Z MECHANIKI CZĄSTECZKOWEJ
|
|
- Wanda Czerwińska
- 5 lat temu
- Przeglądów:
Transkrypt
1 DWA TWIERDZENIA Z MECHANIKI CZĄSTECZKOWEJ PRZEZ WŁ. GOSIEWSKIEGO (Przedstawiono na posiedzeniu Towarzystwa Nauk Ścisłych, dnia i grudnia 1875 roku.) I. O twierdzeniu dotyczącem liczby współczynników sprężystości. W pracy mojej poprzedniej «O zasadniczej hypotezie. mechaniki cząsteczkowej)) przedstawiłem wyniki główne zadania ogólnego o równowadze układów, któreby można nazwać układami ciągłymi. Obecnie mam zamiar zastosować je do kilku przypadków przedstawiaj cycłi się w naturze, jużto udokładniając twierdzenia znane mechaniki cząsteczkowej, jużto udowadniając nowe. Lecz przedewszystkićm winienem określić bliżej, a czego w przytoczonej pracy nie zrobiłem, zależność sił wewnętrznych jednostki cząsteczki od mas i odległość wzajemnych należy. czterech punktów^ składających, tudzież od gęstości (p) ciała, do kótrego ona W rzeczy samej, ilość wchodząca w wyrażenie siły f przez równanie (12) rozprawy przytoczonćj, będąc równą gr (cpr), może tylko zależyć od e,..., R,... i p, albowiem to są jedyne wielkości, które nie znikają, gdy element ciągły (/a (/z zmniejsza się nieograniczeiiie. Należy więc założyć w ogólności dla sił wewnętrznych jednostki cząsteczki (13) (*) Dia zrozumienia prac poniższych trzeba inieć przed sob moj pracę poprzednią «O zasadniczej hypotezie mechaniki cząsteczkowej», patrz Pamiet. Tow. N.Ś. w Paryżu, t. VI[.Art. l^^y.
2 2 1'AMięTMK TOWARZYSTWA NAUK ŚCISŁYCH W 1>ABYŻU. TOM Ylll. zkąd wypadnie dla sił atomowych (14) To znając, można szukać takiego kształtu funkcyi F, aby siły atomowe nie zależały od gęstości p, co stanowi zadanie odwrotne temu, które rozwiązaliśmy już poprzednio przypuszczając, że siły wewnętrzne jednostki cząsteczki nie zależą od-gęstości p. Przyrównywając do zera pochodnę wyrażenia (l-ł) wziętą względem p, znajdujemy warunek, któremu w przypadku teraźniejszym szukana funkcya F zadość czynić powinna ; warunek ten wyraża się przeto równaniem różniczkowem częściowem (15) Całka jego ogólna oznacza funkcyę dowolną zmiennej daje na siłę w wyrażenie której na siłę zaś atomową (14) wyrażenie To ostatnie pokazuje rzeczywiście, że w przypadku teraźniejszym siły atomowe nie zależą od gęstości p. Zajmiemy się obecnie poszukiwaniem wyrażenia pracy mechanicznej, albo potencyału jednostki objętości elementu ciała stałego doskonale sprężystego i które przed odkształceniem znajdowało się w stanie pierwotnym. Przyrównywając to ciało do układu atomów ulegających siłom (14), summa prac przygotowanych,, t. j. całka w którćj oznacza summę prac przygotowanych sił atomowych cząsteczki, powinna być równą zeru przy wszelkich wartościach przyrostów or,..jeżeli ciało znajduje się w stanie równowagi zwanej jego stanem pienuotnym. Ten stan pierwotny wymaga więc warunku, aby wartość funkcyi była równą zeru.
3 DWA TWIERDZENIA Z MECHANIKI CZ.JSTECZKOWĆJ. 3 Lecz ponieważ ciało jest doskonale sprężystem, to jego równowaga pierwotna powinna być stała, co ma miejsce tylko wtedy, gdy wartość różniczki jest odjenin^ dla wszystkich wartości, które mieć mog^ przyrosty Sr,..., i 5p. Jakoż, odkształciwszy ciało nieskończenie mało i zostawiwszy go następnie samemu sobie, ono, jeżeli jest doskonale sprężystem, pocznie drgać około swego położenia pierwotnego. Przyrost o (5V) przedstawia wtedy podwójnfi pracę wykonany podczas tego drgania. Jeżeli więc oznaczymy przez u, v, w rzuty na osie X,.V, s przesunięcia punktu M w czasie t, przez, ^^^, ^^^, składowe jego prędkości w cliwili, kiedy się znajduje w swem położeniu pierwotnem, powinno : to jak wiadomo z mechaniki byr A że prędkość punktu M w chwili kiedy on jest najbardziej oddalonym od swego położenia pierwotnego jest zerem, a w chwili kiedy się znajduje w tem ostatnióm jest największy, oczewista zatćm, że wartość przyrostu o jest rzeczywiście odjemnę. Szukajmy teraz innego wyrażenia przyrostu a to przez rozwinięcie różniczki Przy pomocy znakowań znajdujemy wtedy bez trudności (16) lub także A ponieważ nawias pod znakiem może mieć wartości raz dodatne, drugi raz odjemne, przeto nierówność S {5\) < O ma miejsce tylko pod dwoma warunkami jednoczesnymi zktórychpierwszy, jako tożsamy z równaniem (15), dowodzi że iv przypadki sprężystości doskonalój nły atomowe zależyć tylko mogą od mas i odległości atomowych.
4 4 PAMIĘTNIK TOWARZYSTWA NAUK ŚCISŁYCH W PATIYŻU. TOM VIII. Wprowadzając więc do wyrażenia (16) przyrostii 3 (SV) warunek (15) i zakładając dla prostoty i zgodnie z warunkiem^ < O, - 2/% znajdziemy zkjjd wynika, te icyratenie (H) /jrzedsławia prace mechaniczną albo potencyal Jednostki objętości elementu ciała w przypadku sprożystości doskonalej. Należy jednak zauważyć, że funkcya F zależna od R i p powinna l)yć wybraną w ten sposól), abv całka sprawdzała równanie różniczkowe częściowe t. j. należy założyć Nakoniec, jest bardzo widoczne i z równania (16) i z analizy poprzedzającej, ie wyrażenie (IS) przedstawia potencyal jednostki objętości elementu ciała w przypadku sprężystości niedoskonałej. Funkcya F wypełnia tutaj tylko jeden warunek stanu pierwotnego, t. j. że wartość jćj obecna je^t zerem. Można jeszcze potencyałom (17) i (18) nadać inne kształty, a to wyrażając stosunki ^ł* za pomocą ilości u, v, iv. Na ten koniec wystarczy zauważyć, że stosunek otrzymuje się z formuły (2) pracy przytoczonej, zastępując Sx, Sy, oz ilościami u, v,u'. W ten sposób będzie Co do stosunku ^ p to ten otrzymuje się z warunku zachowania masy elementu, który wyraża sic równaniem 1 daje po zamienieniu o//, Sz na v, y, w,
5 DWA TWIERDZENIA Z MECHANIKI CZ.^STECZKOWK.I. i i) > N Podstawiwszy wartości te stosunków - i ^ w wyrażeniach (H) i (18) i pamiętając, że przesur D dli dv dw nięcia względne jednostki objętości elementu, t. j. ^ ' ' ^ + ^ ' ' POsiadają wartości jednakowe dla wszystkich wyrazów summy i:, łatwo zapewnić się za pomocą rachunków bardzo elementarnych, że potencyał (17) przyjmie postać wielomianu jednorodnego drugiego stopnia wzeledem -I-...,o piętnastu współczynnikach różnych dx (h du podczas kiedy potencyał (18) stawszy się także wielomianem jednorodnym drugiego stopnia względem będzie miał tych współczynników dwadzieścia jeden i one bodą : dx dz dij Skoro więc potencyał jednostki objętości elementu ciała jest funkcyą przesunięć względnych tejże jednostki, jego zatem pochodne częściowe względem tych przesunięć przedstawiają ciśnienia fn Ti) na jednostkę powierzchni trzech elementów płaskich przecinających się prostokątnie w wierzchołku elementu : a ciśnienia te, będąc zawsze funkcyami liniowemi względem przesunięć względnych, posiadają piętnaście współczynników sprężystości, jeżeli różniczkujemy potencyał (17) i dwadzieścia jeden, jeżeli różniczkujemy potencyał (18). Formuły ciśnień o piętnastu współczynnikach sprężystości winni jesteśmy CAUCHY'emu, potencyał zaś o dwudziestu jeden GREEN'owi. Ponieważ metody używane przez wymienionych geometrów różniły się w swych zasadach, przeto ich wypadki także różne wprowadziły do teoryi sprężystości wielkie zamięszanie, nadewszystko zaś, że doświadczenia robione na różnych ciałach sprawdzały niekiedy wypadki Gauchy'ego, niekiedy wypadki Green'a. Metoda Gauchy'ego, jako zawierająca w sobie z założenia jeden z warunków sprężystości doskonałej, nie mogła go oczywiście zaprowadzić do wypadków zgodnych zawsze z doświadczeniami. A nawet pomimo pięknych doświadczeń p. KiRRiiOFF'a, które wypadło na korzyść tćj metody i rozumowań p. Barre de St. Yenant, który robił wysiłki, aby ją usprawiedliwić teoretycznie, przychodzi się jednak do przekonania, że to nie tam zawierają się wyniki będącej w mowie kwestyi. One nie zawierają się również i w pracach (lreen'a, chociaż rozumowanie jego jest godne wielkiego uznania. Myśl geometry angielskiego uważania potencyału jednostki objętności elemetu ciała, które przed swojem odkształceniem znajdowało się w stanie pierwotnym, za funkcyę odkształceń względnych tejże jednostki, jest zgodną i z zasadami mechaniki i z obecnemi okolicznościami. Należy tylko żałować, że ani Greeu, ani też inni geometrowie aż do naszych czasów nie zauważyli tego, że warunek o którym dopiero co mówiliśmy będąc koniecznym i dostatecznym do zdefiniowania ciała stałego, nie wystarczał jednak do zdeflniowania sprężystości doskonałej. Dopiero za pomocą metody poprzedzającej, można było rozstrzygnąć tę kwestyę delikatną i dowieść twierdzenia, według którego i formuły Gauchy'ego i potencyał Green'a mogą mieć miejsce bez sprzeciwienia się sobie, a nawet że jest koniecznóm przyjmować niekiedy pierwsze, a niekiedy drugi. Jakoż, ponieważ ciała stałe znajdujące się w naturze sn doskonale spreżystemi tylko wtedy, gdy doznają odkształceń niezmiernie małych i bardzo krótko trwających, przeto formuły Cauchyego, lub co na jedno wychodzi, potencyał (17) może stosoioać się bardzo rzadko, kiedy chodzi o równowagę, a zawsze kiedy chodzi o drgania. Lecz jeżeli ivgpada traktować równowagi, a nadewszystko w praktyce, gdzie odkształcenia są na granicy sprężystości i trwają bardzo długo, wtedy ciało traci sprężystość doskonałą, i stosorrać tylko można potencyał Green'a.
6 G PAMIĘTNIK TOWARZYSTWA NADK ŚCISŁYCU W PARYŻU. TOM VIII, Przez podobne rozumowanie możnaby także objaśnić przyczyny różnych wypadków, które otrzymywano przy oznaczeniu za pomocą doświadczeń liczby współczynników sprężystości w przypadku sprężystości stałej. Nie mając jednak ani dosyć danych koniecznych pod ręką, a nadewszystko, nie znając z dokładnością okoliczności, które towarzyszyły tym doświadczeniom, nie mogę wchodzić w większe szczegóły dotyczące tego przedmiotu, i poprzestaję tylko na uwadze poprzedzającej. II. O twierdzeniu dotycz^icem ciał gazowycli. Ciała które usiłują ciągłe powiększyć swoją objętość nazywam ciałami gazoicemi. Ciała takie posiadają godną uwagi własność, którą mam zamiar udowodnić; lecz przedtem wypada do lego celu wprowadzić formuły pomocnicze. Równania (5) rozprawy już wyżej wymienionej dają a ponieważ podług formuły (12) tśj samćj rozprawy jest przeto także będzie a po zcałkowaniu w granicach objętości ciała Przez pewną analogię z delinicyą pracy mechanicznćj, będę nazywał pracą średnią jednostki cząsteczki, pracą średnią samćj cząsteczki, i całkę pracą średnią sił atomowych ciała. Z drugiej strony, będę oznaczał przez ciśnienie średnie w punkcie M a przez ciśnienie średnie w ciele. Za pomocą tych dwóch defmicyj otrzymuje się z formuły poprzedzającej związek
7 DWA TWIERDZENIA Z MECHANIKI CZ.^STEC.ZKOWfcj. 7 wyrażający, że ciśmenie średnie iv ciele jest równe - ilorazu z średniej pracy jego sił atomowych przez jego objętość. To mając udowodnimy teraz twierdzenie następujące : Praca średnia sił atomowych ciała gazowego nie zależy od jego gęstości, a temsamem, ciśnienie średnie jest odwrotnie proporcyonalne do objętości. Jakoż, ciało gazowe zostawione samo sobie, powinno, według definicyi, powiększać swoją objętość aż do nieskończoności. Jego gęstość p stając się wtedy coraz mniejszą zdąża oczywiście do granicy zero, podczas gdy odległości wzajemne czterech punktów (s, s',...) składających jednostkę cząsteczki, jako też siły wewnętrzne [f) tćj jednostki zachowują wartości skończone. Otóż, wartości graniczne tych sił, niezależne już od gęstości p, należy przyjąć dla zdefiniowania ciała gazowego; ztąd zaś już oczywiście wynika, że praca średnia sił atomowych tego ciała nie zależy od gęstości p, a tem samćm ciśnienie średnie w ciele staje się odwrotnie] proporcyonalnem do jego objętości, c. b. d. d. Lecz praca średnia sił atomowych ciała gazowego zależna tylko od elementów jednostki cząsteczki, zmienia swoją wartość z odkształceniami doznawanemi przez ciało, jeżeli jednak odkształcenia te nie zależą jedynie od przyrostu gęstości p. Ona jest stałą i staje się silnikiem (viriel), jeżeli \\f=zzz k, rozumiejąc przez k stałę dodatną. Formuła (19) stając się wtedy w pewien sposób analogiczną z formułą p, CLAUSius'a, przedstawia prawo MAR[0TTE'a. W tym ostatnim przypadku mamy przeto atomy w cząsteczce gazu doskonałego odpychają się w stosunku odwrotnym odległości atomowych. Takie same prawo przyjmował już dla wyprowadzenia teoretycznie prawa Mariottea (nie mówię tutaj o jego teoryi gazów wyłożonej w Mechanice Nieba) ; lecz metodzie przez niego użytej brakuje pewnej jasności, co pochodzi ztąd, iż nie znał wtedy sposobu, w jaki cząsteczka składa się z atomów. Warszawa, ii paździornika 1875 roku.
8
RÓWNAŃ RÓŻNICZKOWYCH LINIOWYCH
A. J. S t o d ó l k ie w ic z. 0 KILKU KLASACH RÓWNAŃ RÓŻNICZKOWYCH LINIOWYCH R Z Ę D U n-go. KRAKÓW. NAKŁADEM AKADEMII UMIEJĘTNOŚCI. SKŁAD GŁÓW NY W KSIĘGARNI SPÓ ŁK I W YDAW NICZEJ PO LSK IEJ. A. J.
Elementy rachunku różniczkowego i całkowego
Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami
Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał
Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami
Pochodna funkcji odwrotnej
Pochodna funkcji odwrotnej Niech będzie dana w przedziale funkcja różniczkowalna i różnowartościowa. Wiadomo, że istnieje wówczas funkcja odwrotna (którą oznaczymy tu : ), ciągła w przedziale (lub zależnie
Przegląd termodynamiki II
Wykład II Mechanika statystyczna 1 Przegląd termodynamiki II W poprzednim wykładzie po wprowadzeniu podstawowych pojęć i wielkości, omówione zostały pierwsza i druga zasada termodynamiki. Tutaj wykorzystamy
Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na
6. ZWIĄZKI FIZYCZNE Wstęp
6. ZWIĄZKI FIZYCZN 1 6. 6. ZWIĄZKI FIZYCZN 6.1. Wstęp Aby rozwiązać jakiekolwiek zadanie mechaniki ośrodka ciągłego musimy dysponować 15 niezależnymi równaniami, gdyż tyle mamy niewiadomych: trzy składowe
Definicje i przykłady
Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 7/15 Rachunek różnicowy Dobrym narzędziem do obliczania skończonych sum jest rachunek różnicowy. W rachunku tym odpowiednikiem operatora
Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii
Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,
Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały
Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki
Krótki przegląd termodynamiki
Wykład I Przejścia fazowe 1 Krótki przegląd termodynamiki Termodynamika fenomenologiczna oferuje makroskopowy opis układów statystycznych w stanie równowagi termodynamicznej bądź w stanach jemu bliskich.
STAN NAPRĘŻENIA. dr hab. inż. Tadeusz Chyży
STAN NAPRĘŻENIA dr hab. inż. Tadeusz Chyży 1 SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE Rozważmy ciało o objętości V 0 ograniczone powierzchnią S 0, poddane działaniu sił będących w równowadze. Rozróżniamy tutaj
Równania różniczkowe liniowe II rzędu
Równania różniczkowe liniowe II rzędu Definicja równania różniczkowego liniowego II rzędu Warunki początkowe dla równania różniczkowego II rzędu Równania różniczkowe liniowe II rzędu jednorodne (krótko
MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn
27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE
27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej
Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej w Systemach Technicznych Symulacja prosta dyszy pomiarowej Bendemanna Opracował: dr inż. Andrzej J. Zmysłowski
Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Procesów i Konstrukcji Inżynierskich Praca, moc, energia Energia Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia jest miarą różnych
MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie
Wykład 14 i 15 Równania różniczkowe Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (x, y, y, y,..., y (n) ) = 0 (1) gdzie: y = y(x) niewiadoma funkcja zmiennej rzeczywistej
Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych
Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją
Stabilność II Metody Lapunowa badania stabilności
Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli
Rozwiązania zadań z podstaw fizyki kwantowej
Rozwiązania zadań z podstaw fizyki kwantowej Jacek Izdebski 5 stycznia roku Zadanie 1 Funkcja falowa Ψ(x) = A n sin( πn x) jest zdefiniowana jedynie w obszarze
Rachunek całkowy - całka oznaczona
SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej
W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1
W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe
zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno.
Rachunek prawdopodobieństwa Podstawowym celem rachunku prawdopodobieństwa jest określanie szans zajścia pewnych zdarzeń. Pojęcie podstawowe rachunku prawdopodobieństwa to: zdarzenie losowe - zdarzenie
Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
Wykład z równań różnicowych
Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.
Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).
Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo
Termodynamika Termodynamika
Termodynamika 1. Wiśniewski S.: Termodynamika techniczna, WNT, Warszawa 1980, 1987, 1993. 2. Jarosiński J., Wiejacki Z., Wiśniewski S.: Termodynamika, skrypt PŁ. Łódź 1993. 3. Zbiór zadań z termodynamiki
Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych
Pochodna i różniczka unkcji oraz jej zastosowanie do rachunku błędów pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją symbolami:
Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:
Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie
MECHANIKA II. Praca i energia punktu materialnego
MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl
Prawa gazowe- Tomasz Żabierek
Prawa gazowe- Tomasz Żabierek Zachowanie gazów czystych i mieszanin tlenowo azotowych w zakresie użytecznych ciśnień i temperatur można dla większości przypadków z wystarczającą dokładnością opisywać równaniem
Pochodną funkcji w punkcie (ozn. ) nazywamy granicę ilorazu różnicowego:
Podstawowe definicje Iloraz różnicowy funkcji Def. Niech funkcja będzie określona w pewnym przedziale otwartym zawierającym punkt. Ilorazem różnicowym funkcji w punkcie dla przyrostu nazywamy funkcję Pochodna
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A
Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),
Fakty wstępne Problem brachistochrony Literatura. Rachunek wariacyjny. Bartosz Wróblewski
26.10.13 - dziedzina analizy matematycznej zajmująca się znajdowaniem ekstremów i wartości stacjonarnych funkcjonałów. Powstał jako odpowiedź na pewne szczególne rozważania w mechanice teoretycznej. Swą
3a. Wstęp: Elementarne równania i nierówności
3a. Wstęp: Elementarne równania i nierówności Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 Grzegorz Kosiorowski (Uniwersytet Ekonomiczny 3a. Wstęp: w Krakowie) Elementarne równania
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
13. Równania różniczkowe - portrety fazowe
13. Równania różniczkowe - portrety fazowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 13. wrównania Krakowie) różniczkowe - portrety fazowe 1 /
III. Wstęp: Elementarne równania i nierówności
III. Wstęp: Elementarne równania i nierówności Fryderyk Falniowski, Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie ryderyk Falniowski, Grzegorz Kosiorowski (Uniwersytet III. Wstęp: Ekonomiczny
5 Równania różniczkowe zwyczajne rzędu drugiego
5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =
Ciśnienie i temperatura model mikroskopowy
Ciśnienie i temperatura model mikroskopowy Mikroskopowy model ciśnienia gazu wzór na ciśnienie gazu Mikroskopowa interpretacja temperatury Średnia energia cząsteczki gazu zasada ekwipartycji energii Czy
S ścianki naczynia w jednostce czasu przekazywany
FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym
Zadanie. Oczywiście masa sklejonych ciał jest sumą poszczególnych mas. Zasada zachowania pędu: pozwala obliczyć prędkość po zderzeniu
Zderzenie centralne idealnie niesprężyste (ciała zlepiają się i po zderzeniu poruszają się razem). Jedno z ciał przed zderzeniem jest w spoczynku. Oczywiście masa sklejonych ciał jest sumą poszczególnych
Nieskończona jednowymiarowa studnia potencjału
Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,
Wykład FIZYKA I. 15. Termodynamika statystyczna. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 15. Termodynamika statystyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html TERMODYNAMIKA KLASYCZNA I TEORIA
MECHANIKA 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły
Wykład 3. Zerowa i pierwsza zasada termodynamiki:
Wykład 3 Zerowa i pierwsza zasada termodynamiki: Termodynamiczne funkcje stanu. Parametry extensywne i intensywne. Pojęcie równowagi termodynamicznej. Tranzytywność stanu równowagi i pojęcie temperatury
Podstawy fizyki sezon 1 III. Praca i energia
Podstawy fizyki sezon 1 III. Praca i energia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha F.Żarnecki Praca Rozważamy
Średnie. Średnie. Kinga Kolczyńska - Przybycień
Czym jest średnia? W wielu zagadnieniach praktycznych, kiedy mamy do czynienia z jakimiś danymi, poszukujemy liczb, które w pewnym sensie charakteryzują te dane. Na przykład kiedy chcielibyśmy sklasyfikować,
Numeryczne rozwiązywanie równań różniczkowych ( )
Numeryczne rozwiązywanie równań różniczkowych Równanie różniczkowe jest to równanie, w którym występuje pochodna (czyli różniczka). Przykładem najprostszego równania różniczkowego może być: y ' = 2x które
SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY.
ĆWICZENIE 5 SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. Wprowadzenie Odkształcenie, którego doznaje ciało pod działaniem
Rozwiązywanie zależności rekurencyjnych metodą równania charakterystycznego
Rozwiązywanie zależności rekurencyjnych metodą równania charakterystycznego WMS, 2019 1 Wstęp Niniejszy dokument ma na celu prezentację w teorii i na przykładach rozwiązywania szczególnych typów równań
LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły.
PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. Pracę oznaczamy literą W Pracę obliczamy ze wzoru: W = F s W praca;
lim Np. lim jest wyrażeniem typu /, a
Wykład 3 Pochodna funkcji złożonej, pochodne wyższych rzędów, reguła de l Hospitala, różniczka funkcji i jej zastosowanie, pochodna jako prędkość zmian 3. Pochodna funkcji złożonej. Jeżeli funkcja złożona
Ciepło właściwe. Autorzy: Zbigniew Kąkol Bartek Wiendlocha
Ciepło właściwe Autorzy: Zbigniew Kąkol Bartek Wiendlocha 01 Ciepło właściwe Autorzy: Zbigniew Kąkol, Bartek Wiendlocha W module zapoznamy się z jednym z kluczowych pojęć termodynamiki - ciepłem właściwym.
7. RÓWNANIA TEORII SPRĘŻYSTOŚCI
7. RÓWNANIA TEORII SPRĘŻYSTOŚCI 1 7. 7. RÓWNANIA TEORII SPRĘŻYSTOŚCI 7.1. Wprowadzenie Równania Lamego wyrażają się wzorem: u i 1 u j, j i0 (7.1) gdzie: u i jest funkcją biharmoniczną u j,j υ - dylatacja
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy
FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI
FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI DEFINICJA (funkcji elementarnych) Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe wykładnicze logarytmiczne trygonometryczne Funkcje, które można
kondensatory Jednostkę pojemności [Q/V] przyjęto nazywać faradem i oznaczać literą F.
Pojemność elektryczna i kondensatory Umieśćmy na przewodniku ładunek. Przyjmijmy zero potencjału w nieskończoności. Potencjał przewodnika jest proporcjonalny do ładunku (dlaczego?). Współczynnik proporcjonalności
Termodynamika Część 3
Termodynamika Część 3 Formy różniczkowe w termodynamice Praca i ciepło Pierwsza zasada termodynamiki Pojemność cieplna i ciepło właściwe Ciepło właściwe gazów doskonałych Ciepło właściwe ciała stałego
RÓWNANIA RÓŻNICZKOWE WYKŁAD 4
RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,
Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Procesów i Konstrukcji Inżynierskich Teoria kinetyczna Kierunek Wyróżniony rzez PKA 1 Termodynamika klasyczna Pierwsza zasada termodynamiki to rosta zasada zachowania energii, czyli ogólna reguła
Wektory, układ współrzędnych
Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego
Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego 20.03.2013 Układ n ciał przyciągających się siłami grawitacji Mamy n ciał przyciągających się siłami grawitacji. Masy ciał oznaczamy
m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):
Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy
Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r=
Program MC Napisać program symulujący twarde kule w zespole kanonicznym. Dla N > 100 twardych kul. Gęstość liczbowa 0.1 < N/V < 0.4. Zrobić obliczenia dla 2,3 różnych wartości gęstości. Obliczyć radialną
- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd.
4. Równania dyfuzji 4.1. Prawo zachowania masy cd. Równanie dyfuzji jest prostą konsekwencją prawa zachowania masy, a właściwie to jest to prawo zachowania masy zapisane dla procesu dyfuzji i uwzględniające
Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);
Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy
CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ
CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ Ciepło i temperatura Pojemność cieplna i ciepło właściwe Ciepło przemiany Przejścia między stanami Rozszerzalność cieplna Sprężystość ciał Prawo Hooke a Mechaniczne
Statystyka nieoddziaływujących gazów Bosego i Fermiego
Statystyka nieoddziaływujących gazów Bosego i Fermiego Bozony: fotony (kwanty pola elektromagnetycznego, których liczba nie jest zachowana mogą być pojedynczo pochłaniane lub tworzone. W konsekwencji,
Mechanika. Wykład 2. Paweł Staszel
Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu
5. Całka nieoznaczona
5. Całka nieoznaczona Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Całka nieoznaczona zima 2017/2018 1 / 31 Całka nieoznaczona
WYKŁAD 8B PRZEPŁYWY CIECZY LEPKIEJ W RUROCIĄGACH
WYKŁA 8B PRZEPŁYWY CIECZY LEPKIEJ W RUROCIĄGACH PRZEPŁYW HAGENA-POISEUILLE A (LAMINARNY RUCH W PROSTOLINIOWEJ RURZE O PRZEKROJU KOŁOWYM) Prędkość w rurze wyraża się wzorem: G p w R r, Gp const 4 dp dz
WYKŁAD 5 RÓWNANIE EULERA I JEGO CAŁKI PIERWSZE 1/14
WYKŁAD 5 RÓWNANIE EULERA I JEGO CAŁKI PIERWSZE /4 RÓWNANIE EULERA W Wykładzie nr 4 wyprowadziliśmy ogólne r-nie ruchu płynu i pokazaliśmy jego szczególny (de facto najprostszy) wariant zwany Równaniem
Podstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH
FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest
WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.
ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,
Przykłady: zderzenia ciał
Strona 1 z 5 Przykłady: zderzenia ciał Zderzenie, to proces w którym na uczestniczące w nim ciała działają wielkie siły, ale w stosunkowo krótkim czasie. Wynikają z tego ważne dla praktycznej analizy wnioski
Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 12 Procesy transportu Janusz Brzychczyk, Instytut Fizyki UJ Zjawiska transportu Zjawiska transportu są typowymi procesami nieodwracalnymi zachodzącymi w przyrodzie. Zjawiska te polegają
ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.
ZASADY DYNAMIKI Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał Dynamika klasyczna zbudowana jest na trzech zasadach podanych przez Newtona w 1687 roku I zasada dynamiki Istnieją
Całki niewłaściwe. Całki w granicach nieskończonych
Całki niewłaściwe Całki w granicach nieskończonych Wiemy, co to jest w przypadku skończonego przedziału i funkcji ograniczonej. Okazuje się potrzebne uogólnienie tego pojęcia w różnych kierunkach (przedział
Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
SZEREGI LICZBOWE I FUNKCYJNE
Mając dowolny ciąg można z niego utworzyć nowy ciąg sum częściowych: Ten nowy rodzaj ciągu nazywamy szeregiem liczbowym, a jeśli to mamy do czynienia z nieskończonym szeregiem liczbowym, który oznaczany
WYKONUJEMY POMIARY. Ocenę DOSTATECZNĄ otrzymuje uczeń, który :
WYKONUJEMY POMIARY Ocenę DOPUSZCZAJĄCĄ otrzymuje uczeń, który : wie, w jakich jednostkach mierzy się masę, długość, czas, temperaturę wie, do pomiaru jakich wielkości służy barometr, menzurka i siłomierz
Miarą oddziaływania jest siła. (tzn. że siła informuje nas, czy oddziaływanie jest duże czy małe i w którą stronę się odbywa).
Lekcja 4 Temat: Pomiar wartości siły ciężkości. 1) Dynamika dział fizyki zajmujący się opisem ruchu ciał z uwzględnieniem przyczyny tego ruchu. Przyczyną ruchu jest siła. dynamikos (gr.) = potężny, mający
Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.
Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej
7. CIĄGI. WYKŁAD 5. Przykłady :
WYKŁAD 5 1 7. CIĄGI. CIĄGIEM NIESKOŃCZONYM nazywamy funkcję określoną na zbiorze liczb naturalnych, dodatnich, a wyrazami ciągu są wartości tej funkcji. CIĄGIEM SKOŃCZONYM nazywamy funkcję określoną na
Zasada działania maszyny przepływowej.
Zasada działania maszyny przepływowej. Przyrost ciśnienia statycznego. Rys. 1. Izotermiczny schemat wirnika maszyny przepływowej z kanałem miedzy łopatkowym. Na rys.1. pokazano schemat wirnika maszyny
Zasady dynamiki Newtona. WPROWADZENIE DO MECHANIKI PŁYNÓW
Zasady dynamiki Newtona. I. Jeżeli na ciało nie działają siły, lub działające siły równoważą się, to ciało jest w spoczynku lub porusza się ruchem jednostajnym. II. Jeżeli siły się nie równoważą, to ciało
Zespół kanoniczny N,V, T. acc o n =min {1, exp [ U n U o ] }
Zespół kanoniczny Zespół kanoniczny N,V, T acc o n =min {1, exp [ U n U o ] } Zespół izobaryczno-izotermiczny Zespół izobaryczno-izotermiczny N P T acc o n =min {1, exp [ U n U o ] } acc o n =min {1, exp[