ROZWINIĘCIE NA UŁAMEK CIĄGŁY STOSUNKU DWÓCH ZUPEŁNYCH CAŁEK ELIPTYCZNYCH PIERWSZEGO I DRUGIEGO GATUNKU DRA M. A. BARANIECKIEGO.
|
|
- Barbara Piekarska
- 5 lat temu
- Przeglądów:
Transkrypt
1 ROZWINIĘCIE NA UŁAMEK CIĄGŁY STOSUNKU DWÓCH ZUPEŁNYCH CAŁEK ELIPTYCZNYCH PIERWSZEGO I DRUGIEGO GATUNKU DRA M. A. BARANIECKIEGO. Przedstawiono na posiedzeniu Towarzystwa dnia 4 lutego 1875 roku. 1 Szereg (I) przy dowolnych, w ogóle, parametrach a, [i i y (na którego własności pierwszy Euler (*) zwrócił był uwagę), nazywany bywa szeregiem hypergeometrycznym (**). W przypadku, gdy a lub [i jest całkowite i odjemne, np. = m, parametr y nie może mieć takiego całkowitego odjemnego znaczenia, któregoby wartość liczebna była mniejsza od m; we wszystkich zaś pozostałych przypadkach y nie może być ani zerem, ani też liczbą całkowit odjemng. Jeżeli a lub 8 mają znaczenie zera lub odjemnej liczby całkowitój, która nie jest jednocześnie znaczeniem parametru y, to szereg (1) składa się ze skończonej liczby odpowiednio 1 a lub 1 p pierwszych jego wyrazów i przedstawia mnkcyę {*) W przedstawionym w 1778 r. Petersburskiej akademii nauk memuarze Specimen transformationis singulans serierum, a wydrukowanym w 1801 r. w XI[-ym tomie Nowa Acta Academioe Impeńalis Petropolitanw. (**) W pierwszym Numerze Nachrichten der Kóniglichen Gesellschaft der Wissenschaften zu Góttingen z roku 1857, w sprawozdaniu o znanej pracy RiEviANN'a (ogłoszonej później w Yllym tomie Abhandlungen tegoż towarzystwa), znajdujemy takie objaśnienie tej nazwy : «Tak dziś zwyczajna nazwa : szereg hypergeometryczny była jeszcze przed tem zaproponowany przez Jana Fryderyka PFAFF'adla szeregów ogólniejszych, w których stosunek.pewnego wyrazu do poprzedzającego jest racyonalna funkcya jego skaźnika miejsca; gdy tymczasem EULER, za przykładem WAixis'a, rozumiał przez ni taki szereg, w którym ten stosunek jest całkowita funkcya pierwszego stopnia skaźnika miejsca».
2 2 PAMIĘTNIK TOWABZYSTWA NAUK ŚCISŁYCH W PARYŻU. TOM VII. racyonaln^. Nakoniec w przypadku, kiedy a = y = m, lub p = m, przy m całkowitćm i dodatnem, w liczniku i mianowniku wyrazów szeregu (1) będg zachodzić spólne czynniki i skutkiem tego, te parametry aiy, lub p i y, mog mieć jakiekolwiek wartości, tak, że w ogóle można przyj^ić, że w nieskończonych szeregach hypergeometrycznych parametr y nie jest ani zerem, ani tśż liczbg, całkowity odjemnę. Jeżeli parametry a i fl s różne od zera i nie sy liczbami całkowitemi odjemnemi, to wiele przestępnych funkcyj może być wyrażonych za pomoc szeregu (1), dopóki on nie przestaje być zbieżnym. Stosunek (?n -+-1) wyrazu tego szeregu, do wyrazu poprzedzającego jest Gdy wzrasta do nieskończoności, stosunek ten zbliża się do i.x; szereg więc ten jest zbieżnym dla wszystkich znaczeń zmiennej x\ których moduł jest mniejszy od jedności. Po Eulerze, szczegółowem badaniem własności szeregu hypergeometrycznego zajmował się Gauss (*j. Dlatego Niemcy ten szereg nazywają Gauss'owym szeregiem. On także wprowadził powszechnie dziś używany symbol P (a, [i, y, x) dla oznaczania tego szeregu, tak że (2) Ponieważ szereg (1) jest symetryczny względem parametrów a i fi, to F («, [i, y, a?) = F (B, a, y,.r). 2 {m -f- wyraz szeregu (d), t. j. szeregu może uledz takiemu przekształceniu : (*) Disquisitłones generales circa seriem i7ifinitam i + -h etc. {Commmtationes Góttingensis, tom II, Werke, lom III). Tym szeregiem zajmował się jeszcze Gauss w znanej rozprawie o mechanicznych kwadraturacli i pośmiertnej pracy : Beterminatio serieinostrce per cequationem etc. {Werke, tom Ill-ci.)
3 ROZWINIĘCIE NA UŁAMEK CI.^GLY STOSUNKU DWÓCH ZUPEŁNYCH CAŁEK EL1PTVCZNYCH, tak że Lecz zatem (3) To przekształcenie (3) szeregu hypergeometrycznego podał był Kummer w rozprawie «Ueber die hypergeometrische Reihe 1 ^ -i- etc. (*). Aby całka po prawśj stronie wzoru(3) miała znaczenie i mogła być używany, potrzeba, aby liczby p i y p były dodatne; jeżeli zaś s^ to liczby złożone (kompleksne), to trzeba, aby ich rzeczywiste części były dodatnemi. Zauważyć należy, że wyrażenie po prawćj stronie wzoru (3) nie traci znaczenia dla tych wartości zmiennej, dla których szereg po lewćj staje'się rozbieżnym. Rozważeniem kwestyi, jak da się wyrazić funkcya F(a, [i, y, x) dla znaczeń zmiennćj x, których moduł nie jest mniejszy od jedności, a także, jakim sposobem wyrazić tę funkcyę za pomocy całek w przypadku, kiedy parametrom nadajemy takie wartości, że całka, wypisana we wzorze (3) nie może być użyt^, zajmował się Kummer w tylko co wspomnianśj pracy. Wyjaśnienia jednak zupełne daj^ dopiero badania, jakie prowadził Jacobi w memuarze «Untersuchungen iieher die Differenzialgleichung der hypergeometńschen Reihe (**)», a także (choć na całkiem odmiennej drodze) Riemann w «lieitrijege zur Theorie der durch die Gauss'sche Reihe F (a, p, y, x) darstellbareu Functionen (***)». Badania te oparte na rozpatrywaniu znanego równania różniczkowego " którego całk szczególny jest szereg (i), jak o tćm można łatwo się przekonać, [za pomocy całkowania równania(4) przez szeregi. Tutaj zrobimy tylko uwagę, że zachodząca we wzorze (3) całka jest summg, funkcyj zmiennćj x, z których każda jest skończony, ciygły i jednowartościowa dla wszystkich znaczeń zmiennćj Xy za wyłączeniem pewnśj, samćj siebie nie przecinajycćj linii, łyczycej (*) Journal CRELLE'a, XV tom. (**) Journal CRELLE'a, LVI tom, a także JACOBI. Werke, tom III. Rezultaty tych dwóch prac zestawione w pierwszych dwóch rozdziałach mojśj rozprawy, drukowanej po rusku p. t. «O hipergeomietriczeskich funkcjach». Moskwa w drukarni uniwersyteckiej, ("*) Abhandlungen der Kóniglichen Gesellschaft der Wissenschaften zu Góttingen. Tom VII.
4 PAMIĘTNIK TOWARZYSTWA NAUK ŚCISŁYCH W PARYŻU. TOM VII, punkta i i 00, które to punkta, przy niektórych wartościach wykładnika a, mog być punklami rozgałeu zienia, albo tóż przerwy tych funkcyj. Że zaś całkowanie odbywa się wedługm między granicami Oi 1, to - przyjmuje ci^g wartości od -ł-1 do oo, tak, że pewna linia, nieprzecinajęca samćj siebie, a łącząca punkt + 1 z 00, jest geometrycznóm miejscem wszystkich możliwych niekiedy punktów rozgałęzienia lub przerwy wszystkich elementów naszej całki, jeżeli tylko te elementa uważamy jako fimkcye zmiennój x. Gałka zatem zawsze jest juź funkcyę skończony, ci^gł^ i jednowartościow^ dla wszystkich punktów płasczyzny zmiennćj za wyłączeniem punktów leżących na pewnćj, samśj siebie nieprzecinajęcśj linii, poprowadzonej z punktu + 1 do oo. Jeżeli zaś całkowanie uskuteczniamy po prostój, to linia ta jest prostki -f oo. 3 Na mocy oznaczenia (2), możemy wzór (3) tak pisać : zkęd (3) Przyjmując tu 1 zważywszy, że otrzymujemy: (6) Czyniąc tćż same założenia w równaniu (4), i zważywszy, że przy nich widzimy, że zupełna całka eliptyczna pierwszego gatunku zadosyć czyni równania różniczkowemu
5 ROZWINIĘCIE NA DŁAILEK CIĄGŁY STOSUNKU DWÓCH ZUPEŁNYCH CAŁEK ELIPTYCZNYCH. 3 które Briot i Bouąuet w Theońe des foncłions doublement peńodiąues (*) otrzymują za pomocy działań bardzo skomplikowanych. - Przyjmując we wzorze (o) mamy zeń O) Weźmy odejmując drug^j równość odpierwszśj, mamy to jest (») zk d (9) Tutaj stosunek może być według wzoru (9), tak wyrażony Postępując takimże samym sposobem, tak ze stosunkiem : (*) 235. To równanie wyprowadzone jest u LEGE\DBE'a w Traite den fonctiom elliptiques, 1.1, 46.
6 6 PAMięiNlK TOWARZySTWA NADK ŚCISŁYCH W PARYŻU. TOM VII. jak i z każdym po kolei, takim sposobem otrzymywanym, z tych wszystkich wyrażeń mamy następujące, podane przez Gauss'a, rozwinięcie na ułamek ciągły: (10) gdzie Jeżeli wciąż dalćj będziemy wyrażać według wzoru (9) k a ż d e t o?n 1 się n, stosunek przy wciąż zwiększającśm rozwija się według wzoru (10) na ułamek ciągły skończony tylko w tym przypadku, kiedy albo a, albo p, albo Y a, albo nakoniec y p są liczbami całkowitemi i odjemnemi. W innych zaś przypadkach, przy nieskończenie rosnącćm n, otrzymujemy nieskończony ułamek ciągły który, jak to dowiódł L. Thomć (*), jest ułamkiem zbieżnym i mianowicie zdążającym do stosunku (*) Ueber die KettenhruchentwicMung des Gauss'schen Quotienten. Joumał CRELLE'A, LXVII tom.
7 ROZWINIĘCIE NA UŁAMEK CIĄGŁY STOSUNKU DWÓCH ZUPEŁNYCH CAŁEK ELIPTYCZNYCH. 7 dla wszystkich wartości zmiennej za wyłączeniem tych, które odpowiadają na płasczyznie zmiennćj X punktom pewnćj, siebie samśj'nieprzecinajycćj linii, poprowadzonej z punktu +ldoc», (porównaj 2), jak również tych, które przywodzą do zera funkcyę F (a,p, y, x). 5 że Odejmując znajdziemy w podobny sposób, jak wyżćj wzór (8), zkyd (11) gdzie już stosunek może być dalćj rozwijany na ułamek ciągły według wzoru (lo;. Takim sposobem otrzymujemy (12) gdzie a w ogóle, przy m większśm od zera, Z wyrażenia (H) widoczna, że do rozwinięcia na ułamek ciągły stosunku (13)
8 8 PAMIĘTNIK TOWARZYSTWA NACK ŚCISŁYCH W PARYŻU. TOM VJI. można to odnieść, co w poprzedzającym paragrafie było powiedziane o rozwinięciu na ułamek ciygły stosunku tak, że możemy powiedzieć, iż ułamek ciygły we wzorze (12) jest zbieżny i zd ża do granicy (13), dla wszystkicłi wartości zmiennćj x, nieodpowiadajęcych na jej płasczyznie punktom pewnćj, samćj siebie nieprzecinającej linii, poprowadzonćj z punktu -+-1 do oo ; wyłyczajyc przytćm jeszcze znaczenia, dla których F (a, P, Y,CC) ma wartość zero. 6 Przypatrując się wyrażeniom (6) i (7), widzimy, że możemy wedhig wzoru (12) rozwinąć stosunek zupełnćj całki eliptycznćj pierwszego gatunku do takićjże całki drugiego gatunku na następujący ułamek ciągły : Ten ułamek ciągły jest szybko zbieżnym i zdąża w granicy do stosunku dla wszystkich wartości modułu k, P^cz tych, które odpowiadają na jego płasczyznie punktom dwóch linij, nieprzecinających tak samych siebie, jak i jedna drugiej, a wyprowadzonych z punktów do X.
Dowód JEDNEGO ZASADNICZEGO TWIERDZENIA ODNOSZĄCEGO SIĘ DO HYPERGEOMETRYCZNYCH PRZEZ DRA M. A. BARANIECKIEGO
Dowód JEDNEGO ZASADNICZEGO TWIERDZENIA ODNOSZĄCEGO SIĘ DO HYPERGEOMETRYCZNYCH FUNKCYJ PRZEZ DRA M. A. BARANIECKIEGO Przedstawiono na posiedzeniu Towarzystwa, dnia 2 grudnia 1875 roku. Fiinkcye, które daj^i
RÓWNAŃ RÓŻNICZKOWYCH LINIOWYCH
A. J. S t o d ó l k ie w ic z. 0 KILKU KLASACH RÓWNAŃ RÓŻNICZKOWYCH LINIOWYCH R Z Ę D U n-go. KRAKÓW. NAKŁADEM AKADEMII UMIEJĘTNOŚCI. SKŁAD GŁÓW NY W KSIĘGARNI SPÓ ŁK I W YDAW NICZEJ PO LSK IEJ. A. J.
Arytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm
Arytmetyka Działania na liczbach, potęga, pierwiastek, logarytm Zbiory liczbowe Zbiór liczb naturalnych N = {1,2,3,4, }. Zbiór liczb całkowitych Z = {, 3, 2, 1,0,1,2,3, }. Zbiory liczbowe Zbiór liczb wymiernych
7. CIĄGI. WYKŁAD 5. Przykłady :
WYKŁAD 5 1 7. CIĄGI. CIĄGIEM NIESKOŃCZONYM nazywamy funkcję określoną na zbiorze liczb naturalnych, dodatnich, a wyrazami ciągu są wartości tej funkcji. CIĄGIEM SKOŃCZONYM nazywamy funkcję określoną na
1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych
Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci
Twierdzenia Rolle'a i Lagrange'a
Twierdzenia Rolle'a i Lagrange'a Zadanie 1 Wykazać, że dla dowolnych zachodzi. W przypadku nierówność (a właściwie równość) w treści zadania spełniona jest w sposób oczywisty, więc tego przypadku nie musimy
- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd.
4. Równania dyfuzji 4.1. Prawo zachowania masy cd. Równanie dyfuzji jest prostą konsekwencją prawa zachowania masy, a właściwie to jest to prawo zachowania masy zapisane dla procesu dyfuzji i uwzględniające
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
Całki niewłaściwe. Całki w granicach nieskończonych
Całki niewłaściwe Całki w granicach nieskończonych Wiemy, co to jest w przypadku skończonego przedziału i funkcji ograniczonej. Okazuje się potrzebne uogólnienie tego pojęcia w różnych kierunkach (przedział
1 Całki nieoznaczone: całkowanie jako operacja (prawie) odwrotna do różniczkowania
1 Całki nieoznaczone: całkowanie jako operacja (prawie) odwrotna do różniczkowania 1.1 Podstawowe definicje Def. Funkcję F nazywamy funkcją pierwotną funkcji f, określonej w przedziale otwartym P (skończonym
Analiza matematyczna. 1. Ciągi
Analiza matematyczna 1. Ciągi Definicja 1.1 Funkcję a: N R odwzorowującą zbiór liczb naturalnych w zbiór liczb rzeczywistych nazywamy ciągiem liczbowym. Wartość tego odwzorowania w punkcie n nazywamy n
II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski
II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski 1 1 Różniczkowanie numeryczne Rozważmy funkcję f(x) określoną na sieci równoodległyc węzłów. Funkcja f(x) może być dana za pomocą wzoru analitycznego
Całka nieoznaczona, podstawowe wiadomości
Całka nieoznaczona, podstawowe wiadomości Funkcją pierwotną funkcji w przedziale nazywamy funkcję taką, że dla każdego punktu z tego przedziału zachodzi Różnica dwóch funkcji pierwotnych w przedziale danej
Liczby zespolone. x + 2 = 0.
Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie
Krzysztof Rykaczewski. Szeregi
Krzysztof Rykaczewski Spis treści 1 Definicja szeregu 2 Zbieżność szeregu 3 Kryteria zbieżności szeregów 4 Iloczyn Cauchy ego szeregów 5 Bibliografia 1 / 13 Definicja szeregu Niech dany będzie ciąg (a
Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.
Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy
1 Całki funkcji wymiernych
Całki funkcji wymiernych Definicja. Funkcją wymierną nazywamy iloraz dwóch wielomianów. Całka funkcji wymiernej jest więc postaci: W (x) W (x) = an x n + a n x n +... + a x + a 0 b m x m + b m x m +...
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na
Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y)
Wykład 6 Funkcje harmoniczne Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. e f i n i c j a Funkcję u (x 1, x 2,..., x n ) nazywamy harmoniczną w obszarze R n wtedy i
Fakty wstępne Problem brachistochrony Literatura. Rachunek wariacyjny. Bartosz Wróblewski
26.10.13 - dziedzina analizy matematycznej zajmująca się znajdowaniem ekstremów i wartości stacjonarnych funkcjonałów. Powstał jako odpowiedź na pewne szczególne rozważania w mechanice teoretycznej. Swą
Ułamki łańcuchowe i liczby niewymierne. Ułamki łańcuchowe i liczby niewymierne
Wprowadzenie Niech x będzie liczbą niewymierną; oznaczając q 0 = x oraz {x} = x x mamy x = x + {x} = q 0 + {x} = q 0 + x, gdzie x = /(x q 0 ) będzie liczbą niewymierną, większą od (bo różnica x q 0 jest
5. Logarytmy: definicja oraz podstawowe własności algebraiczne.
5. Logarytmy: definicja oraz podstawowe własności algebraiczne. 78. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 a) 4 2+log 27 = (2 2 ) log 27 4 = 28 2 = 784 29 listopada 2008
Równanie przewodnictwa cieplnego (I)
Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca
Przekształcenia całkowe. Wykład 1
Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE A. RÓWNANIA RZĘDU PIERWSZEGO Uwagi ogólne Równanie różniczkowe zwyczajne rzędu pierwszego zawiera. Poza tym może zawierać oraz zmienną. Czyli ma postać ogólną Na przykład
Matura z matematyki na poziomie rozszerzonym
Tadeusz Socha Matura z matematyki na poziomie rozszerzonym tom V uzupełnienie do matury od 2015 roku o treści zwiększające wymagania maturalne Copyright by Socha Tadeusz, 2013 ISBN 978-83-936602-9-2 www.maturzysta.info
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44
Księgarnia PWN: Ryszard Rudnicki, Wykłady z analizy matematycznej Spis treści Rozdział I. Wstęp do matematyki... 13 1.1. Elementy logiki i teorii zbiorów... 13 1.1.1. Rachunek zdań... 13 1.1.2. Reguły
Lista 6. Kamil Matuszewski 13 kwietnia D n =
Lista 6 Kamil Matuszewski 3 kwietnia 6 3 4 5 6 7 8 9 Zadanie Mamy Pokaż, że det(d n ) = n.... D n =.... Dowód. Okej. Dla n =, n = trywialne. Załóżmy, że dla n jest ok, sprawdzę dla n. Aby to zrobić skorzystam
Powtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową *
Powtórzenie podstawowych zagadnień związanych ze sprawnością rachunkową * (Materiały dydaktyczne do laboratorium fizyki) Politechnika Koszalińska październik 2010 Spis treści 1. Zbiory liczb..................................................
RÓWNANIA RÓŻNICZKOWE WYKŁAD 1
RÓWNANIA RÓŻNICZKOWE WYKŁAD 1 Przedmiot realizowany w układzie wykład 2 godz. tygodniowo ćwiczenia 2 godz. tygodniowo Regulamin zaliczeń www.mini.pw.edu.pl/~figurny 2 Program zajęć Równania różniczkowe
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 7/15 Rachunek różnicowy Dobrym narzędziem do obliczania skończonych sum jest rachunek różnicowy. W rachunku tym odpowiednikiem operatora
13. Równania różniczkowe - portrety fazowe
13. Równania różniczkowe - portrety fazowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 13. wrównania Krakowie) różniczkowe - portrety fazowe 1 /
Równanie Pella Sławomir Cynk
Równanie Pella Sławomir Cynk 22 listopada 2001 roku John Pell ur. 1 marca 1611 w Southwick, Sussex, Anglia zm. 12 grudnia 1685 w Londynie. Matematyk oraz astronom brytyjski, podobno główny (współ-)autor
RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych
RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )
Pochodną funkcji w punkcie (ozn. ) nazywamy granicę ilorazu różnicowego:
Podstawowe definicje Iloraz różnicowy funkcji Def. Niech funkcja będzie określona w pewnym przedziale otwartym zawierającym punkt. Ilorazem różnicowym funkcji w punkcie dla przyrostu nazywamy funkcję Pochodna
Otrzymaliśmy w ten sposób ograniczenie na wartości parametru m.
Dla jakich wartości parametru m dziedziną funkcji f ( x) = x + mx + m 1 jest zbiór liczb rzeczywistych? We wzorze funkcji f(x) pojawia się funkcja kwadratowa, jednak znajduje się ona pod pierwiastkiem.
Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład 1
Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład dr Mariusz Grządziel 5 lutego 04 Paradoks Zenona z Elei wersja uwspółcześniona Zenek goni Andrzeja; prędkość Andrzeja:
DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH.
DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH. Dodawanie,8 zwracamy uwagę aby podpisywać przecinek +, pod przecinkiem, nie musimy uzupełniać zerami z prawej strony w liczbie,8. Pamiętamy,że liczba to samo co,0, (
Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014)
dr inż. Ryszard Rębowski DEFINICJA CIĄGU LICZBOWEGO Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z grudnia 04) Definicja ciągu liczbowego Spośród
Z MECHANIKI CZĄSTECZKOWEJ
DWA TWIERDZENIA Z MECHANIKI CZĄSTECZKOWEJ PRZEZ WŁ. GOSIEWSKIEGO (Przedstawiono na posiedzeniu Towarzystwa Nauk Ścisłych, dnia i grudnia 1875 roku.) I. O twierdzeniu dotyczącem liczby współczynników sprężystości.
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 6 Transformata Laplace a Funkcje specjalne Przekształcenia całkowe W wielu zastosowaniach dużą rolę odgrywają tzw. przekształcenia całkowe
Ciągi liczbowe wykład 3
Ciągi liczbowe wykład 3 dr Mariusz Grządziel 3 kwietnia 203 Definicja (ciągu liczbowego). Ciagiem liczbowym nazywamy funkcję odwzorowuja- ca zbiór liczb naturalnych w zbiór liczb rzeczywistych. Wartość
OPIS MODUŁ KSZTAŁCENIA (SYLABUS)
OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu Matematyka 1 2 Kod modułu 04-A-MAT1-60-1Z 3 Rodzaj modułu obowiązkowy 4 Kierunek studiów astronomia 5 Poziom studiów I stopień 6 Rok
Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie
Wykład 14 i 15 Równania różniczkowe Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (x, y, y, y,..., y (n) ) = 0 (1) gdzie: y = y(x) niewiadoma funkcja zmiennej rzeczywistej
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15
Sylabus do programu kształcenia obowiązującego od roku akademickiego 201/15 (1) Nazwa Rachunek różniczkowy i całkowy I (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot (3)
Całkowanie numeryczne
Całkowanie numeryczne Poniżej omówione zostanie kilka metod przybliżania operacji całkowania i różniczkowania w szczególności uzależnieniu pochodnej od jej różnic skończonych gdy równanie różniczkowe mamy
Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1
Robert Malenkowski 1 Liczby rzeczywiste. 1 Liczby naturalne. N {0, 1,, 3, 4, 5, 6, 7, 8...} Liczby naturalne to liczby używane powszechnie do liczenia i ustalania kolejności. Liczby naturalne można ustawić
Analiza matematyczna Mathematical analysis. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Analiza matematyczna Mathematical analysis A. USYTUOWANIE MODUŁU W SYSTEMIE
Elementy rachunku różniczkowego i całkowego
Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami
Rachunek różniczkowy i całkowy 2016/17
Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =
Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny:
Podstawowe definicje Definicja ciągu Ciągiem nazywamy funkcję na zbiorze liczb naturalnych, tzn. przyporządkowanie każdej liczbie naturalnej jakiejś liczby rzeczywistej. (Mówimy wtedy o ciągu o wyrazach
Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.
Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać
Rozdział XV CAŁKI KRZYWOLINIOWE. CAŁKA STIELTJESA
Księgarnia PWN: Grigorij M. Fichtenholz Rachunek różniczkowy i całkowy. T. 3 Rozdział XV CAŁKI KRZYWOLINIOWE. CAŁKA STIELTJESA 1. Całki krzywoliniowe pierwszego rodzaju 543. Definicja całki krzywoliniowej
LISTA 1 ZADANIE 1 a) 41 x =5 podnosimy obustronnie do kwadratu i otrzymujemy: 41 x =5 x 5 x przechodzimy na system dziesiętny: 4x 1 1=25 4x =24
LISTA 1 ZADANIE 1 a) 41 x =5 podnosimy obustronnie do kwadratu i otrzymujemy: 41 x =5 x 5 x przechodzimy na system dziesiętny: 4x 1 1=25 4x =24 x=6 ODP: Podstawą (bazą), w której spełniona jest ta zależność
Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:
Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie
MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO
2016-09-01 MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO SZKOŁY BENEDYKTA Ramowy rozkład materiału Klasa II I. Trójmian kwadratowy II. Wielomiany III. Funkcja wymierna IV. Funkcje dowolnego argumentu V.
WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH
WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH Pod redakcją Anny Piweckiej Staryszak Autorzy poszczególnych rozdziałów Anna Piwecka Staryszak: 2-13; 14.1-14.6; 15.1-15.4; 16.1-16.3; 17.1-17.6;
LEÇONS SUR LES FONCTIONS ENTIÉRES PAR ÉMILE BOREL *
LEÇONS SUR LES FONCTIONS ENTIÉRES PAR ÉMILE BOREL * Drugi tom swych nowych wykładów o teorii funkcji poświęcił autor funkcjom całkowitym przestępnym. Monografia ta obejmuje prawie wszystkie badania, począwszy
Funkcje wymierne. Jerzy Rutkowski. Teoria. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.
Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych. Definicja. Funkcją wymierną jednej zmiennej nazywamy
Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem
Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem pojęcie liczby naturalnej, całkowitej, wymiernej rozszerzenie osi liczbowej na liczby ujemne sposób i potrzebę zaokrąglania
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: przedmiot obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Analiza zespolona Complex Analysis Matematyka Poziom kwalifikacji: II stopnia
Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych
Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Marcin Michalski 14.11.014 1 Wprowadzenie Jedną z intuicji na temat liczb rzeczywistych jest myślenie o nich jako liczbach,
Szeregi o wyrazach dodatnich. Kryteria zbieżności d'alemberta i Cauchy'ego
Szeregi o wyrazach dodatnich. Kryteria zbieżności d'alemberta i Cauchy'ego Przy założeniu, że wszystkie składniki szeregu jest rosnący. Wynika stąd natychmiast stwierdzenie: są dodatnie, ciąg jego sum
Propozycje rozwiązań zadań z matematyki - matura rozszerzona
Jacek Kredenc Propozycje rozwiązań zadań z matematyki - matura rozszerzona Zadanie 1 Zastosujmy trójkąt Paskala 1 1 1 1 2 1 1 3 3 1 Przy iloczynie będzie stał współczynnik 3. Zatem Odpowiedź : C Zadanie
2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26
Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne
Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi
M. Beśka, Wstęp do teorii miary, Dodatek 158 10 Dodatek 10.1 Przestrzenie metryczne Niech X będzie niepustym zbiorem. Funkcję d : X X [0, ) spełniającą dla x, y, z X warunki (i) d(x, y) = 0 x = y, (ii)
SZEREGI LICZBOWE I FUNKCYJNE
Mając dowolny ciąg można z niego utworzyć nowy ciąg sum częściowych: Ten nowy rodzaj ciągu nazywamy szeregiem liczbowym, a jeśli to mamy do czynienia z nieskończonym szeregiem liczbowym, który oznaczany
x 2 = a RÓWNANIA KWADRATOWE 1. Wprowadzenie do równań kwadratowych 2. Proste równania kwadratowe Równanie kwadratowe typu:
RÓWNANIA KWADRATOWE 1. Wprowadzenie do równań kwadratowych Przed rozpoczęciem nauki o równaniach kwadratowych, warto dobrze opanować rozwiązywanie zwykłych równań liniowych. W równaniach liniowych niewiadoma
III. Funkcje rzeczywiste
. Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja
Liczby Rzeczywiste. Ciągi. Szeregi. Rachunek Różniczkowy i Całkowy Funkcji Jednej Zmiennej.
Pytania na egzaminie magisterskim dotyczą głównie zagadnień związanych z tematem pracy magisterskiej. Należy być przygotowanym również na pytania sprawdzające podstawową wiedzę ze wszystkich zaliczonych
ANALIZA MATEMATYCZNA
ANALIZA MATEMATYCZNA TABLICE Spis treści: 1.) Pochodne wzory 2 2.) Całki wzory 3 3.) Kryteria zbieżności szeregów 4 4.) Przybliżona wartość wyrażenia 5 5.) Równanie płaszczyzny stycznej i prostej normalnej
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt
V Konkurs Matematyczny Politechniki Białostockiej
V Konkurs Matematyczny Politechniki iałostockiej Rozwiązania - klasy pierwsze 27 kwietnia 2013 r. 1. ane są cztery liczby dodatnie a b c d. Wykazać że przynajmniej jedna z liczb a + b + c d b + c + d a
Stabilność II Metody Lapunowa badania stabilności
Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli
Całka z funkcji sin(x)/x
Całka z funkcji / Barański Przemysław października ver. Całka z funkcji / Wstęp Tekst przeznaczony jest raczej dla inżynierów niż matematyków a w szczególności matematyków purystów. W tekście tym starałem
Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:
Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11
Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)
Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),
Rachunek całkowy - całka oznaczona
SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej
RACHUNEK RÓŻNICZKOWY- sprawdziany i kartkówki. klasa II 2018/19. Adam Stachura
RACHUNEK RÓŻNICZKOWY- sprawdziany i kartkówki klasa II 08/9 Adam Stachura Sprawdzian. Granice funkcji- przykładowe zadania ) 8 ZADANIE. Obliczyć granicę. 4 +6 4 Rozwiazanie. Dziedzina funkcji, której granice
WYRAŻENIA ALGEBRAICZNE
WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.
LXIII Olimpiada Matematyczna
1 Zadanie 1. LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 17 lutego 2012 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d układ równań a
Analiza matematyczna Mathematical analysis. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Analiza matematyczna Mathematical analysis A. USYTUOWANIE MODUŁU W SYSTEMIE
6. FUNKCJE. f: X Y, y = f(x).
6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
Całka podwójna po prostokącie
Całka podwójna po prostokącie Rozważmy prostokąt = {(x, y) R : a x b, c y d}, gdzie a, b, c, d R, oraz funkcję dwóch zmiennych f : R ograniczoną w tym prostokącie. rostokąt dzielimy na n prostokątów i
CIĄGI wiadomości podstawowe
1 CIĄGI wiadomości podstawowe Jak głosi definicja ciąg liczbowy to funkcja, której dziedziną są liczby naturalne dodatnie (w zadaniach oznacza się to najczęściej n 1) a wartościami tej funkcji są wszystkie
Matematyka liczby zespolone. Wykład 1
Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.
Metoda rozdzielania zmiennych
Rozdział 12 Metoda rozdzielania zmiennych W tym rozdziale zajmiemy się metodą rozdzielania zmiennych, którą można zastosować, aby wyrazić jawnymi wzorami rozwiązania pewnych konkretnych równań różniczkowych
W. Krysicki, L.Włodarski, Analiza matematyczna w zadaniach cz. 1 i cz. 2. Pomocnicze symbole. Spójniki logiczne: Symbole kwantyfikatorów:
dr Urszula Konieczna-Spychała Instytut Matematyki i Fizyki UTP imif.utp.edu.pl Literatura: M. Lassak, Matematyka dla studiów technicznych. M. Gewert, Z. Skoczylas, Analiza matematyczna 1. M. Gewert, Z.
27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE
27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i
Pochodna funkcji odwrotnej
Pochodna funkcji odwrotnej Niech będzie dana w przedziale funkcja różniczkowalna i różnowartościowa. Wiadomo, że istnieje wówczas funkcja odwrotna (którą oznaczymy tu : ), ciągła w przedziale (lub zależnie
Liczby pierwsze rozmieszczenie. Liczby pierwsze rozmieszczenie
Rozmieszczenie liczb pierwszych Wprowadzamy funkcję π(x) def = p x 1, liczbę liczb pierwszych nie przekraczających x. Łatwo sprawdzić: π(12) = 5 (2, 3, 5, 7, 11); π(17) = 7 (2, 3, 5, 7, 11, 13, 17). Jeszcze
Formy kwadratowe. Rozdział 10
Rozdział 10 Formy kwadratowe Rozważmy rzeczywistą macierz symetryczną A R n n Definicja 101 Funkcję h : R n R postaci h (x) = x T Ax (101) nazywamy formą kwadratową Macierz symetryczną A występującą w
6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.).
6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.). 0 grudnia 008 r. 88. Obliczyć podając wynik w postaci ułamka zwykłego a) 0,(4)+ 3 3,374(9) b) (0,(9)+1,(09)) 1,() c) (0,(037))
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)
Załącznik nr do Uchwały Senatu nr 30/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2019 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Rachunek różniczkowy i całkowy
Definicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
Analiza matematyczna / Witold Kołodziej. wyd Warszawa, Spis treści
Analiza matematyczna / Witold Kołodziej. wyd. 5. - Warszawa, 2010 Spis treści Wstęp 1. Podstawowe pojęcia mnogościowe 13 1. Zbiory 13 2. Działania na zbiorach 14 3. Produkty kartezjańskie 15 4. Relacje
Czym jest ciąg? a 1, a 2, lub. (a n ), n = 1,2,
Ciągi liczbowe Czym jest ciąg? Ciąg liczbowy, to funkcja o argumentach naturalnych, której wartościami są liczby rzeczywiste. Wartość ciągu dla liczby naturalnej n oznaczamy symbolem a n i nazywamy n-tym