WYRAŻENIA ALGEBRAICZNE

Wielkość: px
Rozpocząć pokaz od strony:

Download "WYRAŻENIA ALGEBRAICZNE"

Transkrypt

1 WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi. WARTOŚĆ LICZBOWA WYRAŻENIA ALGEBRAICZNEGO Wartością liczbową wyrażenia algebraicznego dla danych wartości zmiennych nazywamy liczbę, którą otrzymamy po podstawieniu tych wartości w miejsce zmiennych. Wyrażenia algebraiczne służą do symbolicznego zapisywania różnych wielkości. Na przykład pole prostokąta o bokach i zapisujemy za pomocą wyrażenia, a objętość walca o promieniu r i wysokości h za pomocą wyrażenia. JEDNOMIAN Jednomian to iloczyn liczby i zmiennych, na przykład:,, itd. Jednomiany podobne (wyrazy podobne), to jednomiany, w których występują te same zmienne w tej samej potędze jednomiany podobne mogą różnić się jedynie współczynnikiem liczbowym. Jednomiany podobne można dodawać i odejmować (redukować). Zapisywanie jednomianów w najprostszej postaci nazywamy porządkowaniem. SUMA I ILOCZYN ALGEBRAICZNY Sumę dwóch lub większej liczby jednomianów nazywamy sumą algebraiczną. Na przykład sumy algebraiczne to:,, Iloczyn dwóch lub większej liczby sum algebraicznych nazywamy iloczynem algebraicznym. Na przykład iloczyny algebraiczne to:,, DZIAŁANIA NA WYRAŻENIACH ALGEBRAICZNYCH Reguły opuszczania nawiasów. Jeżeli w sumie algebraicznej występują nawiasy, to nawiasy poprzedzone znakiem plus (lub gdy nie ma przed nimi żadnych znaków), można usunąć bez zmiany znaków przed wyrazami w nawiasach, na przykład: nawiasy poprzedzone znakiem minus, można usunąć, zmieniając jednocześnie znak każdego wyrazu występującego w nawiasie na przeciwny, na przykład: Dodawanie sum algebraicznych. Aby wykonać dodawanie, należy najpierw opuścić nawiasy, a następnie zredukować wyrazy podobne, na przykład: 1

2 Odejmowanie sum algebraicznych. Aby wykonać odejmowanie, należy najpierw opuścić nawiasy, a następnie zredukować wyrazy podobne, na przykład: Mnożenie sum algebraicznych przez jednomian. Aby wykonać mnożenie sumy algebraicznej przez jednomian, należy każdy składnik sumy pomnożyć przez ten jednomian według następującego wzoru: Jest to tzw. prawo rozdzielności mnożenia względem dodawania, na przykład: Mnożenie sum algebraicznych przez siebie. Aby wykonać mnożenie sum algebraicznych przez siebie należy każdy składnik pierwszej sumy pomnożyć przez każdy składnik drugiej sumy, według wzoru: Na przykład: KOLEJNOŚĆ WYKONYWANIA DZIAŁAŃ Matematyka to sztuka a w każdej sztuce konieczne jest opanowanie rzemiosła. Tym rzemiosłem jest prawidłowe wykonywanie działań. Opiszę to na przykładzie. Przypuśćmy, że mamy obliczyć wartość wyrażenia: [ ] Pierwszeństwo mają działania w nawiasach. W nich z kolei zaczynamy od potęgowania, następnie wykonujemy mnożenie, a następnie dodawanie. Na końcu rezultat musimy podnieść do potęgi. A zatem,. W nawiasie mamy zatem. Na koniec Zapamiętajmy najpierw wykonujemy potęgowanie, potem mnożenie i dzielenie (w kolejności zapisu), a następnie dodawanie i odejmowanie (też w kolejności zapisu). Kolejność zapisu oznacza, że, gdyż najpierw dzielimy 4 przez 5 a następnie wynik mnożymy przez 2. Gdybyśmy operacje wykonali w innej kolejności otrzymalibyśmy inny (nieprawidłowy) rezultat. WZORY SKRÓCONEGO MNOŻENIA kwadrat sumy kwadrat różnicy różnica kwadratów sześcian sumy sześcian sumy suma sześcianów suma sześcianów 2

3 ZAMIANA SUMY ALGEBRAICZNEJ NA ILOCZYN Zamianę sumy algebraicznej na iloczyn możemy dokonać poprzez: wyłączenie wspólnego czynnika przed nawias, na przykład: wykorzystanie wzorów skróconego mnożenia, na przykład: grupowanie wyrazów, na przykład: POTĘGI O WYKŁADNIKU NATURALNYM Potęgowanie to po prostu mnożenie przez siebie danej liczby określoną ilość razy. Zapisujemy to następująco: i tych jest n. Na przykład. Liczbę nazywamy podstawą potęgi a jej wykładnikiem. Oczywiście. Na potęgach można wykonywać działania. I tak: Na przykład Na przykład Na przykład Na przykład POTĘGI O WYKŁADNIKU CAŁKOWITYM UJEMNYM Jeżeli i jest liczbą naturalną to: Na potęgach o wykładniku ujemnym obowiązują wszystkie podane wyżej działania (tak samo jak dla dodatnich). PIERWIASTEK Jeżeli i to pierwiastkiem stopnia z liczby nazywamy taką liczbę, że. Pierwiastek stopnia z liczby oznaczamy. Jeżeli to w zapisie pomijamy i piszemy. Przykłady:, bo,, bo,, bo Nietrudno zauważyć, że nie z każdej liczby da się łatwo wyciągnąć pierwiastek. Już liczba sprawia kłopoty. Podobnie i wiele wiele innych. Jednak takie pierwiastki istnieją i są liczbami niewymiernymi. Będziemy je zapisywać właśnie w postaci i zajmiemy się nimi później. Liczbą niewymierną jest również dobrze znana liczba. Ma ona jednak inny typ niewymierności.. 3

4 LOGARYTM Logarytmem liczby b przy podstawie a nazywamy taką liczbę c, że a podniesione do potęgi c daje liczbę b. Matematycznie zapiszemy tą definicję tak: A zatem żeby obliczyć, wystarczy odpowiedzieć na pytanie: Do jakiej potęgi należy podnieść liczbę a, żeby otrzymać liczbę b?. Logarytm istnieje tylko wtedy, gdy spełnione są trzy warunki, nazywane dziedziną logarytmu. podstawa logarytmu musi by ć zawsze liczbą dodatnią, czyli:, podstawa musi być różna od 1, zatem:, liczba logarytmowana musi być dodatnia, czyli:. Własności logarytmów: = 6. ZADANIA SPRAWDZAJĄCE 1. Zapisz poniższe wyrażenia w postaci pojedynczej potęgi b) = c) = d) = e) (( ) ) = 2. Zapisz poniższe wyrażenia w postaci potęgi liczby punkty a b c i punkty d, e, f):, b), c) ( ) ( ) ( ) d), ( ), ( ) e),, 4

5 f),,,, 3. Oblicz wartości wyrażeń b) c) d) e) 4. Wykonaj działania b) ( ) c) ( ) ( ) = d) ( ) ( ) = 5. Uprość wyrażenia b) c) ( ) d) 6. Usuń niewymierności z mianowników ułamków b) 7. Doprowadź do najprostszej postaci wyrażenia [( ) ( ) ] c) d) e) b) [( ) ( ) ] 5 c) d) 8. Zapisz za pomocą wyrażenia algebraicznego: liczbę o mniejszą od liczby m b) liczbę razy większą od liczby w c) połowę liczby g d) kwadrat liczby p

6 6 e) iloraz kwadratu liczby a przez 5 f) pole 5 razy mniejsze od pola P g) objętość razy większą od objętości V h) trzy kolejne liczby naturalne pierwszą z nich oznacz n 9. Doprowadź do najprostszej postaci b) w a w a c) d) a a e) a a f) a b a b g) h) a b c a b c a b c 10. Wykonaj mnożenie i zredukuj wyrazy podobne: a b a b b) t s t s c) d) e) m m f) a a g) b c b c h) b c b c 11. Zastosuj wzory skróconego mnożenia b) c) d) ( ) e) a b f) g) ab h) ab i) y j) (x 3)(x+3) = k) (3x+7) (3x 7) = l) ( )( ) 12. Zamień sumy algebraiczne na iloczyny: y y b) xy + 4y = c) a 2a + 1 = d) y 10ay + 25a =

7 7 e) 4y 24xy + 36 = f) 16 b = g) 25 = h) 4a 49 = i) 36z 9 = 13. Doprowadź wyrażenia do najprostszej postaci stosując wzory skróconego mnożenia y y y b) c) 14. Rozłóż wyrażenia na czynniki a b ab b) a ab b c) y d) e) a ay b by f) a ay b by g) am an m n h) ac bc a b i) a ab ac bc j) a b b c c a k) l) 15. Rozwiąż równania b) c) d) e) f) y g) y h) i) j) k) l) m) n) o) p) q)

8 r) s) a a a a a t) c c c c u) 16. Rozwiąż nierówności b) c) d) e) f) 17. Oblicz poniższe logarytmy b) c) d) e) ( ) f) g) h) i) j) 18. Korzystając z definicji logarytmu wyznacz : b) c) d) e) 8

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 2 Teoria liczby rzeczywiste cz.2

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 2 Teoria liczby rzeczywiste cz.2 1 POTĘGI Definicja potęgi ł ę ę > a 0 = 1 (każda liczba różna od zera, podniesiona do potęgi 0 daje zawsze 1) a 1 = a (każda liczba podniesiona do potęgi 1 dają tą samą liczbę) 1. Jeśli wykładnik jest

Bardziej szczegółowo

Powtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową *

Powtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową * Powtórzenie podstawowych zagadnień związanych ze sprawnością rachunkową * (Materiały dydaktyczne do laboratorium fizyki) Politechnika Koszalińska październik 2010 Spis treści 1. Zbiory liczb..................................................

Bardziej szczegółowo

Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł

Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł Lp. Temat Kształcone umiejętności 1 Zasady pracy na lekcjach matematyki. Dział I. LICZBY

Bardziej szczegółowo

YRAŻENIA ALGEBRAICZNE

YRAŻENIA ALGEBRAICZNE 72 15. 15. WYR YRAŻENIA ALGEBRAICZNE WITAMY LITERKI Wyrażenie arytmetyczne to liczby połączone znakami działań, np. 3+27 : 5 lub 459 121+15 3 Wyrażenie algebraiczne to liczby wraz z literami połączone

Bardziej szczegółowo

Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z?

Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z? Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z? Liczby naturalne porządkowe, (0 nie jest sztywno związane z N). Przykłady: 1, 2, 6, 148, Liczby całkowite to liczby naturalne, przeciwne

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy VII

Wymagania edukacyjne z matematyki dla klasy VII Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby

Bardziej szczegółowo

Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R.

Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R. Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R. Liczby naturalne - to liczby całkowite, dodatnie: 1,2,3,4,5,6,... Czasami

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej

Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej Ocenę dopuszczającą otrzymuje uczeń, który: rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne,

Bardziej szczegółowo

SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI. Wymagania na poszczególne oceny klasa VII Matematyka z kluczem

SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI. Wymagania na poszczególne oceny klasa VII Matematyka z kluczem SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI Wymagania na poszczególne oceny klasa VII Matematyka z kluczem I. Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY Potęgi i pierwiastki Uczeń: Zna i rozumie pojęcie potęgi o wykładniku naturalnym Umie

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i

Bardziej szczegółowo

FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA

FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA POTĘGA, DZIAŁANIA NA POTĘGACH Potęga o wykładniku naturalnym. Jest to po prostu pomnożenie przez siebie danej liczby tyle razy ile wynosi wykładnik. Zapisujemy

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 2. odczytuje liczby naturalne dodatnie zapisane w

Bardziej szczegółowo

Mgr Kornelia Uczeń. WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa

Mgr Kornelia Uczeń. WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa Mgr Kornelia Uczeń WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa Oceny z plusem lub minusem otrzymują uczniowie, których wiadomości i umiejętności znajdują się na pograniczu wymagań danej

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KLASY VII Matematyka z plusem

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KLASY VII Matematyka z plusem WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KLASY VII Matematyka z plusem Ocena dopuszczająca: Pojęcie liczby naturalnej, całkowitej, wymiernej Rozszerzenie osi liczbowej na liczby ujemne Porównywanie

Bardziej szczegółowo

NaCoBeZU z matematyki dla klasy 7

NaCoBeZU z matematyki dla klasy 7 NaCoBeZU z matematyki dla klasy 7 I. LICZBY I DZIAŁANIA 1. Znam pojęcia: liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Zaznaczam i odczytuję położenie liczby

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM. rok szkolny 2016/2017

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM. rok szkolny 2016/2017 WYMAGANIA EDUKACYJNE Z MAYKI W KLASIE DRUGIEJ GIMNAZJUM rok szkolny 2016/2017 POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2) P podstawowy - ocena dostateczna (3) R rozszerzający -

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem pojęcie liczby naturalnej, całkowitej, wymiernej rozszerzenie osi liczbowej na liczby ujemne sposób i potrzebę zaokrąglania

Bardziej szczegółowo

Matematyka z plusem Wymagania programowe na poszczególne oceny dla klasy II. Szczegółowe kryteria oceniania po pierwszym półroczu klasy I:

Matematyka z plusem Wymagania programowe na poszczególne oceny dla klasy II. Szczegółowe kryteria oceniania po pierwszym półroczu klasy I: Matematyka z plusem Wymagania programowe na poszczególne oceny dla klasy II Szczegółowe kryteria oceniania po pierwszym półroczu klasy I: DZIAŁ 1. POTĘGI zna podręcznik i zeszyt ćwiczeń, z których będzie

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki Klasa II. na ocenę dopuszczającą

Szczegółowe wymagania edukacyjne z matematyki Klasa II. na ocenę dopuszczającą Szczegółowe wymagania edukacyjne z matematyki Klasa II na ocenę dopuszczającą UCZEŃ zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego na lekcjach matematyki; W zakresie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM Opracowane do programu Matematyka na czasie, Wydawnictwo Nowa Era

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM Opracowane do programu Matematyka na czasie, Wydawnictwo Nowa Era WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM Opracowane do programu Matematyka na czasie, Wydawnictwo Nowa Era POTĘGI I PIERWIASTKI POTĘGI Na ocenę dopuszczającą uczeń: zna i rozumie pojęcie

Bardziej szczegółowo

1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA NaCoBeZu kryteria sukcesu w języku ucznia 1. LICZBY 1. Znam pojęcie liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Potrafię zaznaczyć

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej

Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej ROZDZIAŁ I LICZBY Uczeń otrzymuje ocenę dopuszczającą jeśli: 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie

Bardziej szczegółowo

Wymagania z matematyki na poszczególne oceny II klasy gimnazjum

Wymagania z matematyki na poszczególne oceny II klasy gimnazjum Wymagania z matematyki na poszczególne oceny II klasy gimnazjum Opracowano na podstawie planu realizacji materiału nauczania matematyki Matematyka Podręcznik do gimnazjum Nowa wersja Praca zbiorowa pod

Bardziej szczegółowo

Wymagania z matematyki KLASA VII

Wymagania z matematyki KLASA VII Wymagania z matematyki KLASA VII Wymagania na ocenę dopuszczającą: -porównywanie liczb wymiernych (łatwiejsze -zaznaczanie liczb wymiernych na osi liczbowej - zamiana ułamka zwykłego na dziesiętny i odwrotnie

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII

KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII Na ocenę dopuszczającą uczeń powinien : Na ocenę dostateczną uczeń powinien: Na ocenę dobrą uczeń powinie: Na ocenę bardzo dobrą uczeń powinien: Na ocenę celującą

Bardziej szczegółowo

Tematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych

Tematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych Tematyka do egzaminu ustnego z matematyki 3 semestr LO dla dorosłych I. Sumy algebraiczne 1. Dodawanie i odejmowanie sum algebraicznych 2. Mnożenie sum algebraicznych 3. Wzory skróconego mnożenia - zastosowanie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ Ocenę niedostateczną otrzymuje uczeń, jeśli nie opanował wiadomości i umiejętności na ocenę dopuszczającą, nie wykazuje chęci poprawy

Bardziej szczegółowo

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II POTĘGI zna pojęcie potęgi o wykładniku naturalnym rozumie pojęcie potęgi o wykładniku naturalnym umie zapisać potęgę w postaci iloczynu umie zapisać iloczyn jednakowych

Bardziej szczegółowo

Matematyka z kluczem. Szkoła podstawowa nr 18 w Sosnowcu. Przedmiotowe zasady oceniania klasa 7

Matematyka z kluczem. Szkoła podstawowa nr 18 w Sosnowcu. Przedmiotowe zasady oceniania klasa 7 Matematyka z kluczem Szkoła podstawowa nr 18 w Sosnowcu Przedmiotowe zasady oceniania klasa 7 KlasaVII wymagania programowe- wymagania na poszczególne oceny ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane

Bardziej szczegółowo

Liczby. Wymagania programowe kl. VII. Dział

Liczby. Wymagania programowe kl. VII. Dział Wymagania programowe kl. VII Dział Liczby rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane w systemie rzymskim w zakresie do

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - ocena dopuszczająca (2) K, P - ocena dostateczna (3) K, P, R ocena dobra (4) K, P, R, D - ocena bardzo dobra

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII Ocena Dopuszczający Osiągnięcia ucznia rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane

Bardziej szczegółowo

DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH.

DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH. DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH. Dodawanie,8 zwracamy uwagę aby podpisywać przecinek +, pod przecinkiem, nie musimy uzupełniać zerami z prawej strony w liczbie,8. Pamiętamy,że liczba to samo co,0, (

Bardziej szczegółowo

6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.).

6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.). 6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.). 0 grudnia 008 r. 88. Obliczyć podając wynik w postaci ułamka zwykłego a) 0,(4)+ 3 3,374(9) b) (0,(9)+1,(09)) 1,() c) (0,(037))

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016 Dział Na ocenę dopuszczającą Na ocenę dostateczną Na ocenę dobrą POTĘGI PIERWIASTKI Uczeń: zna i rozumie pojęcie o

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: POTĘGI I PIERWIASTKI

PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: POTĘGI I PIERWIASTKI Ewa Koralewska LP..... 5... OGÓLNA PODSTA- WA PROGRA- MOWA PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem TEMATYKA LEKCJI LICZBA GODZIN Lekcja organizacyjna. Potęga

Bardziej szczegółowo

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę

Bardziej szczegółowo

Przedmiotowy system oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych z matematyki w kl.ii

Przedmiotowy system oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych z matematyki w kl.ii Matematyka klasa II kryteria oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych opracowano na podstawie programu MATEMATYKA Z PLUSEM DZIAŁ 1. POTĘGI zna i rozumie pojęcie potęgi o wykładniku

Bardziej szczegółowo

MATEMATYKA KLASA II GIMNAZJUM - wymagania edukacyjne. DZIAŁ Potęgi

MATEMATYKA KLASA II GIMNAZJUM - wymagania edukacyjne. DZIAŁ Potęgi MATEMATYKA KLASA II GIMNAZJUM - wymagania edukacyjne. (Przyjmuje się, że jednym z warunków koniecznych uzyskania danej oceny jest spełnienie wymagań na wszystkie oceny niższe.) DZIAŁ Potęgi DOPUSZCZAJĄCY

Bardziej szczegółowo

SZCZEGÓŁOWY OPIS OSIĄGNIĘĆ NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA DRUGA

SZCZEGÓŁOWY OPIS OSIĄGNIĘĆ NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA DRUGA SZCZEGÓŁOWY OPIS OSIĄGNIĘĆ NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA DRUGA DZIAŁ I: POTĘGI I PIERWIASTKI zna i rozumie pojęcie potęgi o wykładniku naturalnym (2) umie zapisać potęgę w postaci iloczynu (2)

Bardziej szczegółowo

MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI.

MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI. MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 6 h Liczby. Rozwinięcia

Bardziej szczegółowo

DZIAŁ 1. POTĘGI. stopień

DZIAŁ 1. POTĘGI. stopień DZIAŁ 1. POTĘGI zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego na lekcjach matematyki zna i rozumie pojęcie potęgi o wykładniku naturalnym umie zapisać potęgę w postaci

Bardziej szczegółowo

KLASA II POTĘGI. 20) umie zapisywać liczby w notacji wykładniczej,

KLASA II POTĘGI. 20) umie zapisywać liczby w notacji wykładniczej, KLASA II POTĘGI 1) zna i rozumie pojęcie potęgi o wykładniku naturalnym, 2) umie zapisać potęgę w postaci iloczynów, 3) umie zapisać iloczyny jednakowych czynników w postaci potęgi, 4) umie obliczyć potęgi

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki kl.ii

Przedmiotowy system oceniania z matematyki kl.ii DZIAŁ 1. POTĘGI Matematyka klasa II - wymagania programowe zna i rozumie pojęcie potęgi o wykładniku naturalnym (K) umie zapisać potęgę w postaci iloczynu (K) umie zapisać iloczyn jednakowych czynników

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE klasa II

WYMAGANIA EDUKACYJNE klasa II Matematyka z plusem dla gimnazjum WYMAGANIA EDUKACYJNE klasa II POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4)

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO

Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca

Bardziej szczegółowo

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. SUMY ALGEBRAICZNE DLA KLASY DRUGIEJ 1. Rozpoznawanie jednomianów i sum algebraicznych Obliczanie wartości liczbowych wyrażeń algebraicznych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości;

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości; WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP Liczby. TEMAT Rozwinięcia dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie liczb dodatnich. Mnożenie i dzielenie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa II program Matematyka z plusem POTĘGI POZIOM KONIECZNY ocena dopuszczająca zapisać potęgę w postaci iloczynu zapisać iloczyn jednakowych czynników w postaci potęgi

Bardziej szczegółowo

Wymagania edukacyjne z matematyki na poszczególne do klasy VII szkoły podstawowej na rok szkolny 2018/2019

Wymagania edukacyjne z matematyki na poszczególne do klasy VII szkoły podstawowej na rok szkolny 2018/2019 Wymagania edukacyjne z matematyki na poszczególne do klasy VII szkoły podstawowej na rok szkolny 2018/2019 LICZBY Uczeń otrzymuje ocenę dopuszczającą, jeśli: rozpoznaje cyfry używane do zapisu liczb w

Bardziej szczegółowo

Klasa II POTĘGI. Na ocenę dobrą: umie porównać potęgi sprowadzając do tej samej podstawy

Klasa II POTĘGI. Na ocenę dobrą: umie porównać potęgi sprowadzając do tej samej podstawy Klasa II POTĘGI zna pojęcie potęgi o wykładniku naturalnym rozumie pojęcie potęgi o wykładniku naturalnym umie zapisać potęgę w postaci iloczynu umie zapisać iloczyn jednakowych czynników w postaci potęgi

Bardziej szczegółowo

Określenie wymagań edukacyjnych z matematyki w klasie II

Określenie wymagań edukacyjnych z matematyki w klasie II Określenie wymagań edukacyjnych z matematyki w klasie II Potęgi Na ocenę dopuszczającą uczeń : Zna i rozumie pojęcie potęgi o wykładniku naturalnym, zna wzory na mnożenie i dzielenie potęg o tych samych

Bardziej szczegółowo

ZESPÓŁ SZKÓŁ W OBRZYCKU

ZESPÓŁ SZKÓŁ W OBRZYCKU Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne

Bardziej szczegółowo

Minimalne wymagania edukacyjne na poszczególne oceny z matematyki w klasie drugiej Matematyka z plusem dla gimnazjum

Minimalne wymagania edukacyjne na poszczególne oceny z matematyki w klasie drugiej Matematyka z plusem dla gimnazjum Minimalne wymagania edukacyjne na poszczególne oceny z matematyki w klasie drugiej Matematyka z plusem dla gimnazjum W POTĘGI zna i rozumie pojęcie potęgi o wykładniku naturalnym umie obliczyć potęgę o

Bardziej szczegółowo

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA II

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA II 1 KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA II POTĘGI umie zapisać potęgę w postaci iloczynu umie zapisać iloczyn jednakowych czynników w postaci potęgi umie obliczyć potęgę o wykładniku

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 2 GIM

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 2 GIM WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 2 GIM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D - dopełniający

Bardziej szczegółowo

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA 1. FUNKCJE 2. POTĘGI I PIERWIASTKI NaCoBeZu kryteria sukcesu w języku ucznia 1. Wiem, co to jest układ współrzędnych, potrafię nazwać osie układu. 2. Rysuję układ współrzędnych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM Wymagania opracowano na podstawie programu: Matematyka z plusem zgodnie z obowiązującą w klasie drugiej gimnazjum podstawą programową. POZIOMY

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie II gimnazjum

Wymagania edukacyjne z matematyki w klasie II gimnazjum Wymagania edukacyjne z matematyki w klasie II gimnazjum Dział Poziom wymagań koniecznych (na ocenę dopuszczającą) Poziom wymagań podstawowych (na ocenę dostateczną) Poziom wymagań rozszerzających (na ocenę

Bardziej szczegółowo

Semestr Pierwszy Potęgi

Semestr Pierwszy Potęgi MATEMATYKA KL. II 1 Semestr Pierwszy Potęgi zna i rozumie pojęcie potęgi o wykładniku naturalnym, umie zapisać potęgę w postaci iloczynu, umie zapisać iloczyn jednakowych czynników w postaci potęgi, umie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DLA KLASY II GIMNAZJUM ROK SZKOLNY 2010/2011

WYMAGANIA EDUKACYJNE DLA KLASY II GIMNAZJUM ROK SZKOLNY 2010/2011 WYMAGANIA EDUKACYJNE DLA KLASY II GIMNAZJUM ROK SZKOLNY 2010/2011 Uczeń chcąc uzyskać daną ocenę musi spełnić również wymagania na oceny niższe. Uczeń na ocenę: DOPUSZCZAJĄCY: zna i rozumie pojęcie potęgi

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM 4 GODZ. TYGODNIOWO 125 GODZ. W CIĄGU

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM Wydawnictwo GWO 4 GODZ. TYGODNIOWO

Bardziej szczegółowo

WYRAŻENIA ALGEBRAICZNE GRUPA A. l. Wyrazy sumy algebraicznej 6x - 4a2 + 9ax to: 2. Po uporządkowaniu jednomianu 4a (- 6b) a otrzymamy:

WYRAŻENIA ALGEBRAICZNE GRUPA A. l. Wyrazy sumy algebraicznej 6x - 4a2 + 9ax to: 2. Po uporządkowaniu jednomianu 4a (- 6b) a otrzymamy: WYRAŻENIA ALGEBRAICZNE GRUPA A l. Wyrazy sumy algebraicznej 6x - 4a2 + 9ax to: A. 6x, 4a2, 9ax B. -6x, -4a2, -9ax C. 6x, -4a2, 9ax. -6x, 4a2, -9ax 2. Po uporządkowaniu jednomianu 4a (- 6b) a otrzymamy:

Bardziej szczegółowo

PRÓBNA NOWA MATURA z WSiP. Matematyka dla klasy 2 Poziom podstawowy. Zasady oceniania zadań

PRÓBNA NOWA MATURA z WSiP. Matematyka dla klasy 2 Poziom podstawowy. Zasady oceniania zadań PRÓBNA NOWA MATURA z WSiP Matematyka dla klasy Poziom podstawowy Zasady oceniania zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 0 Matematyka dla klasy Poziom podstawowy Kartoteka

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki w klasie siódmej szkoły podstawowej na rok szkolny 2017/2018

Szczegółowe wymagania edukacyjne z matematyki w klasie siódmej szkoły podstawowej na rok szkolny 2017/2018 Szczegółowe wymagania edukacyjne z matematyki w klasie siódmej szkoły podstawowej na rok szkolny 2017/2018 Ocena niedostateczna: Uczeń nie opanował wiadomości i umiejętności przewidzianych podstawą programową

Bardziej szczegółowo

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY 1 KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA I LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać

Bardziej szczegółowo

Kryteria ocen z matematyki w klasie II gimnazjum

Kryteria ocen z matematyki w klasie II gimnazjum Kryteria ocen z matematyki w klasie II gimnazjum Na ocenę dopuszczającą uczeń: zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego na lekcjach matematyki zna i rozumie pojęcie

Bardziej szczegółowo

Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1

Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1 Robert Malenkowski 1 Liczby rzeczywiste. 1 Liczby naturalne. N {0, 1,, 3, 4, 5, 6, 7, 8...} Liczby naturalne to liczby używane powszechnie do liczenia i ustalania kolejności. Liczby naturalne można ustawić

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY II GIMNAZJUM NA ROK SZKOLNY 2017/2018

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY II GIMNAZJUM NA ROK SZKOLNY 2017/2018 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY II GIMNAZJUM NA ROK SZKOLNY 2017/2018 1. Ocena niedostateczna: Uczeń nie opanował wiadomości i umiejętności przewidzianych podstawą programową. Ocenę

Bardziej szczegółowo

Końcoworoczne kryteria oceniania dla klasy II z matematyki Rok szkolny 2015/2016 przygotowała mgr inż. Iwona Śliczner

Końcoworoczne kryteria oceniania dla klasy II z matematyki Rok szkolny 2015/2016 przygotowała mgr inż. Iwona Śliczner Końcoworoczne kryteria oceniania dla klasy II z matematyki Rok szkolny 2015/2016 przygotowała mgr inż. Iwona Śliczner Ocenę dopuszczającą otrzymuje uczeń, który: definiuje pojęcie potęgi o wykładniku naturalnym,

Bardziej szczegółowo

Potęga o wykładniku naturalnym. Iloczyn i iloraz potęg o jednakowych podstawach. Potęgowanie potęgi. Potęgowanie iloczynu i ilorazu.

Potęga o wykładniku naturalnym. Iloczyn i iloraz potęg o jednakowych podstawach. Potęgowanie potęgi. Potęgowanie iloczynu i ilorazu. Klasa II: DZIAŁ 1. POTĘGI Lekcja organizacyjna. Potęga o wykładniku naturalnym. Iloczyn i iloraz potęg o jednakowych podstawach. Potęgowanie potęgi. Potęgowanie iloczynu i ilorazu. Działania na potęgach.

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

Lista 1 liczby rzeczywiste.

Lista 1 liczby rzeczywiste. Lista 1 liczby rzeczywiste Zad 1 Przedstaw liczbę m w postaci W każdym ze składników tej sumy musimy wyłączyd czynnik przed znak pierwiastka Można to zrobid rozkładając liczby podpierwiastkowe na czynniki

Bardziej szczegółowo

Wymagania edukacyjne dla klasy drugiej POTĘGI I PIERWIASTKI

Wymagania edukacyjne dla klasy drugiej POTĘGI I PIERWIASTKI zna pojęcie potęgi o wykładniku naturalnym i oblicza jej wartość zapisuje potęgę w postaci iloczynu zapisuje iloczyn jednakowych czynników w postaci potęgi porównuje potęgi o różnych wykładnikach naturalnych

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY PO KLASIE II GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE OCENY PO KLASIE II GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY PO KLASIE II GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D - dopełniający

Bardziej szczegółowo

Wymagania edukacyjne z matematyki Szkoła Podstawowa im. Mikołaja z Ryńska w Ryńsku

Wymagania edukacyjne z matematyki Szkoła Podstawowa im. Mikołaja z Ryńska w Ryńsku Wymagania edukacyjne z matematyki Szkoła Podstawowa im. Mikołaja z Ryńska w Ryńsku KLASA VII LICZBY I DZIAŁANIA rozumie konieczność rozszerzenia osi liczbowej na liczby ujemne, umie porównywać typowe przykłady

Bardziej szczegółowo

ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH

ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH Opracowała: nauczyciel matematyki mgr Małgorzata Drejka Legionowo 007 SPIS TREŚCI ALGEBRA potęgi i pierwiastki

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne Klasa 7

Wymagania na poszczególne oceny szkolne Klasa 7 1 Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

DZIAŁ 1. POTĘGI (14 h)

DZIAŁ 1. POTĘGI (14 h) DZIAŁ 1. POTĘGI (14 h) TEMAT ZAJĘĆ 1. Lekcja organizacyjna. 2-3. Potęga o wykładniku naturalnym. 4-5. Iloczyn i iloraz potęg o jednakowych podstawach. 6. Potęgowanie potęgi. 7-8. Potęgowanie iloczynu i

Bardziej szczegółowo

2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24

2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24 SPIS TREŚCI WYRAŻENIA ALGEBRAICZNE RÓWNANIA I NIERÓWNOŚCI ALGEBRAICZNE 7 Wyrażenia algebraiczne 0 Równania i nierówności algebraiczne LICZBY RZECZYWISTE 4 Własności liczb całkowitych 8 Liczby rzeczywiste

Bardziej szczegółowo

Wymagania edukacyjne z matematyki opracowane do programu Matematyka z plusem GWO w klasie 7 szkoły podstawowej

Wymagania edukacyjne z matematyki opracowane do programu Matematyka z plusem GWO w klasie 7 szkoły podstawowej Wymagania edukacyjne z matematyki opracowane do programu Matematyka z plusem GWO w klasie 7 szkoły podstawowej DZIAŁ 1. LICZBY I DZIAŁANIA rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać

Bardziej szczegółowo

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania Kryteria ocen z matematyki w Gimnazjum Klasa I Liczby i działania obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki

Bardziej szczegółowo

Wymagania edukacyjne z matematyki Klasa II program Matematyka z plusem Rok szkolny 2017/2018

Wymagania edukacyjne z matematyki Klasa II program Matematyka z plusem Rok szkolny 2017/2018 Wymagania edukacyjne z matematyki Klasa II program Matematyka z plusem Rok szkolny 2017/2018 I Okres POTĘGI zapisać potęgę w postaci iloczynu liczb, zapisać iloczyn jednakowych czynników w postaci potęgi

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki klasa II gim

Szczegółowe wymagania edukacyjne z matematyki klasa II gim Szczegółowe wymagania edukacyjne z matematyki klasa II gim POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D -

Bardziej szczegółowo

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II GIMNAZJUM( IIan1, IIan2, IIb) Na rok szkolny 2015/2016

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II GIMNAZJUM( IIan1, IIan2, IIb) Na rok szkolny 2015/2016 WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II GIMNAZJUM( IIan1, IIan2, IIb) Na rok szkolny 2015/2016 OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/2/2010 POZIOMY WYMAGAŃ

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo

WSZYSTKO CO CHCECIE WIEDZIEĆ O MATEMATYCE ALE BOICIE SIĘ SPYTAĆ

WSZYSTKO CO CHCECIE WIEDZIEĆ O MATEMATYCE ALE BOICIE SIĘ SPYTAĆ WSZYSTKO CO CHCECIE WIEDZIEĆ O MATEMATYCE ALE BOICIE SIĘ SPYTAĆ Dla wszystkich, których przerażają opasłe podręczniki szkolne do matematyki, opracowałem w przystępnej formie to co trzeba wiedzieć by rozpocząć

Bardziej szczegółowo

Wymagania dla klasy siódmej. Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: DZIAŁ 1. LICZBY

Wymagania dla klasy siódmej. Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: DZIAŁ 1. LICZBY Wymagania dla klasy siódmej Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: DZIAŁ 1. LICZBY Rzymski sposób zapisu liczb Liczby pierwsze i złożone. Dzielenie z resztą Rozwinięcia dziesiętne

Bardziej szczegółowo

DZIAŁ II: PIERWIASTKI

DZIAŁ II: PIERWIASTKI Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen z przedmiotu matematyka w II klasie gimnazjum w roku szkolnym 2016/2017 Wymagania edukacyjne dostosowane do obowiązującej

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum

Wymagania edukacyjne z matematyki dla klasy II gimnazjum Wymagania edukacyjne z matematyki dla klasy II gimnazjum Opracowano na podstawie programu Matematyka z plusem Na ocenę dopuszczającą uczeń: zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w

Bardziej szczegółowo