RÓWNOLEGŁY ALGORYTM NEURO-TABU DLA PROBLEMU GNIAZDOWEGO SZEREGOWANIA ZADAŃ

Wielkość: px
Rozpocząć pokaz od strony:

Download "RÓWNOLEGŁY ALGORYTM NEURO-TABU DLA PROBLEMU GNIAZDOWEGO SZEREGOWANIA ZADAŃ"

Transkrypt

1 ÓWNOLEGŁY ALGOYTM NEUO-TABU DLA POBLEMU GNIAZDOWEGO SZEEGOWANIA ZADAŃ Wojcech BOŻEJKO, Marusz UCHOŃSKI, Meczysław WODECKI Streszczene: W pracy proponujemy zastosowane dwóch równoległych algorytmów bazujących na mechanzme neuro-tabu do rozwązywana lasycznego problem gnazdowego szeregowana zadań (job shop). Perwszy z algorytmów oparty jest na wyonywanu nezależnych współbeżnych algorytmów poszuwana z zabronenam (tabu search) z secą neuronową zastępującą lstę ruchów zabrononych (algorytm neurotabu). Drug z algorytmów bazuje na unalnej metodze dywersyfacj połączonej z mechanzmem śceże łączących (path-relnng) zastosowanym do zboru rozwązań eltarnych. Proponowane podejśca oazują sę szczególne efetywne dla przyładów problemów o dużych rozmarach. Słowa luczowe: optymalzacja dysretna, GPU, poszuwane z zabronenam, seć neuronowa 1. Wprowadzene ozważamy w pracy problem gnazdowy szeregowana zadań, tóry można ująć następująco (zobacz [2]). Dane są zbór zadań oraz zbór maszyn. Każde zadane słada sę z pewnej lczby operacj tóre muszą zostać wyonane w zadanej olejnośc, ażde na dedyowanej sobe maszyne, przez pewen czas. Wyonane operacj ne może być przerywane. Każda maszyna może wyonywać co najwyżej jedną operację w danym momence czasu. Chcemy znaleźć tae uszeregowane (tj. przyporządowane oepracj do mementów czasowych na maszynach) tóre mnmalzuje masymalny czas wyonana zadań (ang. maespan). Ta opsany gnazdowy problem szeregowana zadań, choć prosty do zdefnowana, jest z puntu wdzena teor złożonośc oblczcenowej problemem slne NP-trudnym jest uważany za jeden z najtrudnejszych problemów optymalzacj ombnatorycznej. Z powodu NP-trudnośc problemu do jego rozwązywana reomenduje sę główne heurysty metaheurysty ja najrozsądnejsze metody rozwązana. Węszość proponowanych metod odnos sę do problemu mnmalzacj maszymelnego czasu zaończena wyonywana zadań. Cytując najnowsze publacje dotyczące metaheurysty dla rozważanego problemu, wymenć należy prace: Jan, angaswamy Meeran [9]; Pezzella Merell [12]; Grabows Wodec [6]; Nowc Smutnc [11]; Bożejo Uchrońs [3]. Algorytmy heurystyczne proponują taże Holthaus ajendran [8] oraz Bushee Svesta [4]. Dla nnych ryterów regularnych tach ja ryterum sumacyjne oraz sumy spóźneń w lteraturze proponowane są metaheurysty bazujące na metodze poszuwana z zabronenam [1] algorytmu genetycznego [10]. W nnejszej pracy proponujemy nowe podejśce do projetowana rozproszonych algorytmów poszuwana z zabronenam rozwązywana trudnych problemów optymalzacj dysretnej, tach ja problem gnazdowy, używając archtetury mult-gpu, tj. lastra zołożonego z węzłów wyposazonych w arty oblczenowe GPU. 537

2 2. Defncja problemu Dany jest zbór zadań J {1 2 n}, tóre należy wyonać na maszynach ze zboru P {1 2 m}. Zadane jest cągem pewnych operacj. Każdą operację należy wyonać bez przerywana na odpowednej maszyne w ustalonym czase. Problem polega na wyznaczenu olejnośc wyonywana operacj na ażdej maszyne, mnmalzującej czas wyonana wszystch zadań. Nech O {1 2 o} będze zborem wszystch operacj. Zbór ten można rozbć na cąg odpowadające zadanom przy czym, zadane j J jest cągem o j operacj, tóre będą olejno wyonywane na odpowednch maszynach (tzw. cąg technologczny). Operacje te są ndesowane lczbam ( l j11 l j1 oj ), gdze l operacj perwszych j zadań, j 12 n, przy czym l0 0, a o j j o jest lczbą 1 n o 1 Operacja v O będze wyonywana na maszyne v P w czase p v. Zbór O można taże rozbć na podzbory O { vo } ( P) operacj wyonywanych na tej samej v maszyne. Nech permutacja wyznacza olejność wyonywana operacj ze zboru na maszyne. Przez oznaczmy zbór wszystch permutacj elementów z O. Wobec tego, dowolna olejność wyonywana wszystch operacj na maszynach jest wyznaczona przez onatenację m cągów (permutację) ( 12 m), gdze 12 m. Oczywśce może zawerać taże rozwązana nedopuszczalne. Każde rozwązane dopuszczalne problemu gnazdowego można przedstawć w postac grafu. Dla dowolnej olejnośc wyonywana operacj na maszynach (permutacj ), onstruujemy graf serowany z obcążonym werzchołam (seć) G( ) ( V E( )), gdze V jest zborem werzchołów, a E( ) zborem łuów, przy czym: 1. V O { s c}, gdze s c są dodatowym (fcyjnym) operacjam reprezentującym odpowedno,,start",,zaończene". Wagą werzchoła v O jest czas wyonywana p, odpowadającej mu operacj ( p p 0). v n o j 1 2. l j1 l j1 1 sl j11 l j1 ojc j1 1 Zbór zawera łu łączące olejne operacje tego samego zadana oraz łu z werzchoła s do perwszej operacj ażdego zadana łu od ostatnej operacj ażdego zadana do werzchoła c. m O 1 3. E( ) ( ) ( 1) 1 1 Łatwo zauważyć, że łu ze zboru E( ) łączą operacje wyonywane na tej samej maszyne ( jest permutacją operacj z O ). Permutacja (olejność operacj na maszynach) jest dopuszczalna wtedy tylo wtedy, gdy odpowadający jej graf G( ) ne zawera cyl. s c O 538

3 Nech permutacja będze rozwązanem dopuszczalnym dla problemu gnazdowego, a G( ) odpowadającym jej grafem. Cąg werzchołów ( v1 v 2 v ) grafu G( ) ta, że ( v v 1) E( ) dla nazywamy drogą (lub śceżą) z werzchoła v 1 do v. Przez C( v u) oznaczmy najdłuższą drogę (drogę rytyczną) w G( ) z werzchoła v do u, a przez L( v u) długość (sumę wag werzchołów) tej drog. Łatwo zauważyć, że czas wyonywana operacj C ( ) max w olejnośc jest równy długośc L ( s c ) drog rytycznej C( s c). Wobec tego, rozwązane problemu gnazdowego sprowadza sę do wyznaczena permutacj dopuszczalnej, dla tórej odpowadający jej graf ma najrótszą drogę rytyczną, tj. mnmalzuje L( s c). 3. Mechanzm tabu z zastosowanem sec neuronowej W lasycznej metodze tabu pewnen ruch jest wyberany w ażdej teracj algorytmu. uch ten jest pamętany na pewnej lśce o długośc maxt zwanej lstą tabu jest zabronony przez maxt lczbę teracj. Po wyonanu przez algorytm tabu search maxt teracj ruch ten jest usuwany z lsty może być wyonany ponowne. Można powedzeć, że ruch ten trac swój status ruchu zabrononego,,nagle. Ponżej zostane przedstawony mechanzm, w tórym status ruchu zabrononego zmnejsza sę w sposób wyładnczy. W rozpatrywanym algorytme tabu search ażdy ruch reprezentowany jest przez neuron. Dla rozpatrywanego w pracy sąsedztwa [11] seć neuronowa słada sę z o 1 neuronów. Podejśce to z powodzenem zostało zastosowane dla wadratowego problemu przydzału [7] oraz dla problemu przepływowego [13]. Nech -ty neuron reprezentuje ruch polegający na zamane dwóch przyległych elementów na pozycjach 1 w permutacj. W zaproponowanej archteturze sec neuronowej hstora ażdego neuronu jest pamętana jao jego stan wewnętrzny (efet tabu). Jeśl w pewnej teracj neuron zostane atywowany to na jego wyjścu zostane ustalona wartość 1, a na wyjścach pozostałych neuronów zostane ustalona watość 0. Atywowany w danej teracj neuron ne może być ponowne atywowany przez olejnych s teracj. Każdy neuron opsany jest przez następujące równana: ( t 1) = ( t), (1) ( t) Cmax( ) C ( t) = C max max, (2) s 1 d=0 d ( t 1) = x ( t d), (3) (t) gdze x (t) oznacza wyjśce neuronu w teracj t. Symbol C ( ) max oznacza wartość funcj celu dla permutacj uzysanej w wynu wyonana ruchu w teracj t, tzn.. Symbol (t) oznacza znormalzowaną, beżącą wartość funcj celu, a C oznacza max (t) najlepszą znalezoną dotychczas wartość funcj celu. Parametry są 539

4 współczynnam salującym. Symbol ( t 1) Zmenna ( t 1) (gan effect) oreśla jaość ruchu. (tabu effect) przechowuje hstorę neuronu dla ostatnch s teracj. Neuron jest atywowany jeżel ma nsą wartość efetu tabu zapewna lepszą reducję C max. Doładnej neuron zostaje atywowany jeżel ma najmnejszą wartość { ( t 1) ( t 1)} spośród wszystch neuronów. Jeżel 0 < < 1 s = t to równane (3) przyjme następującą postać: ( t 1) = ( t) x ( t), gdze (0) = 0 (t) (4) oraz x (0) = 0 dla ażdego. Z równana (4) wyna, że wartość ażdego neuronu maleje wyładnczo (ysune 1 2). ys. 1. Zmany wartośc (t) dla = 0.5 Welu proponowanych w lteraturze algorytmach opartych na metodze tabu search wyposażonych jest w mechanzm pozwalający na wyonanu ruchu zabrononego, tóry bezpośredno lub pośredno prowadz do rozwązań bazowych o wartośc funcj celu mnejszej nż dotychczas znalezona. Mechanzm ten jest nazywany ryterum aspracj. W proponowanym algorytme neuro-tabu search taa funcja może zostać zamplementowana 540

5 poprzez gnorowane efetu tabu dla ruchu dla tórego < 0. Jedna na drodze przeprowadzonych esperymentów oblczenowych, mechanzm ten dla mplementowanego algorytmu ne przynos pożądanych efetów. Dlatego też algorytm neuro-tabu search dla problemu gnazdowego ne został wyposażony w taą funcję. 4. ównoległy algorytm neuro-tabu ys. 2. Zmany wartośc (t) dla = 0.7. Jao drugą metodę rozwązana rozważanego problemu proponujemy podejśce oparte na rozpatrywanym w pracy Nowcego Smutncego [11] z modyfacją polegającąną na użycu algorytmu neuro-tabu zamast lasycznego algorytmu poszuwana z zabronenam. Proponowany w nnejszezj pracy algorytm NTS operuje na zborze rozproszonych rozwązań (eltarnych) uzysanych za pomocą funcj NIS(,, C ) (ops na ys. 3), gdze, są rozwązanam referencyjnym (porządem operacj) a C jest referencyjną wartoścą funcj ryteralnej. ozważana funcja używa generatora sąsedztwa opartego na zamane przyległych operacj (swap of adjacent operatons, zobacz 541

6 Bożejo [4]). Oznaczmy przez N ( ) zbór ruchów otrzymanych przez zamanę dwóch przyległych operacj na śceżce rytycznej w rozwązanu (aby otrzymać rozwązane dopuszczalen, zobacz [6]). Podstawowym zadanem funcj NIS jest wygenerowane rozwązana = NIS(,, C ) leżącego,,pomędzy a (rozwązanama referencyjnym) aby uruchomć esporację algorytmem NTS (zobacz ys. 4). Aby ontorlować odległość pomędzy danym rozwązanam, zastosowano marę tau Kendalla D (, ) wyrażającą mnmalną lczbę przyległych zaman (nwersj) 1 1 potrzebnych do przeształcena permutacj w (węcej o marach odległośc dla permutacj znaleźć można w pracy Daconsa [5]). Przyjęto następujące wartośc parametrów strojących: maxe = 8 (lczba eltarnych rozwązań), maxd = 5 (masymalna odległość, używana w głównej pętl), maxv = 0.5. Algorytm 1. NIS(,, C ) Wejśce:, rozwązana referencyjne; C referencyjna wartość ryterum; Wyjśce: rozwązane; poprawone referencyjne ryterum C ; ; ter 0 epeat. Znajdź 1 oraz D (, ) ter ter 1; Wyznacz N ( ) ; Dla ażdego v N( ) polcz zapamętaj C ) ; max( (v) 1 1 Wyznacz N ={ v = ( x, y) N( ) : ( y) < ( x)}; f N than Wyberz ta ruch w K, że C ) = mn v K C ( ) ; K ; K N else N( ) max( ( w) max ( v) przez ; Oznacz (w) ; ; f C max( ) < C than C C ( max ) and ext; untl ter maxv D(, ) ; { maxv (0,1) - parametr} ys. 3. Funcja NIS(,, C ). 542

7 Algorytm 2. NTS 0 Wejśce: rozwązane uzysane algorytmem INSA; Output: najlepsze znalezone rozwązane oraz jego wartość ryterum Podstaw (, C ) NTS( ) oraz C C ; for 2,, maxe do 1 0 NIS(,, C ) ; (, C ) NTS( ) C = mn{ C, C }; epeat Znajdź untl ; 1 l maxe tae, że l D(, ) = max{ D(, ) :1 maxe} ; Podstaw NIS(, l, C ) oraz (, C l ) NTS( ) l l l f C < C than podstaw (, C ) (, C ) l ; oraz l ; max{ D(, ) :1 maxe} < maxd. 5. Esperymenty oblczenowe ys. 4. Algorytm NTS C ; Algorytmy zostały uruchomone na 6-rdzenowym serwerze z procesorem Intel Core 7 CPU X980 (3.33GHz) połączonym z artą oblczenową GPU nvda Tesla S2050 (1792 rdzen) procującym pod ontrolą 64-btowego systemu Lnux Ubuntu LTS I przetestowane na przyładach testowych Tallarda [14]. Wyn oblczeń porównanow w Tabel 1. Oznaczena poszczególnych olumn oznaczają: snts sewencyjny algorytm Neuro Tabu Search z pracy Bożejo Uchrońs [3], pnts równoległy (dla lczby wątów p = 16 ) algorytm Neuro Tabu Search algorthm, model MPSS (Multple startng Ponts, Sngle Strategy, według lasyfacj Voß a [14] równoległych algorytmów poszuwana za zabronenam wszyste wąt pracowałe według tej samej strateg, ale startowały z różnych rozwązań początowych) bez omunacj; dla ażdego procesora rozwązane startowe było generowane przez algorytm NTS wyonywane przez process _d 100 teracj, NTS algorytm NTS bazujący na mechanzme dywersyfacj ntensyfacj oraz zborze rozwązań eltarnych opsanym w ozdzale 4, pnts równoległy algorytm NTS. Zbór rozwązań eltarnych generowany jest współbeżne na GPU. 543

8 Tab. 1. Procentowe względne odchylene do najlepszych znanych rozwązań Problem n m snts pnts (p=16) NTS pnts (p=8) TA ,4948 0,3141 0,0652 0, TA ,1691 0,9129 0,4412 0, TA ,2486 0,7033 0,4803 0, TA ,0592 0,7965 0,3764 0, TA ,8565 1,5634 0,8328 0, TA ,0915 0,0915 0,0520 0, TA ,1479 0,0210 0,0140 0, TA ,0090 0,0090 0,0090 0, średna 0,7596 0,5515 0,2839 0,2915 Czasy wyonana dla wszystch nstancj testowych były następujące: (sewencyjny) ) 169m45.748s (dłuższy czas NTS 132m27.319s, (równoległy) pnts ( p = 4 dzałana algorytmu spowodowany jest metodą generowana rozwązań startowych oraz synchronzacją), NTS ooło 60 godzn. Ja można zaobserwować proponowany algorytm NTS uzysał średn pozom odchylena względnego (percentage relatve devaton, PD) do najlepszych znanych rozwązań (dla nstancj testowych Tallarda) na pozome 0,28%. Z ole równoległ pnts uzysał średne PD dla grupy przyładów o dużych rozmarach TA61-TA70 (z przyładam dla 1000 operacj) 10 razy nższe nż proponowany algorytm NTS. Porównując rezultaty uzysane przez algorytmy snts oraz pnts można zauważyć, że użyce środowsa weloprocesorowego sutuje dużym obnżenem uzyswanych błędów PD do najlepszych znanych rozwązań (zobacz ys. 5). 544

9 ys. 5. Porównane efetywnośc algorytmów dla przyładów Tallarda [14] 6. Wnos W pracy proponujemy metodologę projetowana algorytmów równoległych rozwązywana trudnych problemów optymalzacj ombnatorycznej dla archtetury współbeżnych wyposażonych zarówno w pamęć rozproszoną (lastry), ja pamęć współdzeloną (GPU), oraz ch ombnacje (multu-gpu). Metodologa ta oazuje sę być szczególne efetywna przy rozwązywanu problemów o dużych rozmarach, dla tórych nesuteczne oazują se zarówno metody doładne, ja I sewencyjne metody metaheurystyczne, tae ja snts. 545

10 Lteratura 1. Armentano V.A., Scrch C..: Tabu search for mnmzng total tardness n a job shop. Internatonal Journal of Producton Economcs 63(2), (2000) 2. Bożejo W.: On sngle-wal parallelzaton of the job shop problem solvng algorthms. Computers & Operatons esearch 39, (2012) 3. Bożejo W., Uchrońs M.: A Neuro-Tabu Search Algorthm for the Job Shop Problem. In: L. utows et al. (Eds.), Proceedngs of the ICAISC 2010, Lecture Notes n Artfcal Intellgence No. 6114, Sprnger, (2010) 4. Bushee D.C., Svesta. J.A.: A b-drectonal schedulng approach for job shops. Internatonal Journal of Producton esearch 37(16), (1999) 5. Dacons P.: Group epresentatons n Probablty and Statstcs. Lecture Notes - Mono-graph Seres Vol. 11, Insttute of Mathematcal Statstcs, Harvard Unversty (1988). 6. Grabows J., Wodec M.: A very fast tabu search algorthm for the job shop problem. w: C. ego, B. Aldaee (Eds.), Adaptve memory and evoluton, tabu search and scatter search. Kluwer Academc Publshers, Dordrecht (2005) 7. Hasegawa M., T. Ieguch, K. Ahara, Exponental and chaotc neuro dynamcal tabu searches for quadratc assgnment problems. Control and Cybernetcs 29, (2000) 8. Holthaus O., ajendran C.: Effcent jobshop dspatchng rules: further developments. Producton Plannng and Control 11, (2000) 9. Jan A.S., angaswamy B., Meeran S.: New and stronger job-shop neghborhoods: A focus on the method of Nowc and Smutnc (1996 ). Journal of Heurstcs 6(4), (2000) 10. Mattfeld D.C., Berwrth C.: An effcent genetc algorthm for job shop schedulng wth tardness objectves. European Journal of Operatonal esearch 155(3), (2004) 11. Nowc E., Smutnc C.: An advanced tabu search algorthm for the job shop problem. Journal of Schedulng 8(2), (2005) 12. Pezzella F., Merell E.: A tabu search method guded by shftng bottlenec for the job-shop schedulng problem. European Journal of Operatonal esearch 120, (2000) 13. Solmanpur M., P. Vrat,. Shanar, A neuro tabu search heurstc for the flow shop schedulng problem. Computers and Operatons esearch 31, 2004, Tallard, E.: Benchmars for basc schedulng problems. European Journal of Operatonal esearch 64, (1993) 15. Voß S.: Tabu search: Applcatons and prospects. In: D.Z. Du and P.M. Pardalos (eds.), Networ Optmzaton Problems, pp World Scentfc Publshng Co., Sngapore (1993) Dr hab. Wojcech Bożejo Instytut Informaty, Automaty oboty Poltechn Wrocławsej Wrocław, ul. Janszewsego tel./fax: / e-mal: 546

11 Dr hab. Meczysław Wodec Instytut Informaty Unwersytet Wrocławs Wrocław, Jolot-Cure 15 tel./fax: / e-mal: Mgr nż. Marusz Uchrońs Instytut Informaty, Automaty oboty Poltechn Wrocławsej Wrocław, ul. Janszewsego tel./fax: / e-mal: 547

Wielokryterialny Trójwymiarowy Problem Pakowania

Wielokryterialny Trójwymiarowy Problem Pakowania Łukasz Kacprzak, Jarosław Rudy, Domnk Żelazny Instytut Informatyk, Automatyk Robotyk, Poltechnka Wrocławska Welokryteralny Trójwymarowy Problem Pakowana 1. Wstęp Problemy pakowana należą do klasy NP-trudnych

Bardziej szczegółowo

WikiWS For Business Sharks

WikiWS For Business Sharks WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace

Bardziej szczegółowo

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH MODYFICJ OSZTOW LGORYTMU JOHNSON DO SZEREGOWNI ZDŃ UDOWLNYCH Michał RZEMIŃSI, Paweł NOW a a Wydział Inżynierii Lądowej, Załad Inżynierii Producji i Zarządzania w udownictwie, ul. rmii Ludowej 6, -67 Warszawa

Bardziej szczegółowo

Zmodyfikowana technika programowania dynamicznego

Zmodyfikowana technika programowania dynamicznego Zmodyfkowana technka programowana dynamcznego Lech Madeysk 1, Zygmunt Mazur 2 Poltechnka Wrocławska, Wydzał Informatyk Zarządzana, Wydzałowy Zakład Informatyk Wybrzeże Wyspańskego 27, 50-370 Wrocław Streszczene.

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Sieci rekurencyjne

Wprowadzenie do Sieci Neuronowych Sieci rekurencyjne Wprowadzene do Sec Neuronowych Sec rekurencyjne M. Czoków, J. Persa 2010-12-07 1 Powtórzene Konstrukcja autoasocjatora Hopfelda 1.1 Konstrukcja Danych jest m obrazów wzorcowych ξ 1..ξ m, gdze każdy pojedynczy

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

D Archiwum Prac Dyplomowych - Instrukcja dla studentów

D Archiwum Prac Dyplomowych - Instrukcja dla studentów Kraków 01.10.2015 D Archwum Prac Dyplomowych - Instrukcja dla studentów Procedura Archwzacj Prac Dyplomowych jest realzowana zgodne z zarządzenem nr 71/2015 Rektora Unwersytetu Rolnczego m. H. Kołłątaja

Bardziej szczegółowo

IN YNIERIA BEZPIECZE STWA LABORATORIUM NR 6

IN YNIERIA BEZPIECZE STWA LABORATORIUM NR 6 IN YNIERIA BEZPIECZE STWA LABORATORIUM NR 6 WYBRANE ZAGADNIENIA Z TEORII LICZB 1. Wybrane zagadnena z teor lczb Do onstruowana systemów ryptografcznych u Ŝ ywa sę czę sto wyrafnowanego aparatu matematycznego,

Bardziej szczegółowo

WYZNACZENIE ROZKŁADU TEMPERATUR STANU USTALONEGO W MODELU 2D PRZY UŻYCIU PROGRMU EXCEL

WYZNACZENIE ROZKŁADU TEMPERATUR STANU USTALONEGO W MODELU 2D PRZY UŻYCIU PROGRMU EXCEL Zeszyty robemowe Maszyny Eetryczne Nr /203 (98) 233 Andrze ałas BOBRME KOMEL, Katowce WYZNACZENIE ROZKŁADU TEMERATUR STANU USTALONEGO W MODELU 2D RZY UŻYCIU ROGRMU EXCEL SOLVING STEADY STATE TEMERATURE

Bardziej szczegółowo

dr inż. ADAM HEYDUK dr inż. JAROSŁAW JOOSTBERENS Politechnika Śląska, Gliwice

dr inż. ADAM HEYDUK dr inż. JAROSŁAW JOOSTBERENS Politechnika Śląska, Gliwice dr nż. ADA HEYDUK dr nż. JAOSŁAW JOOSBEENS Poltechna Śląsa, Glwce etody oblczana prądów zwarcowych masymalnych nezbędnych do doboru aparatury łączenowej w oddzałowych secach opalnanych według norm europejsej

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

1 Metody optymalizacji wielokryterialnej... 1 1.1 Ogólna charakterystyka problemu... 1 1.2 Tradycyjne metody optymalizacji wielokryterialnej...

1 Metody optymalizacji wielokryterialnej... 1 1.1 Ogólna charakterystyka problemu... 1 1.2 Tradycyjne metody optymalizacji wielokryterialnej... 1 Metody optymalzacj welokryteralnej.... 1 1.1 Ogólna charakterystyka problemu.... 1 1.2 Tradycyjne metody optymalzacj welokryteralnej.... 3 1.2.1 Metoda ważonych kryterów.... 3 1.2.2 Metoda optymalzacj

Bardziej szczegółowo

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

5. OPTYMALIZACJA GRAFOWO-SIECIOWA

5. OPTYMALIZACJA GRAFOWO-SIECIOWA . OPTYMALIZACJA GRAFOWO-SIECIOWA Defncja grafu Pod pojęcem grafu G rozumemy następującą dwójkę uporządkowaną (defncja grafu Berge a): (.) G W,U gdze: W zbór werzchołków grafu, U zbór łuków grafu, U W W,

Bardziej szczegółowo

Wielokategorialne systemy uczące się i ich zastosowanie w bioinformatyce. Rafał Grodzicki

Wielokategorialne systemy uczące się i ich zastosowanie w bioinformatyce. Rafał Grodzicki Welokategoralne systemy uząe sę h zastosowane w bonformatye Rafał Grodzk Welokategoralny system uząy sę (multlabel learnng system) Zbór danyh weśowyh: d X = R Zbór klas (kategor): { 2 } =...Q Zbór uząy:

Bardziej szczegółowo

HEURYSTYCZNA PROCEDURA SZEREGOWANIA ZADA W SYSTEMIE MASZYN RÓWNOLEGŁYCH PRZY OGRANICZONEJ DOST PNO CI ZASOBÓW

HEURYSTYCZNA PROCEDURA SZEREGOWANIA ZADA W SYSTEMIE MASZYN RÓWNOLEGŁYCH PRZY OGRANICZONEJ DOST PNO CI ZASOBÓW EURYSYCA PROCEDURA SEREGOWAIA ADA W SYSEMIE MASY RÓWOLEGŁYC PRY OGRAICOEJ DOSPOCI ASOBÓW BIGIEW BUCALSKI Poltechna Wrocławsa Streszczene Cele artył jest prezentacja rezltatów bada proble czasowo-optyalnego

Bardziej szczegółowo

Laboratorium ochrony danych

Laboratorium ochrony danych Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz

Bardziej szczegółowo

Ćwiczenie 10. Metody eksploracji danych

Ćwiczenie 10. Metody eksploracji danych Ćwczene 10. Metody eksploracj danych Grupowane (Clusterng) 1. Zadane grupowana Grupowane (ang. clusterng) oznacza grupowane rekordów, obserwacj lub przypadków w klasy podobnych obektów. Grupa (ang. cluster)

Bardziej szczegółowo

Urządzenia wejścia-wyjścia

Urządzenia wejścia-wyjścia Urządzena wejśca-wyjśca Klasyfkacja urządzeń wejśca-wyjśca. Struktura mechanzmu wejśca-wyjśca (sprzętu oprogramowana). Interakcja jednostk centralnej z urządzenam wejśca-wyjśca: odpytywane, sterowane przerwanam,

Bardziej szczegółowo

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA Krzysztof Serżęga Wyższa Szkoła Informatyk Zarządzana w Rzeszowe Streszczene Artykuł porusza temat zwązany

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

OPTYMALIZACJA KOSZTÓW PRZEBUDOWY PORTFELA JAKO ZADANIE TRANSPORTOWE. 1. Problem badawczy

OPTYMALIZACJA KOSZTÓW PRZEBUDOWY PORTFELA JAKO ZADANIE TRANSPORTOWE. 1. Problem badawczy B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 2 2004 Krzysztof PIASECKI* OPTYALIZACJA KOSZTÓW PRZEBUDOWY PORTFELA JAKO ZADANIE TRANSPORTOWE Wszyste oszty generowane przez prowze malerse są włączone

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwczena: BADANIE POPRAWNOŚCI OPISU STANU TERMICZNEGO POWIETRZA PRZEZ RÓWNANIE

Bardziej szczegółowo

Algorytm FA. Zastosowanie w zadanich optymalizacji z ograniczeniami dla ciągłych dziedzin poszukiwań

Algorytm FA. Zastosowanie w zadanich optymalizacji z ograniczeniami dla ciągłych dziedzin poszukiwań Algorytm FA Metaheurystyczna metoda poszukwań (Xn-She Yang, 2008), nsprowana przez: zachowana społeczne zjawsko bolumnescencj robaczków śwetojańskch (śwetlków) Zastosowane w zadanch optymalzacj z ogranczenam

Bardziej szczegółowo

Wykład IX Optymalizacja i minimalizacja funkcji

Wykład IX Optymalizacja i minimalizacja funkcji Wykład IX Optymalzacja mnmalzacja funkcj Postawene zadana podstawowe dee jego rozwązana Proste metody mnmalzacj Metody teracj z wykorzystanem perwszej pochodnej Metody teracj z wykorzystanem drugej pochodnej

Bardziej szczegółowo

Regulamin promocji 14 wiosna

Regulamin promocji 14 wiosna promocja_14_wosna strona 1/5 Regulamn promocj 14 wosna 1. Organzatorem promocj 14 wosna, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 lutego 2014 do 30

Bardziej szczegółowo

1. Zmienne i dane wejściowe Algorytmu Rozdziału Obciążeń

1. Zmienne i dane wejściowe Algorytmu Rozdziału Obciążeń ZAŁĄCZNIK nr Zasada dzałana Algorytmu Rozdzału Obcążeń. Zmenne dane wejścowe Algorytmu Rozdzału Obcążeń.. Zmennym podlegającym optymalzacj w procese rozdzału obcążeń są welośc energ delarowane przez Jednost

Bardziej szczegółowo

OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE OPTIMAL INVESTMENT STRATEGY FUNDAMENTAL ANALYSIS

OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE OPTIMAL INVESTMENT STRATEGY FUNDAMENTAL ANALYSIS ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Sera: ORGANIZACJA I ZARZĄDZANIE z. 68 Nr kol. 1905 Adranna MASTALERZ-KODZIS Unwersytet Ekonomczny w Katowcach OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE

Bardziej szczegółowo

Odczyt kodów felg samochodowych w procesie produkcyjnym

Odczyt kodów felg samochodowych w procesie produkcyjnym Odczyt odów felg samochodowych w procese producyjnym Jace Dunaj Przemysłowy Instytut Automaty Pomarów PIAP Streszczene: W artyule przedstawono sposób realzacj odczytu odów felg samochodowych. Opracowane

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

HARMONOGRAMOWANIE ROBÓT BUDOWLANYCH Z MINIMALIZACJĄ ŚREDNIEGO POZIOMU ZATRUDNIENIA

HARMONOGRAMOWANIE ROBÓT BUDOWLANYCH Z MINIMALIZACJĄ ŚREDNIEGO POZIOMU ZATRUDNIENIA HARMONOGRAMOWANIE ROBÓT BUDOWLANYCH Z MINIMALIZACJĄ ŚREDNIEGO POZIOMU ZATRUDNIENIA Wojciech BOśEJKO, Zdzisław HEJDUCKI, Michał PODOLSKI, Mariusz UCHROŃSKI Streszczenie: w pracy proponujemy zastosowanie

Bardziej szczegółowo

OKREŚLENIE OPTYMALNEJ ODLEGŁOŚCI KONTURU ZE ŹRÓDŁAMI OD BRZEGU OBSZARU Z ZASTOSOWANIEM METODY ROZWIĄZAŃ PODSTAWOWYCH

OKREŚLENIE OPTYMALNEJ ODLEGŁOŚCI KONTURU ZE ŹRÓDŁAMI OD BRZEGU OBSZARU Z ZASTOSOWANIEM METODY ROZWIĄZAŃ PODSTAWOWYCH Z E S Z Y T Y N A U K O W E P O L I T E C H N I K I P O Z N AŃSKIEJ Nr Budowa Maszyn Zarządzane Produkcją 005 PIOTR GORZELAŃCZYK, JAN ADAM KOŁODZIEJ OKREŚLENIE OPTYMALNEJ ODLEGŁOŚCI KONTURU ZE ŹRÓDŁAMI

Bardziej szczegółowo

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe

Bardziej szczegółowo

Zadanie na wykonanie Projektu Zespołowego

Zadanie na wykonanie Projektu Zespołowego Zadane na wykonane Projektu Zespołowego Celem projektu jest uzyskane następującego szeregu umejętnośc praktycznych: umejętnośc opracowana równoległych wersj algorytmów (na przykładze algorytmów algebry

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne ś POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 2 TEMAT ĆWICZENIA: Oznaczane lczbowego rozkładu lnowych projekcyjnych

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań Mieczysław OŁOŃSI Wydział Budownictwa i Inżynierii Środowisa, Szoła Główna Gospodarstwa Wiejsiego, Warszawa, ul. Nowoursynowsa 159 e-mail: mieczyslaw_polonsi@sggw.pl Założenia Optymalizacja harmonogramów

Bardziej szczegółowo

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ], STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:

Bardziej szczegółowo

WYDAJNOŚĆ MECHANIZMÓW MODUŁU PARALLEL COMPUTING TOOLBOX SYSTEMU MATLAB W ZRÓWNOLEGLONEJ REALIZACJI SYMULACJI RUCHU UKŁADÓW CIAŁ W POLU GRAWITACYJNYM

WYDAJNOŚĆ MECHANIZMÓW MODUŁU PARALLEL COMPUTING TOOLBOX SYSTEMU MATLAB W ZRÓWNOLEGLONEJ REALIZACJI SYMULACJI RUCHU UKŁADÓW CIAŁ W POLU GRAWITACYJNYM STUDIA INFORMATICA 00 Volume 3 Number 4A (9) Darusz R. AUGUSTYN Poltechna Śląsa Instytut Informaty WYDAJNOŚĆ MECHANIZMÓW MODUŁU PARALLEL COMPUTING TOOLBOX SYSTEMU MATLAB W ZRÓWNOLEGLONEJ REALIZACJI SYMULACJI

Bardziej szczegółowo

Eugeniusz Rosołowski. Komputerowe metody analizy elektromagnetycznych stanów przejściowych

Eugeniusz Rosołowski. Komputerowe metody analizy elektromagnetycznych stanów przejściowych Eugenusz Rosołows Komputerowe metody analzy eletromagnetycznych stanów przejścowych Ocyna Wydawncza Poltechn Wrocławsej Wrocław 9 Opnodawcy Jan IŻYKOWSKI Paweł SOWA Opracowane redacyjne Mara IZBIKA Koreta

Bardziej szczegółowo

Statyczna alokacja kanałów (FCA)

Statyczna alokacja kanałów (FCA) Przydzał kanałów 1 Zarys wykładu Wprowadzene Alokacja statyczna a alokacja dynamczna Statyczne metody alokacj kanałów Dynamczne metody alokacj kanałów Inne metody alokacj kanałów Alokacja w strukturach

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

PROBLEMATYKA DOBORU MIARY ODLEGŁOŚCI W KLASYFIKACJI SPEKTRALNEJ DANYCH SYMBOLICZNYCH

PROBLEMATYKA DOBORU MIARY ODLEGŁOŚCI W KLASYFIKACJI SPEKTRALNEJ DANYCH SYMBOLICZNYCH Marcn Peła Unwersytet Eonoczny we Wrocławu PROBLEMATYKA DOBORU MIARY ODLEGŁOŚCI W KLASYFIKACJI SPEKTRALNEJ DANYCH SYMBOLICZNYCH Wprowadzene Zagadnene doboru odpowednej ary odległośc stanow, obo probleaty

Bardziej szczegółowo

Matematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki

Matematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki Matematya dysretna Wyład 2: Kombinatorya Gniewomir Sarbici Kombinatorya Definicja Kombinatorya zajmuje się oreślaniem mocy zbiorów sończonych, w szczególności mocy zbiorów odwzorowań jednego zbioru w drugi

Bardziej szczegółowo

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Wprowadzene Nnejsza ulotka adresowana jest zarówno do osób dopero ubegających

Bardziej szczegółowo

Klasyfkator lnowy Wstęp Klasyfkator lnowy jest najprostszym możlwym klasyfkatorem. Zakłada on lnową separację lnowy podzał dwóch klas mędzy sobą. Przedstawa to ponższy rysunek: 5 4 3 1 0-1 - -3-4 -5-5

Bardziej szczegółowo

A. ROZLICZENIE KOSZTÓW CENTRALNEGO OGRZEWANIA CHARAKTERYSTYKA KOSZTÓW DOSTAWY CIEPŁA

A. ROZLICZENIE KOSZTÓW CENTRALNEGO OGRZEWANIA CHARAKTERYSTYKA KOSZTÓW DOSTAWY CIEPŁA REGULAMIN ndywdualnego rozlczena osztów energ ceplnej dostarczonej na potrzeby centralnego ogrzewana cepłej wody meszań w zasobach Spółdzeln Meszanowej Lębora. POSTANOIENIA OGÓLNE Regulamn oreśla zasady:

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya

Bardziej szczegółowo

D Archiwum Prac Dyplomowych - Instrukcja dla opiekunów/promotorów/recenzentów

D Archiwum Prac Dyplomowych - Instrukcja dla opiekunów/promotorów/recenzentów D Archwum Prac Dyplomowych - Instrukcja dla opekunów/promotorów/recenzentów Kraków 13.01.2016 r. Procedura Archwzacj Prac Dyplomowych jest realzowana zgodne z zarządzenem nr 71/2015 Rektora Unwersytetu

Bardziej szczegółowo

PROCEDURY ODPORNEJ ALOKACJI ZASOBÓW DLA PROBLEMU HARMONOGRAMOWANIA PROJEKTU Z WAŻONYMI KOSZTAMI NIESTABILNOŚCI 1

PROCEDURY ODPORNEJ ALOKACJI ZASOBÓW DLA PROBLEMU HARMONOGRAMOWANIA PROJEKTU Z WAŻONYMI KOSZTAMI NIESTABILNOŚCI 1 PROCEDURY ODPORNEJ ALOKACJI ZASOBÓW DLA PROBLEMU HARMONOGRAMOWANIA PROJEKTU Z WAŻONYMI KOSZTAMI NIESTABILNOŚCI 1 Marcn KLIMEK, Potr ŁEBKOWSKI Streszczene: Odporne harmonogramowane projektu jest ważnym

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

Regulamin promocji zimowa piętnastka

Regulamin promocji zimowa piętnastka zmowa pętnastka strona 1/5 Regulamn promocj zmowa pętnastka 1. Organzatorem promocj zmowa pętnastka, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 grudna

Bardziej szczegółowo

Udoskonalona metoda obliczania mocy traconej w tranzystorach wzmacniacza klasy AB

Udoskonalona metoda obliczania mocy traconej w tranzystorach wzmacniacza klasy AB Julusz MDZELEWSK Wydzał Eletron Techn nformacyjnych, nstytut Radoeletron, oltechna Warszawsa do:0.599/48.05.09.36 dosonalona metoda oblczana mocy traconej w tranzystorach wzmacnacza lasy AB Streszczene.

Bardziej szczegółowo

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36 Krzysztof Dmytrów * Marusz Doszyń ** Unwersytet Szczecńsk PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA

Bardziej szczegółowo

Badanie energetyczne płaskiego kolektora słonecznego

Badanie energetyczne płaskiego kolektora słonecznego Katedra Slnów Salnowych Pojazdów ATH ZAKŁAD TERMODYNAMIKI Badane energetyczne łasego oletora słonecznego - 1 - rowadzene yorzystane energ celnej romenowana słonecznego do celów ogrzewana, chłodzena oraz

Bardziej szczegółowo

Regulamin promocji upalne lato 2014 2.0

Regulamin promocji upalne lato 2014 2.0 upalne lato 2014 2.0 strona 1/5 Regulamn promocj upalne lato 2014 2.0 1. Organzatorem promocj upalne lato 2014 2.0, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa

Bardziej szczegółowo

OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POBLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU GENETYCZNEGO

OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POBLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU GENETYCZNEGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 81 Electrcal Engneerng 015 Mkołaj KSIĄŻKIEWICZ* OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU

Bardziej szczegółowo

Nieliniowe zadanie optymalizacji bez ograniczeń numeryczne metody iteracyjne optymalizacji

Nieliniowe zadanie optymalizacji bez ograniczeń numeryczne metody iteracyjne optymalizacji Nelnowe zadane optymalzacj bez ogranczeń numeryczne metody teracyjne optymalzacj mn R n f ( ) = f Algorytmy poszuwana mnmum loalnego zadana programowana nelnowego: Bez ogranczeń Z ogranczenam Algorytmy

Bardziej szczegółowo

Regulamin promocji fiber xmas 2015

Regulamin promocji fiber xmas 2015 fber xmas 2015 strona 1/5 Regulamn promocj fber xmas 2015 1. Organzatorem promocj fber xmas 2015, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 grudna 2015

Bardziej szczegółowo

Sortowanie szybkie Quick Sort

Sortowanie szybkie Quick Sort Sortowane szybke Quck Sort Algorytm sortowana szybkego opera sę na strateg "dzel zwycęża" (ang. dvde and conquer), którą możemy krótko scharakteryzować w trzech punktach: 1. DZIEL - problem główny zostae

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 280 (59), 13 20

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 280 (59), 13 20 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Fola Pomer. Unv. Technol. Stetn. 2010, Oeconomca 280 (59), 13 20 Iwona Bą, Agnesza Sompolsa-Rzechuła LOGITOWA ANALIZA OSÓB UZALEŻNIONYCH OD ŚRODKÓW

Bardziej szczegółowo

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa

Bardziej szczegółowo

OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA

OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) 16.01.2003 Algorytmy i Struktury Danych PIŁA ALGORYTMY ZACHŁANNE czas [ms] Porównanie Algorytmów Rozwiązyjących problem TSP 100 000 000 000,000 10 000 000

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Mariusz Uchroński 3 grudnia 2010 Plan prezentacji 1. Wprowadzenie 2.

Bardziej szczegółowo

Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa

Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Badana sondażowe Brak danych Konstrukcja wag Agneszka Zęba Zakład Badań Marketngowych Instytut Statystyk Demograf Szkoła Główna Handlowa 1 Błędy braku odpowedz Całkowty brak odpowedz (UNIT nonresponse)

Bardziej szczegółowo

Treść zadań 1 8 odnosi się do poniższego diagramu przestrzenno-czasowego.

Treść zadań 1 8 odnosi się do poniższego diagramu przestrzenno-czasowego. Treść zadań 8 odnos sę do ponższego dagramu przestrzenno-czasowego. P e e e e e e P e P P e e e e. Jaka będze wartość zmennej clock (zegara skalarnego) po zajścu zdarzena e w procese P zakładając że wartość

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia. J. de Lucas

Analiza Matematyczna Ćwiczenia. J. de Lucas Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

MINISTER EDUKACJI NARODOWEJ

MINISTER EDUKACJI NARODOWEJ 4 MINISTER EDUKACJI NARODOWEJ DWST WPZN 423189/BSZI13 Warszawa, 2013 -Q-4 Pan Marek Mchalak Rzecznk Praw Dzecka Szanowny Pane, w odpowedz na Pana wystąpene z dna 28 czerwca 2013 r. (znak: ZEW/500127-1/2013/MP),

Bardziej szczegółowo

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID ĆWICZENIE LABORAORYJNE AUOMAYKA I SEROWANIE W CHŁODNICWIE, KLIMAYZACJI I OGRZEWNICWIE L3 SEROWANIE INWEREROWYM URZĄDZENIEM CHŁODNICZYM W RYBIE PD ORAZ PID Wersja: 03-09-30 -- 3.. Cel ćwczena Celem ćwczena

Bardziej szczegółowo

PROBLEMY BADANIA NIEZAWODNOŚCI SIŁOWNI TRANSPORTOWYCH OBIEKTÓW OCEANOTECHNICZNYCH

PROBLEMY BADANIA NIEZAWODNOŚCI SIŁOWNI TRANSPORTOWYCH OBIEKTÓW OCEANOTECHNICZNYCH Zbgnew MATUSZAK POBLEMY BADAIA IEZAWODOŚCI SIŁOWI TASPOTOWYCH OBIEKTÓW OCEAOTECHICZYCH Streszczene W artyule przedstawono problemy występujące podczas badana nezawodnośc słown orętowych pływających obetów

Bardziej szczegółowo

Dr Krzysztof Piontek. Metody taksonomiczne Klasyfikacja i porządkowanie

Dr Krzysztof Piontek. Metody taksonomiczne Klasyfikacja i porządkowanie Lteratura przegląd etod Studu podyploowe Analty Fnansowy Metody tasonoczne Klasyfaca porządowane Dzechcarz J. (pod red.), Eonoetra: etody, przyłady, zadana, Wydawnctwo Aade Eonoczne we Wrocławu, Wrocław,

Bardziej szczegółowo

ANALIZA HARMONOGRAMÓW POWYKONAWCZYCH W BUDOWNICTWIE

ANALIZA HARMONOGRAMÓW POWYKONAWCZYCH W BUDOWNICTWIE ANALIZA HARMONOGRAMÓW POWYKONAWCZYCH W BUDOWNICTWIE Wocech BOŻEJKO Zdzsław HEJDUCKI Marusz UCHROŃSKI Meczysław WODECKI Streszczene: W pracy przedstawono metodę wykorzystana harmonogramów powykonawczych

Bardziej szczegółowo

ROZWIĄZANIE PROBLEMU WYZNACZANIA POŁĄCZEŃ W SIECIACH KOMUNIKACYJNYCH Z ZASTOSOWANIEM METODY SKALARYZACJI

ROZWIĄZANIE PROBLEMU WYZNACZANIA POŁĄCZEŃ W SIECIACH KOMUNIKACYJNYCH Z ZASTOSOWANIEM METODY SKALARYZACJI STUDIA INFORMATICA 2011 Volume 32 Number 4A (100) Jacek WIDUCH Poltechnka Śląska, Instytut Informatyk ROZWIĄZANIE PROBLEMU WYZNACZANIA POŁĄCZEŃ W SIECIACH KOMUNIKACYJNYCH Z ZASTOSOWANIEM METODY SKALARYZACJI

Bardziej szczegółowo

SŁAWOMIR WIAK (redakcja)

SŁAWOMIR WIAK (redakcja) SŁAWOMIR WIAK (redacja Aademca Ofcyna Wydawncza EXIT Recenzenc: Prof. Janusz Turows Potechna Łódza Prof. Ewa Naperasa Juszcza Unversty Le Nord de France, LSEE, UA, Francja Autorzy rozdzałów: Prof. Potr

Bardziej szczegółowo

Diagnostyka układów kombinacyjnych

Diagnostyka układów kombinacyjnych Dagnostyka układów kombnacyjnych 1. Wprowadzene Dagnostyka obejmuje: stwerdzene stanu układu, systemu lub ogólne sec logcznej. Jest to tzw. kontrola stanu wykrywająca czy dzałane sec ne jest zakłócane

Bardziej szczegółowo

Sieci Neuronowe 1 Michał Bereta

Sieci Neuronowe 1 Michał Bereta Wprowadzene Zagadnena Sztucznej Intelgencj laboratorum Sec Neuronowe 1 Mchał Bereta Sztuczne sec neuronowe można postrzegać jako modele matematyczne, które swoje wzorce wywodzą z bolog obserwacj ludzkch

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

Krzysztof Borowski Zastosowanie metody wideł cenowych w analizie technicznej

Krzysztof Borowski Zastosowanie metody wideł cenowych w analizie technicznej Krzysztof Borowsk Zastosowane metody wdeł cenowych w analze technczne Wprowadzene Metoda wdeł cenowych została perwszy raz ogłoszona przez Alana Andrewsa 1 w roku 1960. Trzy lne wchodzące w skład metody

Bardziej szczegółowo

Zagadnienia do omówienia

Zagadnienia do omówienia Zarządzane produkcją dr nż. Marek Dudek Ul. Gramatyka 0, tel. 6798 http://www.produkcja.zarz.agh.edu.pl Zagadnena do omówena Zasady projektowana systemów produkcyjnych część (organzacja procesów w przestrzen)

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Adranna Mastalerz-Kodzs Unwersytet Ekonomczny w Katowcach KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Wprowadzene W dzałalnośc nstytucj fnansowych, takch

Bardziej szczegółowo

ASPEKT SYTUACJI STATUS QUO WE WSPOMAGANIU WIELOKRYTERIALNEGO WYBORU BAZUJĄCEGO NA TEORII GIER

ASPEKT SYTUACJI STATUS QUO WE WSPOMAGANIU WIELOKRYTERIALNEGO WYBORU BAZUJĄCEGO NA TEORII GIER Macej Wolny ASPEKT SYTUACJI STATUS QUO WE WSPOMAGANIU WIELOKRYTERIALNEGO WYBORU BAZUJĄCEGO NA TEORII GIER Wprowadzene Zagadnena welokryteralne dotyczą sytuacj, w których rozpatruje sę elementy zboru dopuszczalnych

Bardziej szczegółowo

Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych

Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych NAFTA-GAZ styczeń 2011 ROK LXVII Anna Rembesa-Śmszek Instytut Nafty Gazu, Kraków Andrzej Wyczesany Poltechnka Krakowska, Kraków Zastosowane symulatora ChemCad do modelowana złożonych układów reakcyjnych

Bardziej szczegółowo

Zastosowanie priorytetów dynamicznych do optymalizacji wieloproduktowych systemów produkcyjnych w poligrafii

Zastosowanie priorytetów dynamicznych do optymalizacji wieloproduktowych systemów produkcyjnych w poligrafii Zachodnopomorsk Unwersytet Technologczny w Szczecne Wydzał Informatyk Zastosowane prorytetów dynamcznych do optymalzacj weloproduktowych systemów produkcyjnych w polgraf Autoreferat rozprawy doktorskej

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje

Bardziej szczegółowo

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4 Zad. 1. Dana jest unkcja prawdopodobeństwa zmennej losowej X -5-1 3 8 p 1 1 c 1 Wyznaczyć: a. stałą c b. wykres unkcj prawdopodobeństwa jej hstogram c. dystrybuantę jej wykres d. prawdopodobeństwa: P (

Bardziej szczegółowo

Colloquium 3, Grupa A

Colloquium 3, Grupa A Colloquium 3, Grupa A 1. Z zasobów obliczeniowych pewnego serwera orzysta dwóch użytowniów. Każdy z nich wysyła do serwera zawsze trzy programy naraz. Użytowni czea, aż serwer wyona obliczenia dotyczące

Bardziej szczegółowo

Zeszyt Naukowy Warszawskiej Wyższej Szkoły Informatyki Nr 9, Rok 7, 2013, s. 119-137

Zeszyt Naukowy Warszawskiej Wyższej Szkoły Informatyki Nr 9, Rok 7, 2013, s. 119-137 Zeszyt Nauowy Warszawsej Wyższej Szoły Informaty Nr 9, Ro 7, 2013, s. 119-137 Mode motywacj nauczycea studentów podczas nabywana ompetencj Emma Kusztna, Oeg Zan, Andrzej Żyławs, Ryszard Tadeusewcz Streszczene

Bardziej szczegółowo

RÓWNOLEGŁY ALGORYTM PRZESZUKIWANIA Z ZABRONIENIAMI DLA CYKLICZNEGO PROBLEMU GNIAZDOWEGO

RÓWNOLEGŁY ALGORYTM PRZESZUKIWANIA Z ZABRONIENIAMI DLA CYKLICZNEGO PROBLEMU GNIAZDOWEGO RÓWNOLEGŁY ALGORYTM PRZESZUKIWANIA Z ZABRONIENIAMI DLA CYKLICZNEGO PROBLEMU GNIAZDOWEGO Wojciech BOŻEJKO, Andrzej GNATOWSKI, Mieczysław WODECKI Streszczenie: W pracy rozpatrujemy cyliczny problemem gniazdowy,

Bardziej szczegółowo