Zadanie na wykonanie Projektu Zespołowego

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zadanie na wykonanie Projektu Zespołowego"

Transkrypt

1 Zadane na wykonane Projektu Zespołowego Celem projektu jest uzyskane następującego szeregu umejętnośc praktycznych: umejętnośc opracowana równoległych wersj algorytmów (na przykładze algorytmów algebry lnowej cyfrowego przetwarzana sygnałów); umejętnośc projektowana wyspecjalzowanych urządzeń równoległych potokowych (akceleratorów) na pozomach strukturalnym logcznym; umejętnośc opracowana modułów składowych systemów komputerowego wspomagana projektowana (CAD) w/w algorytmów akceleratorów; umejętnośc pracy w zespole projektantów. Ze względu na dość szerok obszar podejmowanych zagadneń projekt został podzelony na dwe bezpośredno ne powązanych ze sobą częśc, które można wykonywać nezależne. Ops poszczególnych częśc jest przedstawony nżej. Zadane do częśc 1. W ramach tej częśc należy opracować projekt wyspecjalzowanego urządzena potokowego realzującego algorytm szybkego przetwarzana (transformację) Fourera (ang. FFT Fast Fourer Transformaton) na wektorze danych wejścowych X(N), w którym każdy element x X(N) jest lczbą zespoloną, tj. x = Rex + j Imx, gdze = 1, 2,..., N = 2 n, j 2 = -1, a n - dowolna lczba naturalna. Urządzene pownno zawerać maksmum dwa blok pamęc typu RAM (dla przechowana danych wejścowych wynków), jeden blok pamęc stałej ROM (dla przechowana zespolonych współczynnków obrotu W = ReW + j ImW algorytmu FFT, gdze = 1, 2,..., N / 2), potokową jednostkę przetwarzającą (ALU) o zadanej lczbe bloków mnożena sumatorów oraz blok sterowana wraz z układam dodatkowym (np. multplekseram, rejestram, td.) pozwalającym na prowadzene oblczeń w trybe potokowym. Urządzene ma funkcjonować w oparcu o algorytm FFT o podstawe 2 z podzałem w dzedzne częstotlwośc lub czasu, z odwróconą btowo kolejnoścą odczytywana danych wejścowych lub zapsywana wynków wykonywać operację bazową FFT (motylek) w określonym czase. Wszystke w/w parametry urządzena określane są (w zależnośc od numeru zadana) w oparcu o tab.1. Proponuje sę następujący plan pracy nad perwszą częścą projektu. Najperw wykonuje sę projekt potokowej jednostk przetwarzającej (ALU) realzującej operację bazową FFT sporządza sę tablca pracy ALU dla wybranej długośc N wektora danych wejścowych, np. dla N = 16. Następne formuje sę schemat całego urządzena, tj. do ALU zostają dodane blok pamęc RAM, ROM oraz dodatkowe układy pozwalające na prowadzene przez urządzene oblczeń w trybe potokowym. To pozwala na formowane specyfkacj (wymagań do) bloku sterowana urządzenem. Następne wykonuje sę projekt bloku sterowana, włączne z generatoram formującym adresy zapsu/odczytu dla wszystkch bloków pamęc RAM ROM. Następne członkowe zespołu tworzą model bloku sterowana (np. w języku VHDL) sprawdzają jego dzałana wykorzystując Actve-VHDL, MatLab lub nne narzędza programowe. Ze względu na obszerność zagadneń proponuje sę wykonywać projekt w trzyosobowych zespołach. Wadomośc teoretyczne na temat algorytmu FFT można znaleźć w ogólne dostępnej lteraturze, np. 1. R. G. Lyons. Wprowadzene do cyfrowego przetwarzana sygnałów. WKŁ, 1999 r. 2. C. Marven, G. Ewers. Zarys cyfrowego przetwarzana sygnałów. WKŁ, 1999 r. 3. T. H. Cormen, C. E. Leserson, R.L.Rvest, C. Sten. Wprowadzene do algorytmów. WNT, 2005 r. oraz w Internece. W zwązku z tym, w nnejszym plku umeszczono tylko nformacje nezbędne do realzacj projektu, m. n. przykładowe grafy algorytmów 16-punktowego (N=16) FFT o podstawe 2 z podzałem w dzedzne częstotlwośc czasu, z odwróconej btowo kolejnoścą

2 odczytywana lub zapsywana danych, wzory opsujące operację bazowe FFT, tablcę tab.2 lustrującą sposób formowana odwróconej btowo kolejnośc adresów dla układów pamęc, przykładowy schemat ALU, fragment bloku sterowana oraz przykładowy schemat całego urządzena. Nr zad. FFT z podzałem w dzedzne: częstotlwośc (F), czasu (T) Tab.1 Tablca warantów zadana dla częśc 1 projektu Lczba bloków mnożena sumatorów, Σ Odwrócona btowo kolejność danych: na wejścu (We), na wyjścu (Wy) Maksymalna długość cyklu oblczenowego (taktów zegara t) 1 F 1, 1 We 6 2 F 1, 2 We 4 3 F 2, 2 We 3 4 F 2, 3 We 2 5 F 2, 4 We 2 6 T 2, 4 We 2 7 F 1, 1 Wy 6 8 F 1, 2 Wy 4 9 F 2, 2 Wy 3 10 F 2, 3 Wy 2 11 F 2, 4 Wy 2 12 T 2, 4 Wy 2 13 F 2, 6 Wy 2 14 F 2, 6 We 2 15 T 1, 2 Wy 4 16 T 1, 2 We 4 I. FFT o podstawe 2 z podzałem w czase, (FFT radx-2, DIT) Operacja bazowa (motylek) B A W C A +1 A A + 1 = = B B + C C W W B oraz C wartośc wejścowe, A oraz A +1 przeobrażone wartośc, W współczynnk obrotu (waga) Wyrażena, które muszą być oblczone w ALU (operacja bazowa) Re A Im A + = = Re B Im B + ReC + Re C ReW ImW ImC + ImC ImW ReW Re A 1 = Re B Re C ReW + ImC ImW Im A 1 = Im B Re C ImW ImC ReW +

3 Graf operacj bazowej ReC ReW ImW ImC ReB ImB ReA ImA ReA+1 ImA +1 Schemat potokowego ALU realzującego operację bazową (zaznaczono czerwonym kolorem) Parametry podstawowe: 1 blok mnożący; 2 sumatory; czas wykonana operacj bazowej (długość cyklu oblczenowego) 4 takty zegarowe nr taktu ImC ImC ReC ReC ReW ImW ImW ReW MUX SM ± A ImB ReB ALU MUX SM ± A +1 Blok sterowana...

4 Graf 16-punktowego FFT o podstawe 2, z podzałem w czase odwrócona btowo kolejność danych wejścowych normalne uporządkowane wynk (16-pont FFT; radx-2; DIT; bt reversed nput data order; normally ordered output data) N = 2 N = 4 N = W log 2 N W1 W3 W7 Graf 16-punktowego FFT o podstawe 2, z podzałem w czase odwrócona btowo kolejność wynków normalne uporządkowane dane wejścowe (16-pont FFT; radx-2; DIT; bt reversed output data order; normally ordered nput data) N = 8 N = 4 N = log 2 N W1 W5 W3 W7

5 Schemat ogólny urządzena ROM BLOK STER. RAM1 wejśce FFT RAM2 Fragment bloku sterowana GNR FDv NOR OR NOT Wynk symulacj dzałana bloku sterowana generatorów adresu

6 II. FFT o podstawe 2 z podzałem w dzedzne częstotlwośc FFT radx-2, DIF Operacja bazowa (motylek) B A W C A +1 A A = B + C + 1 = ( B C ) W B oraz C wartośc wejścowe, A oraz A +1 przeobrażone wartośc, W współczynnk obrotu (waga) Wyrażena, które muszą być oblczone w ALU (operacja bazowa): Re A = Re B + ReC + Im A = Im B + ImC Re A 1 = (Re B ReC ) ReW (Im B ImC ) ImW Im A 1 = (Re B ReC ) ImW + (Im B ImC ) ReW + Graf operacj bazowej ReB ReC ImB ImC ReW ImW ReA ImA ReA +1 ImA +1

7 Schemat potokowego ALU realzującego operację bazową Parametry podstawowe: 2 blok mnożące; 6 sumatorów; czas wykonana operacj bazowej (długość cyklu oblczenowego) 2 takty zegarowe ReB ReC ImB ImC ImW ReW MUX MUX - + ReA +1 ReA ImA +1 ImA Tab. 2. Zasada formowana odwróconej btowo kolejnośc adresów danych We/Wy Nr kroku (lczba kroków wynos log 2 N = 4)

8 Graf 16-punktowego FFT o podstawe 2, z podzałem w dzedzne częstotlwośc odwrócona btowo kolejność danych wejścowych normalne uporządkowane wynk (16-pont FFT; radx-2; DIF; bt reversed nput data order; normally ordered output data) N = 2 N = 4 N = W W W W log 2 N Graf 16-punktowego FFT o podstawe 2, z podzałem w dzedzne częstotlwośc odwrócona btowo kolejność wynków normalne uporządkowane dane wejścowe (16-pont FFT; radx-2; DIF; bt reversed output data order; normally ordered ntput data) N = 8 N = 4 N = W W W W log 2 N

9 Zadane do częśc 2. W ramach tej częśc projektu należy opracować dwa podstawowe moduły środowska komputerowego wspomagana projektowana równoległych wersj algorytmów regularnych oraz archtektur równoległych akceleratorów dla ch realzacj. Algorytm wejścowy należy do grupy algorytmów algebry lnowej jest zadany przy pomocy fragmentu programu zawerającego jedno lub klka gnazd pętl o różnej złożonośc (tj. zawerającego rożną lczbę włożonych nstrukcj pętl). Co należy zrobć: 1. Zgodne z otrzymanym od prowadzącego numerem warantu zadana wybrać z tab. 3 odpowedn algorytm AL. Należy zapoznać sę z jego opsem grafem (nformacje te umeszczono na końcu tego plku). 2. Zapoznać sę z metodą konstruowana grafów zależnośc nformacyjnych algorytmów zadanych za pomocą włożonych nstrukcj pętl, zwracając szczególną uwagę na sposób uzyskana współrzędnych dla poszczególnych jego werzchołków oraz na sposoby otrzymana lsty jego łuków (w/w metoda będze szczegółowo omawana na wykładze z przedmotu Projektowane systemów nformatycznych ). 3. Opracować moduł GRAF wchodzący do składu środowska CAD, którego zadanem jest generowane opsu grafu algorytmu AL (lstę werzchołków łuków) dla różnych rozmarów N macerzy danych wejścowych, np. N = Zespół może dodatkowo opracować umeścć w programe GRAF moduł umożlwający wzualzację grafu AL. 4. Opracować moduł DESIGNER (lub ewentualne rozbudować moduł GRAF) realzujący metodę odwzorowana n - wymarowego grafu algorytmu w (n-1) - wymarowe archtektury akceleratorów równoległych (gdze n najwększy wymar gnazda pętl w algorytme). Wyżej wymenona metoda będze szczegółowo omawana na wykładze z przedmotu Projektowane systemów nformatycznych. 5. Korzystając z z zaprojektowanych modułów GRAF DESIGNER zaprojektować dwe (n - 1) - wymarowe archtektury akceleratorów równoległych, z których perwsza ma najwększy współczynnk obcążena elementów przetwarzających EP (lub najwększe przyspeszene), a druga jest lepsza od perwszej pod względem nnego (jednego lub klku) kryterum np.: lczba EP; czas wykonana algorytmu; lczba kanałów We/Wy (zewnętrznych wewnętrznych); lczba różnych typów EP. Opracować programy wykonawcze lub tablce pracy dla jednego dowolnego procesora w każdej z zaprojektowanych archtektur.

10 Tabela 3. AL Nazwa metody lub zagadnena Uwag 1 Rozkład LU macerzy metodą Gaussa Kolejność oblczeń : według werszy macerzy 2 Rozkład LU macerzy metodą Gaussa Kolejność oblczeń : według kolumn macerzy 3 Rozkład LL T macerzy metodą Cholesky ego Symetryczna macerz wejścowa 4 Elmnacja Gaussa M A=A* Kolejność oblczeń : według werszy macerzy 5 Elmnacja Gaussa M A=A* Kolejność oblczeń : według kolumn macerzy 6 Rozkład QR macerzy metodą Gvensa Q A=R Macerz prostokątna 7 Rozkład QR macerzy metodą Gvensa Q A=R Macerz kwadratowa Hessenberga 8 Rozkład QR macerzy metodą Gvensa Q A=R Macerz kwadratowa pasmowa Hessenberga 9 Redukcja wsteczna (rozwązywane układu równań lnowych A x=b) 10 Metoda podstawena (rozwązywane układu równań lnowych A x=b) 11 Rozwązane układu równań A X=B metodą Jordana- Gaussa 12 Rozwązane układu równań A X=B metodą Jordana- Gaussa Krótk ops algorytmów Macerz górna trójkątna pasmowa. Kolejność oblczeń: według werszy macerzy Macerz dolna trójkątna pasmowa. Kolejność oblczeń: według kolumn macerzy Klka wektorów wyrazów wolnych. Kolejność oblczeń: według werszy macerzy Klka wektorów wyrazów wolnych. Kolejność oblczeń: według kolumn macerzy 1. Rozkład LU macerzy metodą Gaussa Dane wejścowe: macerz A(N,N) Wynk: L(N,N) - dolna macerz trójkątna, U(N,N) - górna macerz trójkątna, take, że A = L U. A(N,N) = U L for :=1 to N-1 do begn for j:=+1 to N do f a <> 0 then l j := a j / a else l j := 0; for j:=+1 to N do for k:=+1 to N do a jk := a jk - l j a k ; end Wynk : l =1; u j = a j, dla <= j.

11 2. Metoda elmnacj Gaussa przekształcena macerzy kwadratowej do postac macerzy górnej trójkątnej. Dane wejścowe: macerz A(N,N) wektor wyrazów wolnych b(n) równana A x=b, które razem formują macerz rozszerzoną A (N, N+1) (patrz rysunek). Wynk: A*(N,N) - górna macerz trójkątna, b*(n) - wektor, take, że M A = A*, M b=b* (gdze M - dolna macerz trójkątna) A(N,N) x = b A(N,N) b A* b* 0 for :=1 to N-1 do begn for j:=+1 to N do f a <> 0 then m j := - a j / a else m j := 0; for j:=+1 to N do for k:=+1 to N+1 do a jk := a jk + m j a k ; end Wynk: a* j = a j, dla <= j; b * = a,n Rozkład LL T macerzy metodą Cholesky ego. Dane wejścowe: macerz A(N,N) symetryczna. Wynk: dolna trójkątna macerz L(N,N), taka że A = L L T A(N,N) = L T L for := 1 to N do begn a := SQRT(a ); for j := +1 to N do a j := a j / a ; for j := +1 to N do for k := +1 to j do a jk := a jk - a j * a k ; end; Wynk: l j := a j dla >= j.

12 4. Rozkład QR macerzy metodą Gvensa Dane wejścowe: macerz A(M,N) (N<=M) Wynk: macerz górna trójkątna R for :=1 to N do begn for j:=+1 to M do begn a := sqrt ((a ) 2 + (a j ) 2 ); c j := a / a ; s j := a j / a ; end; for j:=+1 to M do for k:=+1 to N do begn temp:= c j a k + s j a jk ; a jk := -s j a k + c j a jk ; a k := temp; end end A(M,N) R 0 Wynk: r j = a j dla <= j 5. Redukcja wsteczna (rozwązane układu równań A x=b z trójkątną macerzą) Dane wejścowe: macerz A(N,N) górna trójkątna, wektor b(n). Wynk: wektor newadomych x(n) 0 A x = b Wynk for := N downto 1 do begn x := b / a ; for j := -1 downto 1 do b j := b j - a j x ; end;

13 6. Metoda podstawena (rozwązane układu równań A x=b z macerzą trójkątną) Dane wejścowe: macerz A(N,N) dolna trójkątna, wektor b(n). Wynk: wektor newadomych x(n) A 0 x = b Wynk for := 1 to N do begn x := b / a ; for j := +1 to N do b j := b j - a j x ; end; 7. Rozwązane układu równań lub odwracana macerzy metodą Jordana-Gaussa A X=B. Dane wejścowe: macerz współczynnków A(N,N), macerz wyrazów wolnych B(N,K) które wraz z macerzam jednostkową I zerową O tworzą macerz F (patrz rysunek). Wynk: macerz X(N,K) A(N,N) X(N,K) = B(N,K) F F* A(N,N) B(N,K) A* B* 0 -I(N,N) 0 0 X for :=1 to N do begn for j:=+1 to N+ do m j := - f j / f ; for j=+1 to N+ do for k=+1 to N+K do f jk = f jk + m j f k ; end; gdze f j = a j, =1,2,...,N, j=1,2,...,n; f j = b j, =1,2,...,N, j=n+1,n+2,...,n+k; f (N+) = -1, =1,2,...,N; f (N+)j = 0, =1,2,...,N, j=+1,+2,...,n+k; Wynk: x j = f (N+)(N+j), =1,2,...N, j=1,2,...,k.

14 Rozkład LU macerzy A(4,4) metodą Gaussa Grafy wybranych algorytmów (opracowane przez studentów) (3,4,3) l 43 (3,4,4) Rys.1 d 1 d 3 d 2 d 4 (2,3,3) l 32 k (2,4,4) l 42 a j (1,2,4) (1,2,3) (1,2,2) (1,2,1) l 21 a 14 a 24 (1,3,4) a 13 a 23 a 12 a 22 a 43 a 11 a 21 l 31 a 33 (1,4,4) (1,3,1) 32 (1,4,2) a 44 a 31 l 41 a 43 a 42 a 41 Elmnacja Gaussa M A(4,4)=A*, M b(4)=b* Rys.2

15 LL T - dekompozycja macerzy A(4,4) metodą Cholesky ego l 44 Rys.3 4,4,4 l 33 3,3,3 l 43 k l 22 2,2,2 1,1,1 a 11 1,2,1 l j 32 l 11 l 21 a 21 l 31 1,3,1 1,2,2 a 22 l42 a 33 1,4,4 l 41 a 32 a 44 a 31 a 43 a 42 a 41 Mnożene macerzy przez wektor A(3,3) b(3)=c(3) Rys.4 j b b 2 b b 1 1,1 2,1 3,1 1,2 2,2 3,2 1,3 2,3 3,3 c 1 c 2 c 3 c Przypadek mnożena macerzy kwadratowej pasmowej A(7,7) b(7)=c(7), szerokość pasma L=4 Rys.5

16 Rozwązane układu równań metodą teracj prostej x =D(3,3) x(3)+b(3) b Rys.6 j x k x 2 x 3 b 1 x 1 1,1 2,1 1,2 2,2 1,3 2,3 x 1 x 2 x 3 b 2 b 3 3,1 3,2 3,3 x k+1 W przypadku macerzy kwadratowej pasmowej graf będze podobny do grafu przedstawonego na Rys.5 (mnożene macerzy pasmowej przez wektor) QR dekompozycja macerzy metodą Gvensa Q A=R (Macerz prostokątna A(4,3)) (3,4,3) r 33 Rys.7 d 1 a 33 3 a 44 3 (2,3,2) d 3 d 4 d 2 c 32,s 12 (2,4,3) c 42,s 42 r 23 r 22 2 a 33 2 a 22 2 a 42 2 a 43 k 2 a 32 (1,2,2) a 13 a 23 (1,3,3) j (1,4,3) (1,2,1) c 21,s 21 a 12 a 22 a 33 c 31,s 31 a 43 r 13 a 11 a 21 a 32 (1,3,1) c 41,s 41 a 42 r 12 a 31 a 41 r 11 (W przypadku macerzy kwadratowej Hessenberga graf będze podobny do grafu przedstawonego na Rys.8)

17 Metoda podstawena dla rozwązywana układu równań lnowych A(6,6) x(6)=b(6) (Dla macerzy pasmowej: patrz mnożene macerzy pasmowej przez wektor) (6,6) x6 Rys.8 (3,3) x3 (1,1) (1,7) j b1 b2 b3 b4 b5 b6 x1 Redukcja wsteczna rozwązywana układu równań lnowych A x=b (Graf jest podobny do grafu przedstawonego na Rys.8) Rozwązane układu równań metodą Jordana-Gaussa A(4,4) X(4,2)=B(4,2) Rys.9

18 Rozwązane układu równań metodą Gaussa-Sedela A(4,4) x(4)=b(4) Rys.10 x 1 x 2 x 3 x 4 j b 1 1,1 1,2 1,3 1,4 b 2 2,1 2,2 2,3 2,4 b 3 3,1 3,2 3,3 3,4 b 4 4,1 4,2 4,3 4,4 x1 x2 x3 x4 X k+1 Splot dwóch funkcj (fltracja jednowymarowa) j Rys.11 h a 3 y 2 a N y N y (N+1) y (N+2)... y (K) y (K+1) y (K+2)... y (N+K-1) y y 1 a 2 a 1 1,1 2,1 K,1 x 1 x 2 x 3 x 4 x 5 x 6... x K

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

WikiWS For Business Sharks

WikiWS For Business Sharks WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace

Bardziej szczegółowo

Projekt zespołowy. Część1: Projekt potokowej jednostki przetwarzającej przeznaczonej do realizacji algorytmu FFT. Rok akademicki 2008/2009

Projekt zespołowy. Część1: Projekt potokowej jednostki przetwarzającej przeznaczonej do realizacji algorytmu FFT. Rok akademicki 2008/2009 Projekt zespołowy Rok akademicki 2008/2009 Część1: Projekt potokowej jednostki przetwarzającej przeznaczonej do realizacji algorytmu FFT Kierunek studiów: Semestr: Grupa: Informatyka VII PKiSI 2 Wykonawca:

Bardziej szczegółowo

System informatyczny (SI)

System informatyczny (SI) Projektowane systemów komputerowych System nformatyczny (SI) System oprogramowana (software) Platforma sprzętowa (hardware) Archtektura systemu Program Program... ProgramN PC µp, µk µp DSP FPGA ASIC SISD

Bardziej szczegółowo

ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures.

ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. Algorytmy i struktury danych. Metody numeryczne ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. dzienne magisterskie Numerical methods. (Part 2. Numerical methods)

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

Klasyfkator lnowy Wstęp Klasyfkator lnowy jest najprostszym możlwym klasyfkatorem. Zakłada on lnową separację lnowy podzał dwóch klas mędzy sobą. Przedstawa to ponższy rysunek: 5 4 3 1 0-1 - -3-4 -5-5

Bardziej szczegółowo

Urządzenia wejścia-wyjścia

Urządzenia wejścia-wyjścia Urządzena wejśca-wyjśca Klasyfkacja urządzeń wejśca-wyjśca. Struktura mechanzmu wejśca-wyjśca (sprzętu oprogramowana). Interakcja jednostk centralnej z urządzenam wejśca-wyjśca: odpytywane, sterowane przerwanam,

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy (MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

Przykładowy program ćwiczeń

Przykładowy program ćwiczeń Przykładowy program ćwiczeń Ćwiczenie 1. Obliczenie funkcji elementarnych za pomocą szeregów. Opracowanie wyrażeń rekurencyjnych. 3 4 Realizacja w Ecelu funkcji e 1. 1!! 3! 4! Przykład 1: Obliczenie wartości

Bardziej szczegółowo

Laboratorium ochrony danych

Laboratorium ochrony danych Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz

Bardziej szczegółowo

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA Krzysztof Serżęga Wyższa Szkoła Informatyk Zarządzana w Rzeszowe Streszczene Artykuł porusza temat zwązany

Bardziej szczegółowo

architektura komputerów w. 3 Arytmetyka komputerów

architektura komputerów w. 3 Arytmetyka komputerów archtektura komputerów w. 3 Arytmetyka komputerów Systemy pozycyjne - dodawane w systeme dwójkowym 100101011001110010101 100111101000001000 0110110011101 1 archtektura komputerów w 3 1 Arytmetyka bnarna.

Bardziej szczegółowo

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ], STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:

Bardziej szczegółowo

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem Zestaw zadań : Przestrzene wektorowe. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar : C C C, (z, v) z v := z v jest przestrzeną lnową nad całem lczb zespolonych

Bardziej szczegółowo

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010 EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra

Bardziej szczegółowo

D Archiwum Prac Dyplomowych - Instrukcja dla studentów

D Archiwum Prac Dyplomowych - Instrukcja dla studentów Kraków 01.10.2015 D Archwum Prac Dyplomowych - Instrukcja dla studentów Procedura Archwzacj Prac Dyplomowych jest realzowana zgodne z zarządzenem nr 71/2015 Rektora Unwersytetu Rolnczego m. H. Kołłątaja

Bardziej szczegółowo

9. Dyskretna transformata Fouriera algorytm FFT

9. Dyskretna transformata Fouriera algorytm FFT Transformata Fouriera ma szerokie zastosowanie w analizie i syntezie układów i systemów elektronicznych, gdyż pozwala na połączenie dwóch sposobów przedstawiania sygnałów reprezentacji w dziedzinie czasu

Bardziej szczegółowo

ZAŁĄCZNIK NR 1C KARTA USŁUGI Utrzymanie Systemu Kopii Zapasowych (USKZ)

ZAŁĄCZNIK NR 1C KARTA USŁUGI Utrzymanie Systemu Kopii Zapasowych (USKZ) Załącznk nr 1C do Umowy nr.. z dna.2014 r. ZAŁĄCZNIK NR 1C KARTA USŁUGI Utrzymane Systemu Kop Zapasowych (USKZ) 1 INFORMACJE DOTYCZĄCE USŁUGI 1.1 CEL USŁUGI: W ramach Usług Usługodawca zobowązany jest

Bardziej szczegółowo

System informatyczny (SI)

System informatyczny (SI) Projektowane systemów nformatycznych System nformatyczny (SI) System oprogramowana (software) Program1 Program2... ProgramN PC Platforma sprzętowa (hardware) K P DSP FPGA ASIC Archtektura systemu SISD

Bardziej szczegółowo

NUMERYCZNE METODY ROZWIĄZYWANIA ROWNAŃ LINIOWYCH. PRZYGOTOWAŁA: ANNA BANAŚ KoMBo, WILiŚ

NUMERYCZNE METODY ROZWIĄZYWANIA ROWNAŃ LINIOWYCH. PRZYGOTOWAŁA: ANNA BANAŚ KoMBo, WILiŚ NUMERYCZNE METODY ROZWIĄZYWANIA ROWNAŃ LINIOWYCH PRZYGOTOWAŁA: ANNA BANAŚ KoMBo, WILiŚ PODZIAŁ DOKŁADNE ELIMINACYJNE DEKOMPOZYCYJNE ELIMINACJI GAUSSA JORDANA GAUSSA-DOOLITTLE a GAUSSA-CROUTA CHOLESKY EGO

Bardziej szczegółowo

EUROELEKTRA. Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej. Rok szkolny 2013/2014

EUROELEKTRA. Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej. Rok szkolny 2013/2014 EUROELEKTRA Ogólnopolska Olmpada Wedzy Elektrycznej Elektroncznej Rok szkolny 232 Zadana z elektronk na zawody III stopna (grupa elektronczna) Zadane. Oblczyć wzmocnene napęcowe, rezystancję wejścową rezystancję

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:

Bardziej szczegółowo

04 Układy równań i rozkłady macierzy - Ćwiczenia. Przykład 1 A =

04 Układy równań i rozkłady macierzy - Ćwiczenia. Przykład 1 A = 04 Układy równań i rozkłady macierzy - Ćwiczenia 1. Wstęp Środowisko Matlab można z powodzeniem wykorzystać do rozwiązywania układów równań z wykorzystaniem rozkładów macierzy m.in. Rozkładu Choleskiego,

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

Symulator układu regulacji automatycznej z samonastrajającym regulatorem PID

Symulator układu regulacji automatycznej z samonastrajającym regulatorem PID Symulator układu regulacj automatycznej z samonastrajającym regulatorem PID Założena. Należy napsać program komputerowy symulujący układ regulacj automatycznej, który: - ma pracować w trybe sterowana ręcznego

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca

Bardziej szczegółowo

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów.

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów. Opracowane: Dorota Mszczyńska METODA UNITARYZACJI ZEROWANEJ Porównane obektów przy ocene welokryteralnej. Rankng obektów. Porównane wybranych obektów (warantów decyzyjnych) ze względu na różne cechy (krytera)

Bardziej szczegółowo

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu

Karta (sylabus) modułu/przedmiotu Karta (sylabus) mułu/przedmotu Budownctwo (Nazwa kerunku studów) Studa I Stopna Przedmot: Materały budowlane II Constructon materals Rok: II Semestr: MK_26 Rzaje zajęć lczba gzn: Studa stacjonarne Studa

Bardziej szczegółowo

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe

Bardziej szczegółowo

Wykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń.

Wykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń. Wykład Zagadnene brzegowe lnowe teor sprężystośc. Metody rozwązywana, metody wytrzymałośc materałów. Zestawene wzorów określeń. Układ współrzędnych Kartezańsk, prostokątny. Ose x y z oznaczono odpowedno

Bardziej szczegółowo

Zagadnienia do omówienia

Zagadnienia do omówienia Zarządzane produkcją dr nż. Marek Dudek Ul. Gramatyka 0, tel. 6798 http://www.produkcja.zarz.agh.edu.pl Zagadnena do omówena Zasady projektowana systemów produkcyjnych część (organzacja procesów w przestrzen)

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

FPGA IMPLEMENTATION OF FAST FOURIER TRANSFORM ALGORITHM IMPLEMENTACJA ALGORYTMU SZYBKIEJ TRANSFORMATY FOURIERA W UKŁADZIE PROGRAMOWALNYM FPGA

FPGA IMPLEMENTATION OF FAST FOURIER TRANSFORM ALGORITHM IMPLEMENTACJA ALGORYTMU SZYBKIEJ TRANSFORMATY FOURIERA W UKŁADZIE PROGRAMOWALNYM FPGA Inż. Arkadiusz Pantoł IV rok Koło Naukowe Techniki Cyfrowej dr inż. Wojciech Mysiński opiekun naukowy FPGA IMPLEMENTATION OF FAST FOURIER TRANSFORM ALGORITHM IMPLEMENTACJA ALGORYTMU SZYBKIEJ TRANSFORMATY

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

Spis treści. Przedmowa Wykaz oznaczeń Wstęp Układy kombinacyjne... 18

Spis treści. Przedmowa Wykaz oznaczeń Wstęp Układy kombinacyjne... 18 Spis treści Przedmowa... 11 Wykaz oznaczeń... 13 1. Wstęp... 15 1.1. Układycyfrowe... 15 1.2. Krótki esej o projektowaniu.... 15 2. Układy kombinacyjne... 18 2.1. Podstawyprojektowaniaukładówkombinacyjnych...

Bardziej szczegółowo

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7 Łukasz Deńca V rok Koło Techniki Cyfrowej dr inż. Wojciech Mysiński opiekun naukowy IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia,

Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia, Metody gradentowe... Metody gradentowe poszukwana ekstremum Korzystają z nformacj o wartośc funkcj oraz jej gradentu. Wykazując ch zbeŝność zakłada sę, Ŝe funkcja celu jest ogranczona od dołu funkcją wypukłą

Bardziej szczegółowo

Synteza logiczna w projektowaniu

Synteza logiczna w projektowaniu Synteza logiczna w projektowaniu układów cyfrowych (pływ syntezy logicznej na jakość realizacji układów cyfrowych) X Z System cyfrowy D Z U z bloków funkcjonalnych Z Y US X U F US automat lub układ mikroprogramowany

Bardziej szczegółowo

Neural networks. Krótka historia 2004-05-30. - rozpoznawanie znaków alfanumerycznych.

Neural networks. Krótka historia 2004-05-30. - rozpoznawanie znaków alfanumerycznych. Neural networks Lecture Notes n Pattern Recognton by W.Dzwnel Krótka hstora McCulloch Ptts (1943) - perwszy matematyczny ops dzalana neuronu przetwarzana przez nego danych. Proste neurony, które mogly

Bardziej szczegółowo

course Imię i Nazwisko organizującego EO1ET3000SBCTOS2 dr inż. Oleg Maslennikow w c Kurs egzaminacyjny Egzamin LICZBA GODZIN

course Imię i Nazwisko organizującego EO1ET3000SBCTOS2 dr inż. Oleg Maslennikow w c Kurs egzaminacyjny Egzamin LICZBA GODZIN Zaawansowane metody numeryczne 4,5 ECTS Nazwa w języku angielskim: Numerical methods. Advanced dzienne magisterskie course Kod przedmiotu Imię i Nazwisko organizującego EO1ET3000SBCTOS2 dr inż. Oleg Maslennikow

Bardziej szczegółowo

III TUTORIAL Z METOD OBLICZENIOWYCH

III TUTORIAL Z METOD OBLICZENIOWYCH III TUTORIAL Z METOD OBLICZENIOWYCH ALGORYTMY ROZWIĄZYWANIA UKŁADÓW RÓWNAŃ LINIOWYCH Opracowanie: Agata Smokowska Marcin Zmuda Trzebiatowski Koło Naukowe Mechaniki Budowli KOMBO Spis treści: 1. Wstęp do

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz

Bardziej szczegółowo

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami dr inż. Mariusz Uchroński Wrocławskie Centrum Sieciowo-Superkomputerowe Agenda Cykliczny problem przepływowy

Bardziej szczegółowo

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE POLITHNIKA RZSZOWSKA Katedra Podstaw lektronk Instrkcja Nr4 F 00/003 sem. letn TRANZYSTOR IPOLARNY HARAKTRYSTYKI STATYZN elem ćwczena jest pomar charakterystyk statycznych tranzystora bpolarnego npn lb

Bardziej szczegółowo

Adam Korzeniewski p Katedra Systemów Multimedialnych

Adam Korzeniewski p Katedra Systemów Multimedialnych Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych Operacja na dwóch funkcjach dająca w wyniku modyfikację oryginalnych funkcji (wynikiem jest iloczyn splotowy). Jest

Bardziej szczegółowo

Evaluation of estimation accuracy of correlation functions with use of virtual correlator model

Evaluation of estimation accuracy of correlation functions with use of virtual correlator model Jadwga LAL-JADZIAK Unwersytet Zelonogórsk Instytut etrolog Elektrycznej Elżbeta KAWECKA Unwersytet Zelonogórsk Instytut Informatyk Elektronk Ocena dokładnośc estymacj funkcj korelacyjnych z użycem modelu

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Raciborzu

Państwowa Wyższa Szkoła Zawodowa w Raciborzu Państwowa Wyższa Szkoła Zawodowa w Racborzu KARTA PRZEDMIOTU 1. Nazwa przedmotu: Termnologa ekonomczna prawncza 2. Kod przedmotu: FGB-23 3. Okres ważnośc karty: 2015-2018 4. Forma kształcena: studa perwszego

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc

Bardziej szczegółowo

Specyfika projektowania Mariusz Rawski

Specyfika projektowania Mariusz Rawski CAD Specyfika projektowania Mariusz Rawski rawski@tele.pw.edu.pl http://rawski.zpt.tele.pw.edu.pl/ System cyfrowy pierwsze skojarzenie Urządzenia wprowadzania danych: klawiatury czytniki urządzenia przetwarzania

Bardziej szczegółowo

Filtracja obrazów. w dziedzinie częstotliwości. w dziedzinie przestrzennej

Filtracja obrazów. w dziedzinie częstotliwości. w dziedzinie przestrzennej Filtracja obrazów w dziedzinie częstotliwości w dziedzinie przestrzennej filtry liniowe filtry nieliniowe Filtracja w dziedzinie częstotliwości Obraz oryginalny FFT2 IFFT2 Obraz po filtracji f(x,y) H(u,v)

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:

Bardziej szczegółowo

SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ

SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ Jan JANKOWSKI *), Maran BOGDANIUK *),**) SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ W referace przedstawono równana ruchu statku w warunkach falowana morza oraz

Bardziej szczegółowo

5. CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

5. CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE 5. CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Oprócz transmtancj operatorowej, do opsu członów układów automatyk stosuje sę tzw. transmtancję wdmową. Transmtancję wdmową G(j wyznaczyć moŝna dzęk podstawenu do wzoru

Bardziej szczegółowo

5. OPTYMALIZACJA GRAFOWO-SIECIOWA

5. OPTYMALIZACJA GRAFOWO-SIECIOWA . OPTYMALIZACJA GRAFOWO-SIECIOWA Defncja grafu Pod pojęcem grafu G rozumemy następującą dwójkę uporządkowaną (defncja grafu Berge a): (.) G W,U gdze: W zbór werzchołków grafu, U zbór łuków grafu, U W W,

Bardziej szczegółowo

LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab

LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI Wprowadzenie do środowiska Matlab 1. Podstawowe informacje Przedstawione poniżej informacje maja wprowadzić i zapoznać ze środowiskiem

Bardziej szczegółowo

Komputerowe generatory liczb losowych

Komputerowe generatory liczb losowych . Perwszy generator Komputerowe generatory lczb losowych 2. Przykłady zastosowań 3. Jak generuje sę lczby losowe przy pomocy komputera. Perwszy generator lczb losowych L. H. C. Tppet - 927 Ksąż ążka -

Bardziej szczegółowo

Andrzej Borowiecki. Open Office. Calc arkusz kalkulacyjny. Przykłady zadań dla geodetów

Andrzej Borowiecki. Open Office. Calc arkusz kalkulacyjny. Przykłady zadań dla geodetów Andrzej Boroweck Open Offce Calc arkusz kalkulacyjny Przykłady zadań dla geodetów Kraków 2004 . Podstawowe nformacje. Wstęp OpenOffce.0 jest funkcjonalne równowaŝny paketow StarOffce 6.0, obejmując najwaŝnejsze

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

CYFROWE PRZETWARZANIE SYGNAŁÓW

CYFROWE PRZETWARZANIE SYGNAŁÓW Cyfrowe przetwarzanie sygnałów -1-2003 CYFROWE PRZETWARZANIE SYGNAŁÓW tematy wykładowe: ( 28 godz. +2godz. kolokwium, test?) 1. Sygnały i systemy dyskretne (LTI, SLS) 1.1. Systemy LTI ( SLS ) (definicje

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013 ZESZYTY NAUKOWE NSTYTUTU POJAZDÓW 5(96)/2013 Hubert Sar, Potr Fundowcz 1 WYZNACZANE MASOWEGO MOMENTU BEZWŁADNOŚC WZGLĘDEM OS PODŁUŻNEJ DLA SAMOCHODU TYPU VAN NA PODSTAWE WZORÓW DOŚWADCZALNYCH 1. Wstęp

Bardziej szczegółowo

Technika cyfrowa Synteza układów kombinacyjnych

Technika cyfrowa Synteza układów kombinacyjnych Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych Wykład dla studentów III roku Informatyki Wersja 2.0, 05/10/2011 Podział układów logicznych Opis funkcjonalny układów logicznych x 1 y 1

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

Realizacja logiki szybkiego przeniesienia w prototypie prądowym układu FPGA Spartan II

Realizacja logiki szybkiego przeniesienia w prototypie prądowym układu FPGA Spartan II obert Berezowsk Natala Maslennkowa Wydzał Elektronk Poltechnka Koszalńska ul. Partyzantów 7, 75-4 Koszaln Mchał Bałko Przemysław Sołtan ealzacja logk szybkego przenesena w prototype prądowym układu PG

Bardziej szczegółowo

Programowanie Równoległe i Rozproszone

Programowanie Równoległe i Rozproszone Programowane Równoległe Rozproszone Wykład Programowane Równoległe Rozproszone Lucjan Stapp Wydzał Matematyk Nauk Informacyjnych Poltechnka Warszawska (l.stapp@mn.pw.edu.pl) /38 PRR Wykład Chcemy rozwązać

Bardziej szczegółowo

Sortowanie topologiczne skierowanych grafów acyklicznych

Sortowanie topologiczne skierowanych grafów acyklicznych Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)

Bardziej szczegółowo

Ćwiczenie projektowe z Podstaw Inżynierii Komunikacyjnej

Ćwiczenie projektowe z Podstaw Inżynierii Komunikacyjnej Poltecnka ałostocka Wydzał udownctwa Inżyner Środowska Zakład Inżyner Drogowej Ćwczene projektowe z Podstaw Inżyner Komunkacyjnej Projekt tecnczny odcnka drog klasy tecncznej Z V p 50 km/. Założena do

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012 ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW (88)/01 Hubert Sar, Potr Fundowcz 1 WYZNACZANIE ASOWEGO OENTU BEZWŁADNOŚCI WZGLĘDE OSI PIONOWEJ DLA SAOCHODU TYPU VAN NA PODSTAWIE WZORU EPIRYCZNEGO 1. Wstęp asowy moment

Bardziej szczegółowo

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW Zakład Metrolog Systemów Pomarowych P o l t e c h n k a P o z n ańska ul. Jana Pawła II 4 60-965 POZAŃ (budynek Centrum Mechatronk, Bomechank anonżyner) www.zmsp.mt.put.poznan.pl tel. +48 61 665 5 70 fax

Bardziej szczegółowo

Programowalne układy logiczne

Programowalne układy logiczne Programowalne układy logiczne Mikroprocesor Szymon Acedański Marcin Peczarski Instytut Informatyki Uniwersytetu Warszawskiego 6 grudnia 2014 Zbudujmy własny mikroprocesor Bardzo prosty: 16-bitowy, 16 rejestrów

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Sieci rekurencyjne

Wprowadzenie do Sieci Neuronowych Sieci rekurencyjne Wprowadzene do Sec Neuronowych Sec rekurencyjne M. Czoków, J. Persa 2010-12-07 1 Powtórzene Konstrukcja autoasocjatora Hopfelda 1.1 Konstrukcja Danych jest m obrazów wzorcowych ξ 1..ξ m, gdze każdy pojedynczy

Bardziej szczegółowo

PAMIĘCI. Część 1. Przygotował: Ryszard Kijanka

PAMIĘCI. Część 1. Przygotował: Ryszard Kijanka PAMIĘCI Część 1 Przygotował: Ryszard Kijanka WSTĘP Pamięci półprzewodnikowe są jednym z kluczowych elementów systemów cyfrowych. Służą do przechowywania informacji w postaci cyfrowej. Liczba informacji,

Bardziej szczegółowo

Projektowanie Urządzeń Cyfrowych

Projektowanie Urządzeń Cyfrowych Projektowanie Urządzeń Cyfrowych Laboratorium 2 Przykład prostego ALU Opracował: mgr inż. Leszek Ciopiński Wstęp: Magistrale: Program MAX+plus II umożliwia tworzenie magistral. Magistrale są to grupy przewodów

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a11x1 a12x2... a1nxn b1 a21x1 a22x2... a2nxn b2... an 1x1 an2x2...

Bardziej szczegółowo

Układy logiczne układy cyfrowe

Układy logiczne układy cyfrowe Układy logiczne układy cyfrowe Jak projektować układy cyfrowe (systemy cyfrowe) Układy arytmetyki rozproszonej filtrów cyfrowych Układy kryptograficzne X Selektor ROM ROM AND Specjalizowane układy cyfrowe

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:

Bardziej szczegółowo

Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych

Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych NAFTA-GAZ styczeń 2011 ROK LXVII Anna Rembesa-Śmszek Instytut Nafty Gazu, Kraków Andrzej Wyczesany Poltechnka Krakowska, Kraków Zastosowane symulatora ChemCad do modelowana złożonych układów reakcyjnych

Bardziej szczegółowo

Przykładowe pytania DSP 1

Przykładowe pytania DSP 1 Przykładowe pytania SP Przykładowe pytania Systemy liczbowe. Przedstawić liczby; -, - w kodzie binarnym i hexadecymalnym uzupełnionym do dwóch (liczba 6 bitowa).. odać dwie liczby binarne w kodzie U +..

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2007/08 Podstawowe fakty Równane Ax = b, x, b R N, A R N N (1) ma jednoznaczne

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

Układy sekwencyjne. 1. Czas trwania: 6h

Układy sekwencyjne. 1. Czas trwania: 6h Instytut Fizyki oświadczalnej UG Układy sekwencyjne 1. Czas trwania: 6h 2. Cele ćwiczenia Poznanie zasad działania podstawowych typów przerzutników: RS, -latch,, T, JK-MS. Poznanie zasad działania rejestrów

Bardziej szczegółowo

Wyznaczenie promienia hydrodynamicznego cząsteczki metodą wiskozymetryczną. Część 2. Symulacje komputerowe

Wyznaczenie promienia hydrodynamicznego cząsteczki metodą wiskozymetryczną. Część 2. Symulacje komputerowe Rafał Górnak Wyznaczene promena hydrodynamcznego cząsteczk metodą wskozymetryczną. Część. Symulacje komputerowe Pojęca podstawowe Symulacje komputerowe, zasady dynamk Newtona, dynamka molekularna, potencjał

Bardziej szczegółowo

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa

Bardziej szczegółowo

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ Autor: Joanna Wójcik

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ   Autor: Joanna Wójcik Opracowane w ramach projektu System Przecwdzałana Powstawanu Bezroboca na Terenach Słabo Zurbanzowanych ze środków Europejskego Funduszu Społecznego w ramach Incjatywy Wspólnotowej EQUAL PARTNERSTWO NA

Bardziej szczegółowo

Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.

Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie. Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy

Bardziej szczegółowo

[ A i ' ]=[ D ][ A i ] (2.3)

[ A i ' ]=[ D ][ A i ] (2.3) . WSTĘP DO TEORII SPRĘŻYSTOŚCI 1.. WSTĘP DO TEORII SPRĘŻYSTOŚCI.1. Tensory macierzy Niech macierz [D] będzie macierzą cosinusów kierunkowych [ D ]=[ i ' j ] (.1) Macierz transformowana jest równa macierzy

Bardziej szczegółowo

Treść zadań 1 8 odnosi się do poniższego diagramu przestrzenno-czasowego.

Treść zadań 1 8 odnosi się do poniższego diagramu przestrzenno-czasowego. Treść zadań 8 odnos sę do ponższego dagramu przestrzenno-czasowego. P e e e e e e P e P P e e e e. Jaka będze wartość zmennej clock (zegara skalarnego) po zajścu zdarzena e w procese P zakładając że wartość

Bardziej szczegółowo

REALIZACJA ARCHITEKTUR MACIERZY PROCESOROWYCH W DYNAMICZNIE REPROGRAMOWALNYCH UKŁADACH FPGA

REALIZACJA ARCHITEKTUR MACIERZY PROCESOROWYCH W DYNAMICZNIE REPROGRAMOWALNYCH UKŁADACH FPGA REALIZACJA ARCHITEKTUR MACIERZY PROCESOROWYCH W DYNAMICZNIE RROGRAMOWALNYCH UKŁADACH FPGA Oleg Maslennkow Poltechnka Koszalńska, Wydzał Elektronk, Ul. Śnadeckch, 75-453 Koszaln emal: oleg@e.tu.koszaln.pl

Bardziej szczegółowo