WPŁYW SZUMÓW KOLOROWYCH NA DZIAŁANIE FILTRU CZĄSTECZKOWEGO

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "WPŁYW SZUMÓW KOLOROWYCH NA DZIAŁANIE FILTRU CZĄSTECZKOWEGO"

Transkrypt

1 ELEKTRYKA 2012 Zeszyt 3-4 ( ) Ro LVIII Piotr KOZIERSKI Instytut Automatyi i Inżynierii Informatycznej, Politechnia Poznańsa Marcin LIS Instytut Eletrotechnii i Eletronii Przemysłowej, Politechnia Poznańsa WPŁYW SZUMÓW KOLOROWYCH NA DZIAŁANIE FILTRU CZĄSTECZKOWEGO Streszczenie. W artyule przedstawiono, ja działa filtr cząsteczowy przy działaniu różnych olorów szumu. W wyniu badania stwierdzono, tóry rodzaj szumu sprawia najwięsze problemy przy filtracji. Zaproponowano taże sposób polepszenia efetów filtracji dla olorów szumu, tóre sprawiały najwięsze problemy. Pierwszy rozdział został poświęcony filtrowi cząsteczowemu, w drugim rozdziale przedstawiono olory szumów, a w trzecim rozdziale opisano doświadczenie i przedstawiono wynii symulacji. Słowa luczowe: filtr cząsteczowy, szum olorowy INFLUENCE OF COLOR NOISES ON PARTICLE FILTER EFFECTS Summary. In the paper particle filter principle of operation with color noises is presented. Noise, which causes the worst filtration effects was indicated, and for this case was proposed method for improving filtration results. Particle filter is briefly described in the Chapter 1. In Chapter 2 different types of noise are presented. In Chapter 3 there are description and results of simulation. Keywords: particle filter, noise color 1. FILTR CZĄSTECZKOWY Filtr cząsteczowy (PF) jest jedną z odmian sewencyjnych metod Monte Carlo. Zadaniem PF jest filtracja Bayesa, czyli estymacja funcji gęstości prawdopodobieństwa (PDF) a posteriori p x Y, tórą można zapisać jao y x px Y 1 py Y p p x Y. (1) 1

2 38 P. Koziersi, M. Lis gdzie p y x to wiarygodność, p x Y 1 to PDF a priori, natomiast y Y 1 p to parametr normujący, dzięi tóremu pole pod PDF a posteriori jest równe 1 [3]. W powyższym zapisie przyjęto, że x to wartość zmiennej stanu w chwili, y to obserwacja w tej samej chwili, natomiast Y to zbiór obserwacji ze wszystich chwil czasowych od 1 do. PF jest onretną metodą implementacji filtru Bayesa, w tórej luczowym pomysłem jest przedstawienie PDF za pomocą zbioru próbe, z tórych ażda ma pewną wartość oraz wagę i q i x,. Można zatem zapisać postać miary prawdopodobieństwa p N i i x Y q x x, (2) i1 przy czym na podstawie mocnego prawa wielich liczb, dla można wstawić zna równości [2]. N w wyrażeniu (2) będzie Możliwości zastosowania PF są bardzo szeroie, ponieważ mogą być filtrowane dowolne, nawet silnie nieliniowe obiety. W literaturze można znaleźć prace wyorzystujące PF zazwyczaj do estymacji zmiennych stanu, ale taże do identyfiacji parametrycznej obietów [9], a taże do loalizacji robota w przestrzeni [10]. Pierwszy algorytm filtru cząsteczowego został zaproponowany przez Gordona w [5] w 1993 rou. Poza inicjalizacją ma on 3 podstawowe roi: predycję, atualizację i resampling, tóre należy wyonać dla ażdej z N cząstecze. Predycja polega na oszacowaniu, w jai sposób mogły zmienić się wartości zmiennych stanu obliczane jest to na podstawie znajomości strutury obietu, sygnałów wejściowych oraz wariancji szumu wewnętrznego. Atualizacja polega na obliczeniu przewidywanej wartości wyjściowej obietu na podstawie oszacowanych wcześniej zmiennych stanu, a następnie na podstawie PDF p y x (wymagana jest wiedza na temat wariancji szumu pomiarowego) obliczana jest waga cząsteczi. Po obliczeniu wszystich wag następuje normalizacja. Ostatnim roiem jednej iteracji filtru cząsteczowego jest resampling, czyli ponowne próbowanie. Polega ono na wylosowaniu N nowych cząstecze z PDF uzysanej po normalizacji wag. Opisany w [5] algorytm to ta zwany Bootstrap Filter, natomiast do dziś powstało wiele jego odmian, ja na przyład Auxiliary PF [8], Gaussian PF [6], czy Lielihood PF [1], jedna wszystie działają na podobnej zasadzie.

3 Wpływ szumów olorowych SZUM Poniżej opisano 5 rodzajów szumu, tóre zostały wzięte pod uwagę. Różnią się przede wszystim widmową gęstością mocy (WGM), tóra jest odwrotnie proporcjonalna do częstotliwości podniesionej do pewnej potęgi S f 1. (3) a f 2.1. Szum biały Jest to najczęściej wyorzystywany do symulacji rodzaj szumu. Wartość współczynnia szumu wynosi 0. Na rys. 1 przedstawiono WGM oraz wygląd próbe szumu w czasie. Ja można zaobserwować, WGM jest stała, a więc w szumie równy udział mają wszystie częstotliwości. Rys. 1. WGM i fragment sygnału szumu białego Fig. 1. Power density and sample of white noise 2.2. Szum różowy Dla tego oloru szumu współczynni szumu jest równy 1. Na rys. 2 można zaobserwować WGM, tóra opada z szybością 10dB/de (co jest równoznaczne z szybością 3dB/ot). Oznacza to, że w szumie bardziej będą się objawiać nisie częstotliwości. Rys. 2. Power density and sample of pin noise Fig. 2. WGM i fragment sygnału szumu różowego

4 40 P. Koziersi, M. Lis 2.3. Szum brązowy Nazwa pochodzi od R. Browna, tóry odrył tzw. ruch Browna, będący efetem opisywanego szumu. Czasami nazywany jest też szumem czerwonym. Współczynni wynosi 2, co oznacza, że nisie częstotliwości mają jeszcze więszy wpływ, niż w przypadu szumu różowego potwierdza się to na rys. 3, gdzie wyres WGM opada z szybością 20 db/de (6 db/ot). Rys. 3. WGM i fragment sygnału szumu brązowego Fig. 3. Power density and sample of brown noise Sygnały szumów różowego oraz brązowego można otrzymać poprzez odpowiednie scałowanie szumu białego Szum niebiesi Dla tego oloru szumu współczynni jest równy 1. Ja można zaobserwować na rys. 4, w tym przypadu więszy udział mają wysoie częstotliwości. Rys. 4. WGM i fragment sygnału szumu niebiesiego Fig. 4. Power density and sample of blue noise 2.5. Szum purpurowy Szum purpurowy jest oreślony dla parametru 2, a tym samym wyres WGM narasta z szybością 20 db/de (rys. 5).

5 Wpływ szumów olorowych 41 Rys. 5. WGM i fragment sygnału szumu purpurowego Fig. 5. Power density and sample of purple noise Ta ja w przypadu dodatniego parametru sygnał szumu mógł być otrzymywany poprzez całowanie, ta też dla ujemnego parametru można stwierdzić, że olejne próbi sygnału szumu są zależne od różnic dwóch ostatnich wartości sygnału. 3. WYNIKI SYMULACJI Do symulacji wyorzystano obiet dany przez równania stanu x y 0.8 x x n exp 0.1 x 1 1 v x 1 gdzie v 1 to szum wewnętrzny, tórego funcja gęstości prawdopodobieństwa będzie zmieniana w zależności od rozpatrywanego przypadu, natomiast n to szum pomiarowy o rozładzie normalnym i wariancji równej 1. Do otrzymania szumu wewnętrznego sorzystano z gotowego generatora szumu [7]. Poszczególne sygnały załóceń znormalizowano w tai sposób, aby miały taą samą moc daną wzorem [11] M (4) 1 P x x 2 i 1. (5) M i1 Do symulacji wyorzystano N 200 cząstecze, a sama symulacja miała długość M 1000 chwil czasowych. Po zaończonej symulacji obliczono średni wadrat błędu (MSE) estymacji. Wyonano po 100 taich symulacji dla ażdej wartości, a w tabeli 1 zamieszczono wartości średnie ze wszystich 100 symulacji. Tabela 1 Średnie wartości MSE dla poszczególnych wartości parametru α PDF szumu wewnętrznego zależna od wygenerowanego sygnału szumu α = -2 α = -1 α = 0 α = 1 α = 2 MSE

6 42 P. Koziersi, M. Lis Należy zauważyć bardzo duże błędy estymacji dla szumu fioletowego, a do obliczeń zostały wzięte pod uwagę tylo te symulacje, z tórych udało się uzysać wynii (ooło co druga symulacja ończyła się prawidłowo). W drugiej części doświadczenia za szum wewnętrzny przyjęto szum normalny o wariancji 2, niezależnie od rodzaju szumu, z jaim miał do czynienia obiet. Tym samym symulacje przebiegały identycznie, a jedynie w algorytmie PF przyjęto inną funcję gęstości prawdopodobieństwa. Pozostałe parametry symulacji pozostały bez zmian, a wynii przedstawiono w tabeli 2. Średnie wartości MSE dla poszczególnych wartości parametru α za szum wewnętrzny przyjęto szum normalny o wariancji równej 2 Tabela 2 α = -2 α = -1 α = 0 α = 1 Α = 2 MSE Należy taże zauważyć, że tym razem nie było żadnych problemów z uzysaniem wyniów dla szumu fioletowego. 4. WNIOSKI Na podstawie uzysanych wyniów można stwierdzić, że rodzaj szumu ma wpływ na działanie PF. Zarazem stwierdzić również można, że szum fioletowy jest najbardziej problematyczny spośród rozpatrywanych może być wyorzystywany podczas badań jao najgorszy z możliwych przypadów. Porównując wynii z obu części doświadczenia, zauważono, że dla srajnych wartości parametru, przy przyjęciu wariancji szumu wewnętrznego równej 2, nastąpiła poprawa. Widać zatem, że przyjęcie wariancji więszej, niż rzeczywista może zarówno polepszyć, ja i pogorszyć wynii, ale w przypadu problemów z symulacją warto taie rozwiązanie (zwięszenie wariancji szumu wewnętrznego) rozważyć. Można taże zauważyć, że w wyniach uzysanych w pierwszej części doświadczenia to dla szumu różowego uzysano najlepsze efety filtracji, a nie dla szumu białego, ja można by się spodziewać. W związu z powyższym wyonano dodatowe doświadczenia, identyczne ja w pierwszej części doświadczenia (modelowanie szumu wewnętrznego zależne od parametru ; N 200, M 1000 ; 100 powtórzeń), a jedyną zmienną było ziarno szumu. Uzysane wynii (już tylo dla trzech wartości ) przedstawiono w tabeli 3.

7 Wpływ szumów olorowych 43 Tabela 3 Średnie wartości MSE dla poszczególnych wartości parametru α przy zmiennym ziarnie generatora PDF szumu wewnętrznego zależna od wygenerowanego sygnału szumu MSE ziarno α = -1 α = 0 α = 1 generatora Na podstawie wyniów z tabeli 3 można stwierdzić, że te uzysane w tabeli 1 są szczególnym przypadiem, a w przeważającej więszości przypadów szum biały oazuje się najprostszym szumem do filtracji. BIBLIOGRAFIA 1. Arulampalam S., Masell S., Gordon N., Clapp T.: A Tutorial on Particle Filters for Online Non-linear/Non-Gaussian Bayesian Tracing, IEEE Proceedings on Signal Processing, Vol. 50, No. 2, 2002, s Brzozowsa-Rup K., Dawidowicz A.L.: Metoda filtru cząsteczowego. Matematya Stosowana: Matematya dla Społeczeństwa 2009, T. 10/51, s Candy J.V.: Bayesian signal processing, WILEY, New Jersey 2009, s Doucet A., Freitas N., Gordon N.: Sequential Monte Carlo Methods in Practice, Springer- Verlag, New Yor 2001, s Gordon N.J., Salmond N.J., Smith A.F.M.: Novel approach to nonlinear/non-gaussian Bayesian state estimation. IEE Proceedings-F 1993, Vol. 140, No. 2, s Kotecha J.H., Djurić P.M.: Gaussian Particle Filtering. IEEE Trans Signal Processing 2003, Vol. 51, No. 10, s Little M., McSharry P., Roberts S., Costello D., Moroz I.: Exploiting Nonlinear Recurrence and Fractal Scaling Properties for voice Disorder Detection. BioMedical Eng. OnLine 2007, vol. 6, no. 23, s Pitt M., Shephard N.: Filtering via simulation: auxiliary particle filters. Journal of the American Statistical Association 1999, Vol. 94, No. 446, s Schön T.B., Wills A., Ninness B., System identification of nonlinear state-space models, Automatica 2011, Vol. 47, p Thrun S.: Particle Filters in Robotics, Proceedings of the 17th Annual Conference on Uncertainty in AI (UAI), 2002.

8 44 P. Koziersi, M. Lis 11. Zielińsi T.: Cyfrowe przetwarzanie sygnałów: Od teorii do zastosowań. Wydawnictwa Komuniacji i Łączności, Warszawa 2007, s Wpłynęło do Redacji dnia 20 październia 2012 r. Recenzent: Prof. dr hab. inż. Janusz Walcza Mgr inż. Piotr KOZIERSKI Politechnia Poznańsa Instytut Automatyi i Inżynierii Informatycznej ul. Piotrowo 3a Poznań Tel.: (061) ; Mgr inż. Marcin LIS Politechnia Poznańsa Instytut Eletrotechnii i Eletronii Przemysłowej ul. Piotrowo 3a Poznań Tel. (061)

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH MODYFICJ OSZTOW LGORYTMU JOHNSON DO SZEREGOWNI ZDŃ UDOWLNYCH Michał RZEMIŃSI, Paweł NOW a a Wydział Inżynierii Lądowej, Załad Inżynierii Producji i Zarządzania w udownictwie, ul. rmii Ludowej 6, -67 Warszawa

Bardziej szczegółowo

Detekcja i śledzenie ruchomych obiektów w obrazie

Detekcja i śledzenie ruchomych obiektów w obrazie Detecja i śledzenie ruchomych oietów w orazie Piotr Dala Plan prezentacji Wprowadzenie Metody wyrywania oietów ruchomych Podstawowe metody Modelowanie tła Usuwanie cienia Przetwarzanie morfologiczne Metody

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE

PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE ORAZ ŚREDNIE 1. Procenty i proporcje DEFINICJA 1. Jeden procent (1%) pewnej liczby a to setna część tej liczby, tórą oznacza się: 1% a, przy czym 1% a = 1 p a, zaś

Bardziej szczegółowo

WYKORZYSTANIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDENTYFIKACJI UKŁADÓW AUTOMATYKI

WYKORZYSTANIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDENTYFIKACJI UKŁADÓW AUTOMATYKI Piotr KOZIERSKI WYKORZYSTAIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDETYFIKACJI UKŁADÓW AUTOMATYKI STRESZCZEIE W artyule przedstawioo sposób idetyfiacji parametryczej obietów ieliiowych zapisaych w przestrzei

Bardziej szczegółowo

Matematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki

Matematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki Matematya dysretna Wyład 2: Kombinatorya Gniewomir Sarbici Kombinatorya Definicja Kombinatorya zajmuje się oreślaniem mocy zbiorów sończonych, w szczególności mocy zbiorów odwzorowań jednego zbioru w drugi

Bardziej szczegółowo

Wybrane rozkłady zmiennych losowych i ich charakterystyki

Wybrane rozkłady zmiennych losowych i ich charakterystyki Rozdział 1 Wybrane rozłady zmiennych losowych i ich charaterystyi 1.1 Wybrane rozłady zmiennych losowych typu soowego 1.1.1 Rozład równomierny Rozpatrzmy esperyment, tóry może sończyć się jednym z n możliwych

Bardziej szczegółowo

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań Mieczysław OŁOŃSI Wydział Budownictwa i Inżynierii Środowisa, Szoła Główna Gospodarstwa Wiejsiego, Warszawa, ul. Nowoursynowsa 159 e-mail: mieczyslaw_polonsi@sggw.pl Założenia Optymalizacja harmonogramów

Bardziej szczegółowo

WPŁYW INFORMACJI O ZMIENNYCH STANU OBIEKTU NA JAKOŚĆ STEROWANIA PRZEZ NEUROSTEROWNIK

WPŁYW INFORMACJI O ZMIENNYCH STANU OBIEKTU NA JAKOŚĆ STEROWANIA PRZEZ NEUROSTEROWNIK ELEKTRYKA 2012 Zeszyt 3-4 (223-224) Rok LVIII Marcin LIS Instytut Elektrotechniki i Elektroniki Przemysłowej, Politechnika Poznańska Piotr KOZIERSKI Instytut Automatyki i Inżynierii Informatycznej, Politechnika

Bardziej szczegółowo

Koła rowerowe kreślą fraktale

Koła rowerowe kreślą fraktale 26 FOTON 114, Jesień 2011 Koła rowerowe reślą fratale Mare Berezowsi Politechnia Śląsa Od Redacji: Fratalom poświęcamy ostatnio dużo uwagi. W Fotonach 111 i 112 uazały się na ten temat artyuły Marcina

Bardziej szczegółowo

ZARYS METODY OPISU KSZTAŁTOWANIA SKUTECZNOŚCI W SYSTEMIE EKSPLOATACJI WOJSKOWYCH STATKÓW POWIETRZNYCH

ZARYS METODY OPISU KSZTAŁTOWANIA SKUTECZNOŚCI W SYSTEMIE EKSPLOATACJI WOJSKOWYCH STATKÓW POWIETRZNYCH Henry TOMASZEK Ryszard KALETA Mariusz ZIEJA Instytut Techniczny Wojs Lotniczych PRACE AUKOWE ITWL Zeszyt 33, s. 33 43, 2013 r. DOI 10.2478/afit-2013-0003 ZARYS METODY OPISU KSZTAŁTOWAIA SKUTECZOŚCI W SYSTEMIE

Bardziej szczegółowo

Koła rowerowe malują fraktale

Koła rowerowe malują fraktale Koła rowerowe malują fratale Mare Berezowsi Politechnia Śląsa Rozważmy urządzenie sładającego się z n ół o różnych rozmiarach, obracających się z różnymi prędościami. Na obręczy danego oła, obracającego

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZA 1. Wyład wstępny. Teoria prawdopodobieństwa i elementy ombinatoryi. Zmienne losowe i ich rozłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych

Bardziej szczegółowo

4.15 Badanie dyfrakcji światła laserowego na krysztale koloidalnym(o19)

4.15 Badanie dyfrakcji światła laserowego na krysztale koloidalnym(o19) 256 Fale 4.15 Badanie dyfracji światła laserowego na rysztale oloidalnym(o19) Celem ćwiczenia jest wyznaczenie stałej sieci dwuwymiarowego ryształu oloidalnego metodą dyfracji światła laserowego. Zagadnienia

Bardziej szczegółowo

116 Paweł Kobus Stowarzyszenie Ekonomistów Rolnictwa i Agrobiznesu

116 Paweł Kobus Stowarzyszenie Ekonomistów Rolnictwa i Agrobiznesu 116 Paweł Kobus Stowarzyszenie Eonomistów Rolnictwa i Agrobiznesu Rocznii Nauowe tom XVII zeszyt 6 Paweł Kobus Szoła Główna Gospodarstwa Wiejsiego w Warszawie Wpływ ubezpieczeń rolniczych na stabilność

Bardziej szczegółowo

P k k (n k) = k {O O O} = ; {O O R} =

P k k (n k) = k {O O O} = ; {O O R} = Definicja.5 (Kombinacje bez powtórzeń). Każdy -elementowy podzbiór zbioru A wybrany (w dowolnej olejności) bez zwracania nazywamy ombinacją bez powtórzeń. Twierdzenie.5 (Kombinacje bez powtórzeń). Liczba

Bardziej szczegółowo

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07) Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością

Bardziej szczegółowo

ANALIZA METROLOGICZNA UKŁADU DO DIAGNOSTYKI ŁOŻYSK OPARTEJ NA POMIARACH MOCY CHWILOWEJ

ANALIZA METROLOGICZNA UKŁADU DO DIAGNOSTYKI ŁOŻYSK OPARTEJ NA POMIARACH MOCY CHWILOWEJ POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 7 Electrical Engineering 01 Ariel DZWONKOWSKI* ANALIZA METROLOGICZNA UKŁADU DO DIAGNOSTYKI ŁOŻYSK OPARTEJ NA POMIARACH MOCY CHWILOWEJ W artyule przedstawiono

Bardziej szczegółowo

WYKORZYSTANIE AKCELEROMETRU I ŻYROSKOPU MEMS DO POMIARU DRGAŃ W NAPĘDZIE BEZPOŚREDNIM O ZŁOŻONEJ STRUKTURZE MECHANICZNEJ

WYKORZYSTANIE AKCELEROMETRU I ŻYROSKOPU MEMS DO POMIARU DRGAŃ W NAPĘDZIE BEZPOŚREDNIM O ZŁOŻONEJ STRUKTURZE MECHANICZNEJ POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 87 Electrical Engineering 2016 Tomasz KULCZAK* Bartosz SZCZERBO* Stefan BROCK* WYKORZYSTANIE AKCELEROMETRU I ŻYROSKOPU MEMS DO POMIARU DRGAŃ W NAPĘDZIE

Bardziej szczegółowo

PRAKTYCZNY PRZYKŁAD OCENY ŚRODOWISKOWEGO RYZYKA ZDROWOTNEGO

PRAKTYCZNY PRZYKŁAD OCENY ŚRODOWISKOWEGO RYZYKA ZDROWOTNEGO PRAKTYCZNY PRZYKŁAD OCENY ŚRODOWISKOWEGO RYZYKA ZDROWOTNEGO Mgr Beata Malec, dr Mare Biesiada, dr Anicenta Buba Instytut Medycyny Pracy i Zdrowia Środowisowego, Sosnowiec Wstęp Zagrożenia zdrowotne stwarzane

Bardziej szczegółowo

OPTYMALIZACJA PRZEPUSTOWOŚCI SIECI KOMPUTEROWYCH ZA POMOCĄ ALGORYTMÓW GENETYCZNYCH

OPTYMALIZACJA PRZEPUSTOWOŚCI SIECI KOMPUTEROWYCH ZA POMOCĄ ALGORYTMÓW GENETYCZNYCH OPTYMALIZACJA PRZEPUSTOWOŚCI SIECI KOMPUTEROWYCH ZA POMOCĄ ALGORYTMÓW GENETYCZNYCH Andrzej SZYMONIK, Krzysztof PYTEL Streszczenie: W złożonych sieciach omputerowych istnieje problem doboru przepustowości

Bardziej szczegółowo

Kodowanie informacji w systemach cyfrowych

Kodowanie informacji w systemach cyfrowych Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 2. Kodowanie informacji w systemach cyfrowych Cel dydatyczny: Nabycie umiejętności posługiwania się różnymi odami wyorzystywanymi w systemach

Bardziej szczegółowo

REFERAT PRACY MAGISTERSKIEJ Symulacja estymacji stanu zanieczyszczeń rzeki z wykorzystaniem sztucznych sieci neuronowych.

REFERAT PRACY MAGISTERSKIEJ Symulacja estymacji stanu zanieczyszczeń rzeki z wykorzystaniem sztucznych sieci neuronowych. REFERAT PRACY MAGISTERSKIEJ Symulacja estymacji stanu zanieczyszczeń rzei z wyorzystaniem sztucznych sieci neuronowych. Godło autora pracy: EwGron. Wprowadzenie. O poziomie cywilizacyjnym raju, obo wielu

Bardziej szczegółowo

Colloquium 3, Grupa A

Colloquium 3, Grupa A Colloquium 3, Grupa A 1. Z zasobów obliczeniowych pewnego serwera orzysta dwóch użytowniów. Każdy z nich wysyła do serwera zawsze trzy programy naraz. Użytowni czea, aż serwer wyona obliczenia dotyczące

Bardziej szczegółowo

UZUPEŁNIENIA DO WYKŁADÓW A-C

UZUPEŁNIENIA DO WYKŁADÓW A-C UZUPEŁNIENIA DO WYKŁADÓW A-C Objaśnienia: 1. Uzupełnienia sładają się z dwóch części właściwych uzupełnień do treści wyładowych, zwyle zawierających wyprowadzenia i nietóre definicje oraz Zadań i problemów.

Bardziej szczegółowo

Mikroekonometria 6. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 6. Mikołaj Czajkowski Wiktor Budziński Mikroekonometria 6 Mikołaj Czajkowski Wiktor Budziński Metody symulacyjne Monte Carlo Metoda Monte-Carlo Wykorzystanie mocy obliczeniowej komputerów, aby poznać charakterystyki zmiennych losowych poprzez

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

OCENA JAKOŚCI PROCESU LOGISTYCZNEGO PRZEDSIĘBIORSTWA PRZEMYSŁOWEGO METODĄ UOGÓLNIONEGO PARAMETRU CZĘŚĆ II

OCENA JAKOŚCI PROCESU LOGISTYCZNEGO PRZEDSIĘBIORSTWA PRZEMYSŁOWEGO METODĄ UOGÓLNIONEGO PARAMETRU CZĘŚĆ II B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 2 2004 Anna DOBROWOLSKA* Jan MIKUŚ* OCENA JAKOŚCI PROCESU LOGISTYCZNEGO PRZEDSIĘBIORSTWA PRZEMYSŁOWEGO METODĄ UOGÓLNIONEGO PARAMETRU CZĘŚĆ II Przedstawiono

Bardziej szczegółowo

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ALGORYTM MRÓWKOWY (ANT SYSTEM) ALGORYTM MRÓWKOWY. Algorytm mrówkowy

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ALGORYTM MRÓWKOWY (ANT SYSTEM) ALGORYTM MRÓWKOWY. Algorytm mrówkowy PLAN WYKŁADU Algorytm mrówowy OPTYMALIZACJA GLOBALNA Wyład 8 dr inż. Agniesza Bołtuć (ANT SYSTEM) Inspiracja: Zachowanie mrówe podczas poszuiwania żywności, Zachowanie to polega na tym, że jeśli do żywności

Bardziej szczegółowo

koszt kapitału D/S L dźwignia finansowa σ EBIT zysku operacyjnego EBIT firmy. Firmy Modele struktury kapitału Rys. 8.3. Krzywa kosztów kapitału.

koszt kapitału D/S L dźwignia finansowa σ EBIT zysku operacyjnego EBIT firmy. Firmy Modele struktury kapitału Rys. 8.3. Krzywa kosztów kapitału. Modele strutury apitału oszt apitału Optymalna strutura apitału dźwignia finansowa / Rys. 8.3. Krzywa osztów apitału. Założenia wspólne modeli MM Modigliani i Miller w swoich rozważaniach ograniczyli się

Bardziej szczegółowo

Materiały dydaktyczne. Matematyka. Semestr III. Wykłady

Materiały dydaktyczne. Matematyka. Semestr III. Wykłady Materiały dydatyczne Matematya Semestr III Wyłady Aademia Morsa w Szczecinie ul. Wały Chrobrego - 70-500 Szczecin WIII RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE PIERWSZEGO RZĘDU. Pojęcia wstępne. Równania różniczowe

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Inducja matematyczna Inducja jest taą metodą rozumowania, za pomocą tórej od tezy szczegółowej dochodzimy do tezy ogólnej. Przyład 1 (o zanurzaniu ciał w wodzie) 1. Kawałe żelaza, tóry zanurzyłem w wodzie,

Bardziej szczegółowo

Algebra liniowa z geometrią analityczną

Algebra liniowa z geometrią analityczną WYKŁAD. Własności zbiorów liczbowych. Podzielność liczb całowitych, relacja przystawania modulo, twierdzenie chińsie o resztach. Liczby całowite Liczby 0,±,±,±3,... nazywamy liczbami całowitymi. Zbiór

Bardziej szczegółowo

9. Sprzężenie zwrotne własności

9. Sprzężenie zwrotne własności 9. Sprzężenie zwrotne własności 9.. Wprowadzenie Sprzężenie zwrotne w uładzie eletronicznym realizuje się przez sumowanie części sygnału wyjściowego z sygnałem wejściowym i użycie zmodyiowanego w ten sposób

Bardziej szczegółowo

Wyznaczenie prędkości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze

Wyznaczenie prędkości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze Podstawy analizy wypadów drogowych Instrucja do ćwiczenia 1 Wyznaczenie prędości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze Spis treści 1. CEL ĆWICZENIA... 3. WPROWADZENIE...

Bardziej szczegółowo

A4: Filtry aktywne rzędu II i IV

A4: Filtry aktywne rzędu II i IV A4: Filtry atywne rzędu II i IV Jace Grela, Radosław Strzała 3 maja 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, tórych używaliśmy w obliczeniach: 1. Związe między stałą czasową

Bardziej szczegółowo

Generowanie sygnałów na DSP

Generowanie sygnałów na DSP Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Generowanie sygnałów na DSP Wstęp Dziś w programie: generowanie sygnałów za pomocą

Bardziej szczegółowo

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza

Bardziej szczegółowo

PRAKTYCZNE OBLICZENIA W INSTALACJACH SŁONECZNEGO OGRZEWANIA WODY

PRAKTYCZNE OBLICZENIA W INSTALACJACH SŁONECZNEGO OGRZEWANIA WODY Zeszyty Nauowe Wydziału Eletrotechnii i Automatyi Politechnii Gdańsiej Nr 7 XXXV Konerencja Nauowo - Techniczna GDAŃSKIE DNI ELEKTRYKI 010 Stowarzyszenie Eletryów Polsich Oddział Gdańsi Reerat nr 5 PRAKTYCZNE

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ LISTA ZADAŃ 1 1 Napisać w formie rozwiniętej następujące wyrażenia: 4 (a 2 + b +1 =0 5 a i b j =1 n a i b j =1 n =0 (a nb 4 3 (! + ib i=3 =1 2 Wyorzystując twierdzenie o

Bardziej szczegółowo

ROZDZIAŁ 10 METODA KOMPONOWANIA ZESPOŁU CZYNNIKI EFEKTYWNOŚCI SKŁADU ZESPOŁU

ROZDZIAŁ 10 METODA KOMPONOWANIA ZESPOŁU CZYNNIKI EFEKTYWNOŚCI SKŁADU ZESPOŁU Agniesza Dziurzańsa ROZDZIAŁ 10 METODA KOMPONOWANIA ZESPOŁU 10.1. CZYNNIKI EFEKTYWNOŚCI SKŁADU ZESPOŁU Przeprowadzona analiza formacji, jaą jest zespół (zobacz rozdział 5), wyazała, że cechy tóre powstają

Bardziej szczegółowo

Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy

Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Grupa: wtorek 18:3 Tomasz Niedziela I. CZĘŚĆ ĆWICZENIA 1. Cel i przebieg ćwiczenia. Celem ćwiczenia

Bardziej szczegółowo

Algorytmy estymacji stanu (filtry)

Algorytmy estymacji stanu (filtry) Algorytmy estymacji stanu (filtry) Na podstawie: AIMA ch15, Udacity (S. Thrun) Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 21 kwietnia 2014 Problem lokalizacji Obserwowalność? Determinizm?

Bardziej szczegółowo

Zastosowanie zespołów prądotwórczych do awaryjnego zasilania obiektów budowlanych mgr inż. Julian Wiatr CKSI i UE SEP

Zastosowanie zespołów prądotwórczych do awaryjnego zasilania obiektów budowlanych mgr inż. Julian Wiatr CKSI i UE SEP astosowanie zespołów prądotwórczych do awaryjnego zasilania obietów budowlanych mgr inż. Julian Wiatr CKSI i UE SE 1. odział odbiorniów energii eletrycznej na ategorie zasilania i ułady zasilania obietu

Bardziej szczegółowo

Wyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego

Wyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego Politechnia Łódza FTIMS Kierune: Informatya ro aademici: 2008/2009 sem. 2. Termin: 16 III 2009 Nr. ćwiczenia: 413 Temat ćwiczenia: Wyznaczanie długości fali świetlnej za pomocą spetrometru siatowego Nr.

Bardziej szczegółowo

Fuzja sygnałów i filtry bayesowskie

Fuzja sygnałów i filtry bayesowskie Fuzja sygnałów i filtry bayesowskie Roboty Manipulacyjne i Mobilne dr inż. Janusz Jakubiak Katedra Cybernetyki i Robotyki Wydział Elektroniki, Politechnika Wrocławska Wrocław, 10.03.2015 Dlaczego potrzebna

Bardziej szczegółowo

(U.3) Podstawy formalizmu mechaniki kwantowej

(U.3) Podstawy formalizmu mechaniki kwantowej 3.10.2004 24. (U.3) Podstawy formalizmu mechanii wantowej 33 Rozdział 24 (U.3) Podstawy formalizmu mechanii wantowej 24.1 Wartości oczeiwane i dyspersje dla stanu superponowanego 24.1.1 Założenia wstępne

Bardziej szczegółowo

Analiza nośności poziomej pojedynczego pala

Analiza nośności poziomej pojedynczego pala Poradni Inżyniera Nr 16 Atualizacja: 09/016 Analiza nośności poziomej pojedynczego pala Program: Pli powiązany: Pal Demo_manual_16.gpi Celem niniejszego przewodnia jest przedstawienie wyorzystania programu

Bardziej szczegółowo

Komputerowa reprezentacja oraz prezentacja i graficzna edycja krzywoliniowych obiektów 3d

Komputerowa reprezentacja oraz prezentacja i graficzna edycja krzywoliniowych obiektów 3d Komputerowa reprezentacja oraz prezentacja i graficzna edycja rzywoliniowych obietów 3d Jan Prusaowsi 1), Ryszard Winiarczy 1,2), Krzysztof Sabe 2) 1) Politechnia Śląsa w Gliwicach, 2) Instytut Informatyi

Bardziej szczegółowo

Monte Carlo, bootstrap, jacknife

Monte Carlo, bootstrap, jacknife Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział

Bardziej szczegółowo

Pomiary napięć przemiennych

Pomiary napięć przemiennych LABORAORIUM Z MEROLOGII Ćwiczenie 7 Pomiary napięć przemiennych . Cel ćwiczenia Celem ćwiczenia jest poznanie sposobów pomiarów wielości charaterystycznych i współczynniów, stosowanych do opisu oresowych

Bardziej szczegółowo

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F; Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia

Bardziej szczegółowo

DOBÓR PRZEKROJU PRZEWODÓW OBCIĄŻONYCH PRĄDEM ZAWIERAJĄCYM WYŻSZE HARMONICZNE

DOBÓR PRZEKROJU PRZEWODÓW OBCIĄŻONYCH PRĄDEM ZAWIERAJĄCYM WYŻSZE HARMONICZNE POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 90 Electrical Engineering 2017 DOI 10.21008/j.1897-0737.2017.90.0020 Andrzej KSIĄŻKIEWICZ* Marcin RACŁAW** DOBÓR PRZEKROJU PRZEWODÓW OBCIĄŻONYCH

Bardziej szczegółowo

OBLICZENIA W POMIARACH POŚREDNICH

OBLICZENIA W POMIARACH POŚREDNICH ROZDZAŁ 6 OBLCZENA W POMARACH POŚREDNCH Stefan ubisa Zachodniopoorsi niwersytet Technologiczny. Wstęp Poiar pośredni to tai w tóry wartość wielości ierzonej wielości wyjściowej ezurandu y oblicza się z

Bardziej szczegółowo

FILTRACJA KALMANA W TECHNICE NA PRZYKŁADZIE URZĄDZENIA SST

FILTRACJA KALMANA W TECHNICE NA PRZYKŁADZIE URZĄDZENIA SST Zeszyty Nauowe WSInf Vol 12, Nr 1, 2013 Mirosław Zając Politechnia Łódza, Instytut mechatronii i Systemów Informatycznych ul. Stefanowsiego 18/22, 90-924 Łódź email: mire21.mire21@wp.pl FILRACJA KALMANA

Bardziej szczegółowo

Temat: Prawo Hooke a. Oscylacje harmoniczne. Zagadnienia: prawa dynamiki Newtona, siła sprężysta, prawo Hooke a, oscylacje harmoniczne,

Temat: Prawo Hooke a. Oscylacje harmoniczne. Zagadnienia: prawa dynamiki Newtona, siła sprężysta, prawo Hooke a, oscylacje harmoniczne, sg M 6-1 - Teat: Prawo Hooe a. Oscylacje haroniczne. Zagadnienia: prawa dynaii Newtona, siła sprężysta, prawo Hooe a, oscylacje haroniczne, ores oscylacji. Koncepcja: Sprężyna obciążana różnyi asai wydłuża

Bardziej szczegółowo

ZASTOSOWANIE METODY MONTE CARLO DO WYZNACZANIA KRZYWYCH KINETYCZNYCH ZŁOŻONYCH REAKCJI CHEMICZNYCH

ZASTOSOWANIE METODY MONTE CARLO DO WYZNACZANIA KRZYWYCH KINETYCZNYCH ZŁOŻONYCH REAKCJI CHEMICZNYCH MONIKA GWADERA, KRZYSZTOF KUPIEC ZASTOSOWANIE METODY MONTE CARLO DO WYZNACZANIA KRZYWYCH KINETYCZNYCH ZŁOŻONYCH REAKCJI CHEMICZNYCH APPLICATION OF MONTE CARLO METHOD FOR DETERMINATION OF MULTIPLE REACTIONS

Bardziej szczegółowo

ZADANIE 52 INTERFERENCYJNY POMIAR KRZYWIZNY SOCZEWKI (pierścienie Newtona) Cel ćwiczenia Celem ćwiczenia jest wyznaczenie, przy znanej długości fali

ZADANIE 52 INTERFERENCYJNY POMIAR KRZYWIZNY SOCZEWKI (pierścienie Newtona) Cel ćwiczenia Celem ćwiczenia jest wyznaczenie, przy znanej długości fali ZADANIE 52 INTERFERENCYJNY POMIAR KRZYWIZNY SOCZEWKI (pierścienie Newtona) Cel ćwiczenia Celem ćwiczenia jest wyznaczenie, przy znanej długości fali świetlnej, promienia rzywizny soczewi płaso-wypułej

Bardziej szczegółowo

Ćwiczenie 4. Zagadnienia: spektroskopia emisyjna, budowa i działanie spektrofluorymetru, widma. Wstęp. Część teoretyczna.

Ćwiczenie 4. Zagadnienia: spektroskopia emisyjna, budowa i działanie spektrofluorymetru, widma. Wstęp. Część teoretyczna. Ćwiczenie 4 Wyznaczanie wydajności wantowej emisji. Wpływ długości fali wzbudzenia oraz ształtu uweti i jej ustawienia na intensywność emisji i na udział filtru wewnętrznego. Zagadnienia: spetrosopia emisyjna,

Bardziej szczegółowo

CYFROWE PRZETWARZANIE SYGNAŁÓW

CYFROWE PRZETWARZANIE SYGNAŁÓW POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Sygnały stochastyczne, parametry w dziedzinie

Bardziej szczegółowo

Badanie stacjonarności szeregów czasowych w programie GRETL

Badanie stacjonarności szeregów czasowych w programie GRETL Badanie stacjonarności szeregów czasowych w programie GRETL Program proponuje następujące rodzaje testów stacjonarności zmiennych:. Funcję autoorelacji i autoorelacji cząstowej 2. Test Diceya-Fullera na

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji

Bardziej szczegółowo

ładunek do przewiezienia dwie możliwości transportu

ładunek do przewiezienia dwie możliwości transportu ładune do przewiezienia dwie możliwości transportu Potrzeba jest przesłać np. 10 Mb/s danych drogą radiową jedna ala nośna Kod NRZ + modulacja PSK czas trwania jednego bitu 0,1 us przy możliwej wielodrogowości

Bardziej szczegółowo

Wstęp. Przygotowanie materiału doświadczalnego do badań. Zastosowanie logiki rozmytej do obliczeń

Wstęp. Przygotowanie materiału doświadczalnego do badań. Zastosowanie logiki rozmytej do obliczeń Przedstawiona praca jest ontynuacją próby wprowadzenia metody logii rozmytej do rutynowych modelowań geologicznych. Wyorzystując dane laboratoryjne i otworowe uzupełniano z jej pomocą braujące fragmenty

Bardziej szczegółowo

Zofia MIECHOWICZ, Zielona Góra. v 1. v 2

Zofia MIECHOWICZ, Zielona Góra. v 1. v 2 Jest to zapis odczytu wygłoszonego na XLVIII Szole atematyi Poglądowej, Sojarzenia i analogie, Otwoc Śródborów, styczeń 22. W przestrzeni Zofia IECHOWICZ, Zielona Góra Naturalna analogia? Nie mylił się,

Bardziej szczegółowo

BADANIA SYMULACYJNE W UKŁADZIE NIELINIOWYM Z DOŁĄCZONYM URZĄDZENIEM FILTRUJĄCO - KOMPENSACYJNYM

BADANIA SYMULACYJNE W UKŁADZIE NIELINIOWYM Z DOŁĄCZONYM URZĄDZENIEM FILTRUJĄCO - KOMPENSACYJNYM ELEKTRYKA 01 Zeszyt () Ro LVIII Wiesław BROCIEK 1, Robert WILANOWICZ 1 Instytut Eletrotechnii Teoretycznej i Systemów Informacyjno-Pomiarowych, Politechnia Warszawsa Instytut Systemów Transportowych i

Bardziej szczegółowo

Reakcja systemu elektroenergetycznego na deficyt mocy czynnej problematyka węzła bilansującego

Reakcja systemu elektroenergetycznego na deficyt mocy czynnej problematyka węzła bilansującego Mare WANCERZ, Piotr MILLER Politechnia Lubelsa, Katedra Sieci Eletrycznych i Zabezpieczeń Reacja systemu eletroenergetycznego na deficyt mocy czynnej problematya węzła bilansującego Streszczenie. W artyule

Bardziej szczegółowo

Porównanie wybranych miar kontrastu obrazów achromatycznych

Porównanie wybranych miar kontrastu obrazów achromatycznych KWS 00 87 Porównanie wybranych miar ontrastu obrazów achromatycznych Artur Ba Streszczenie: W artyue poruszono zagadnienie oceny ontrastu achromatycznych obrazów cyfrowych. W pracy przedstawiono porównanie

Bardziej szczegółowo

Matematyka Dyskretna, informatyka, 2008/2009, W. Broniowski

Matematyka Dyskretna, informatyka, 2008/2009, W. Broniowski Matematya Dysretna, informatya, 2008/2009, W. Broniowsi Zestaw 2 z częściowymi odpowiedziami (ja toś nie chce, niech nie patrzy! Kombinatorya i rachune prawdopodobieństwa. Z pomocą wzoru Stirlinga dla

Bardziej szczegółowo

R w =

R w = Laboratorium Eletrotechnii i eletronii LABORATORM 6 Temat ćwiczenia: BADANE ZASLACZY ELEKTRONCZNYCH - pomiary w obwodach prądu stałego Wyznaczanie charaterysty prądowo-napięciowych i charaterysty mocy.

Bardziej szczegółowo

ANALIZA LOGARYTMICZNYCH STÓP ZWROTU DLA WYBRANYCH SPÓŁEK INDEKSU WIG20

ANALIZA LOGARYTMICZNYCH STÓP ZWROTU DLA WYBRANYCH SPÓŁEK INDEKSU WIG20 Agniesza Surowiec Politechnia Lubelsa Wydział Zarządzania Katedra Metod Ilościowych w Zarządzaniu a.surowiec@pollub.pl Witold Rzymowsi Politechnia Lubelsa Wydział Podstaw Technii Katedra Matematyi Stosowanej

Bardziej szczegółowo

Wpływ zamiany typów elektrowni wiatrowych o porównywalnych parametrach na współpracę z węzłem sieciowym

Wpływ zamiany typów elektrowni wiatrowych o porównywalnych parametrach na współpracę z węzłem sieciowym Wpływ zamiany typów eletrowni wiatrowych o porównywalnych parametrach na współpracę z węzłem sieciowym Grzegorz Barzy Paweł Szwed Instytut Eletrotechnii Politechnia Szczecińsa 1. Wstęp Ostatnie ila lat,

Bardziej szczegółowo

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)

Bardziej szczegółowo

SZACOWANIE WSPÓŁCZYNNIKA FILTRACJI W KOLUMNIE FILTRACYJNEJ

SZACOWANIE WSPÓŁCZYNNIKA FILTRACJI W KOLUMNIE FILTRACYJNEJ ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/007 Komisja Inżynierii Budowlanej Oddział Polsiej Aademii Nau w Kaowicac SZACOWANIE WSPÓŁCZYNNIKA FILTRACJI W KOLUMNIE FILTRACYJNEJ Jadwiga ŚWIRSKA Poliecnia Opolsa,

Bardziej szczegółowo

METODA PROJEKTOWANIA REJONU ZMIANY KIERUNKU TRASY KOLEJOWEJ

METODA PROJEKTOWANIA REJONU ZMIANY KIERUNKU TRASY KOLEJOWEJ Problemy Kolejnictwa Zeszyt 5 97 Prof. dr hab. inż. Władysław Koc Politechnia Gdańsa METODA PROJEKTOWANIA REJONU ZMIANY KIERUNKU TRASY KOLEJOWEJ SPIS TREŚCI. Wprowadzenie. Ogólna ocena sytuacji geometrycznej

Bardziej szczegółowo

Zasada indukcji matematycznej

Zasada indukcji matematycznej Sławomir Jemielity Zasada inducji matematycznej Są różne sformułowania tej zasady, mniej lub bardziej abstracyjne My będziemy się posługiwać taą: Niech T(n) oznacza twierdzenie dotyczące liczby naturalnej

Bardziej szczegółowo

STEROWANIE NIELINIOWE BACKSTEPPING WAHADŁA ODWRÓCONEGO Z NAPĘDEM INERCYJNYM

STEROWANIE NIELINIOWE BACKSTEPPING WAHADŁA ODWRÓCONEGO Z NAPĘDEM INERCYJNYM Adam OWCZARKOWSKI Paweł BACHMAN Jarosław GOŚLIŃSKI Piotr OWCZAREK Roman REGULSKI STEROWANIE NIELINIOWE BACKSTEPPING WAHADŁA ODWRÓCONEGO Z NAPĘDEM INERCYJNYM STRESZCZENIE W artyule przedstawiono działanie

Bardziej szczegółowo

Modelowanie przez zjawiska przybliżone. Modelowanie poprzez zjawiska uproszczone. Modelowanie przez analogie. Modelowanie matematyczne

Modelowanie przez zjawiska przybliżone. Modelowanie poprzez zjawiska uproszczone. Modelowanie przez analogie. Modelowanie matematyczne Modelowanie rzeczywistości- JAK? Modelowanie przez zjawisa przybliżone Modelowanie poprzez zjawisa uproszczone Modelowanie przez analogie Modelowanie matematyczne Przyłady modelowania Modelowanie przez

Bardziej szczegółowo

CYFROWE PRZETWARZANIE SYGNAŁÓW

CYFROWE PRZETWARZANIE SYGNAŁÓW POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Analiza korelacyjna sygnałów dr hab. inż.

Bardziej szczegółowo

Wykres linii ciśnień i linii energii (wykres Ancony)

Wykres linii ciśnień i linii energii (wykres Ancony) Wyres linii ciśnień i linii energii (wyres Ancony) W wyorzystywanej przez nas do rozwiązywania problemów inżyniersich postaci równania Bernoulliego występuje wysoość prędości (= /g), wysoość ciśnienia

Bardziej szczegółowo

Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci

Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci Ćwiczenie 4 - Badanie wpływu asymetrii obciążenia na pracę sieci Strona 1/13 Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci Spis treści 1.Cel ćwiczenia...2 2.Wstęp...2 2.1.Wprowadzenie

Bardziej szczegółowo

Chemia - laboratorium

Chemia - laboratorium Chemia - laboratorium Wydział Geologii, Geofizyi i Ochrony Środowisa Studia stacjonarne, Ro I, Semestr zimowy 01/14 Dr hab. inż. Tomasz Brylewsi e-mail: brylew@agh.edu.pl tel. 1-617-59 atedra Fizyochemii

Bardziej szczegółowo

Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element jednowymiarowy i jednoparametrowy : spryna

Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element jednowymiarowy i jednoparametrowy : spryna Metody omputerowe i obliczeniowe Metoda Elementów Soczonych Element jednowymiarowy i jednoparametrowy : spryna Jest to najprostszy element: współrzdne loalne i globalne jego wzłów s taie same nie potrzeba

Bardziej szczegółowo

ZASTOSOWANIE EKONOMETRYCZNYCH MODELI PROGNOSTYCZNYCH W TRANSAKCJACH PROPRIETARY TRADING

ZASTOSOWANIE EKONOMETRYCZNYCH MODELI PROGNOSTYCZNYCH W TRANSAKCJACH PROPRIETARY TRADING Mariusz KOZAKIEWICZ 1), Mare KWAS 1), Karolina MUCHA-KUŚ 2), Maciej SOŁTYSIK 2) 1) Szoła Główna Handlowa, 2) TAURON Polsa Energia SA ZASTOSOWANIE EKONOMETRYCZNYCH MODELI PROGNOSTYCZNYCH W TRANSAKCJACH

Bardziej szczegółowo

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.

Bardziej szczegółowo

OPERACJE MORFOLOGICZNE NA OBRAZACH BINARNYCH ZASTOSOWANIE NA POTRZEBY WIZJI KOMPUTEROWEJ

OPERACJE MORFOLOGICZNE NA OBRAZACH BINARNYCH ZASTOSOWANIE NA POTRZEBY WIZJI KOMPUTEROWEJ STUI INORTI 24 Volume 25 Number 2 58 dam ŚWITOŃSKI Katarzyna STĄPOR Politechnia Śląsa Instytut Informatyi OPERJE OROLOGIZNE N ORZH INRNYH ZSTOSOWNIE N POTRZEY WIZJI KOPUTEROWEJ Streszczenie. Opracowanie

Bardziej szczegółowo

KOMPENSACJA UOGÓLNIONEJ MOCY BIERNEJ

KOMPENSACJA UOGÓLNIONEJ MOCY BIERNEJ Prace Nauowe Instytutu Maszyn, Napędów i Pomiarów Eletrycznych Nr 66 Politechnii Wrocławsiej Nr 66 Studia i Materiały Nr 3 Józef NOWAK*, Jerzy BAJOREK*, Dominia GAWORSKA-KONIAREK**, omasz JANA* moc bierna,

Bardziej szczegółowo

ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO OPTYMALNEJ DYSKRETYZACJI WSPÓŁCZYNNIKÓW WAGOWYCH CYFROWYCH FILTRÓW SOI

ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO OPTYMALNEJ DYSKRETYZACJI WSPÓŁCZYNNIKÓW WAGOWYCH CYFROWYCH FILTRÓW SOI XIII Sympozjum Modelowanie i Symulacja Systemów Pomiarowych 8-11 września 23r., Kraów ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO OPTYMALNEJ DYSKRETYZACJI WSPÓŁCZYNNIKÓW WAGOWYCH CYFROWYCH FILTRÓW SOI Jace

Bardziej szczegółowo

REALIZACJA NA POZIOMIE RTL OBLICZANIA PIERWIASTKA KWADRATOWEGO Z UŻYCIEM METODY NIEODTWARZAJĄCEJ

REALIZACJA NA POZIOMIE RTL OBLICZANIA PIERWIASTKA KWADRATOWEGO Z UŻYCIEM METODY NIEODTWARZAJĄCEJ POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 87 Electrical Engineering 206 Robert SMYK* Maciej CZYŻAK* REALIZACJA NA POZIOMIE RTL OBLICZANIA PIERWIASTKA KWADRATOWEGO Z UŻYCIEM METODY NIEODTWARZAJĄCEJ

Bardziej szczegółowo

Prognozowanie notowań pakietów akcji poprzez ortogonalizację szeregów czasowych 1

Prognozowanie notowań pakietów akcji poprzez ortogonalizację szeregów czasowych 1 Prognozowanie notowań paietów acji poprzez ortogonalizację szeregów czasowych Andrzej Kasprzyci. WSĘP Dynamię rynu finansowego opisuje się indesami agregatowymi: cen, ilości i wartości. Indes giełdowy

Bardziej szczegółowo

WYMAGANIA NORMATYWNE W PROJEKTOWANIU INSTALACJI ELEKTRYCZNYCH BUDYNKÓW UŻYTECZNOŚCI PUBLICZNEJ

WYMAGANIA NORMATYWNE W PROJEKTOWANIU INSTALACJI ELEKTRYCZNYCH BUDYNKÓW UŻYTECZNOŚCI PUBLICZNEJ nstalacje eletryczne nisiego napięcia Michał FLPAK, Łuasz PUT Politechnia Poznańsa nstytut Eletrotechnii i Eletronii Przemysłowej Czytaj w: " listów do Redacji: Opinie i polemii" poz. 15 - od p. A.M. WYMAGAA

Bardziej szczegółowo

Sposoby opisu i modelowania zakłóceń kanałowych

Sposoby opisu i modelowania zakłóceń kanałowych INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń

Bardziej szczegółowo

A-4. Filtry aktywne rzędu II i IV

A-4. Filtry aktywne rzędu II i IV A-4. Filtry atywne rzędu II i IV Filtry atywne to ułady liniowe i stacjonarne realizowane za pomocą elementu atywnego, na tóry założono sprzężenie zwrotne zbudowane z elementów biernych i. Elementem atywnym

Bardziej szczegółowo

NUMERYCZNA SYMULACJA STOPNIOWEGO USZKADZANIA SIĘ LAMINATÓW KOMPOZYTOWYCH NUMERICAL SIMULATION OF PROGRESSIVE DAMAGE IN COMPOSITE LAMINATES

NUMERYCZNA SYMULACJA STOPNIOWEGO USZKADZANIA SIĘ LAMINATÓW KOMPOZYTOWYCH NUMERICAL SIMULATION OF PROGRESSIVE DAMAGE IN COMPOSITE LAMINATES JANUSZ GERMAN, ZBIGNIEW MIKULSKI NUMERYCZNA SYMULACJA STOPNIOWEGO USZKADZANIA SIĘ LAMINATÓW KOMPOZYTOWYCH NUMERICAL SIMULATION OF PROGRESSIVE DAMAGE IN COMPOSITE LAMINATES S t r e s z c z e n i e A b s

Bardziej szczegółowo

Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych

Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych inż. Marek Duczkowski Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych słowa kluczowe: algorytm gradientowy, optymalizacja, określanie wodnicy W artykule

Bardziej szczegółowo

Powiatowy Urząd Pracy

Powiatowy Urząd Pracy Powiatowy Urząd Pracy RANKING ZAWODÓW DEFICYTOWYCH I NADWYŻKOWYCH W MIIEŚCIIE BIIELSKO-BIIAŁA w II-półłroczu 2011rou SPIS TREŚCI Wstęp 3 1. Analiza bezrobocia według zawodów 4 1.1 Charaterystya bezrobocia

Bardziej szczegółowo

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN ZAKŁAD MECHATRONIKI LABORATORIUM PODSTAW AUTOMATYKI INSTRUKCJA

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN ZAKŁAD MECHATRONIKI LABORATORIUM PODSTAW AUTOMATYKI INSTRUKCJA POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN ZAKŁAD MECHATRONIKI LABORATORIUM PODSTAW AUTOMATYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 4 Temat: Identyfiacja obietu regulacji

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* Zał. nr do ZW /01 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Identyfikacja systemów Nazwa w języku angielskim System identification Kierunek studiów (jeśli dotyczy): Inżynieria Systemów

Bardziej szczegółowo

Wykorzystanie metody DEA w przestrzenno-czasowej analizie efektywności inwestycji

Wykorzystanie metody DEA w przestrzenno-czasowej analizie efektywności inwestycji Wyorzystanie metody DEA w przestrzenno-czasowej analizie... 49 Nierówności Społeczne a Wzrost Gospodarczy, nr 39 (3/04) ISSN 898-5084 dr Bogdan Ludwicza Katedra Finansów Uniwersytet Rzeszowsi Wyorzystanie

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo