnuje zbudownie portfel ubezpieczeniowego przy nstępujących złożenich: ozwiąznie. Przez P k będę oznczł wrtość portfel n koniec k-tego roku. Szukm P 0 tkie by spełnił:

Bardziej szczegółowo

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA Z a m a w i a j» c y G D Y S K I O R O D E K S P O R T U I R E K R E A C J I J E D N O S T K A B U D E T O W A 8 1 5 3 8 G d y n i a, u l O l i m p i j s k a 5k 9 Z n a k s p r a w y G O S I R D Z P I

Bardziej szczegółowo