Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
|
|
- Leszek Świątek
- 9 lat temu
- Przeglądów:
Transkrypt
1 Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
2 1. Ciągi 1. Ciąg liczbowy. Ciągiem liczb rzeczywistych nazywamy dowolną funkcję a: N R. Zamiast a(n), piszemy a n. Ciąg oznaczamy następująco: (a n ) R, (a n ) n=1 R lub {a n} n=1 R.. Monotoniczność ciągu. a) Ciąg (a n ) n=1 R nazywamy rosnącym, jeśli a n a n+1 dla n N. b) Ciąg (a n ) n=1 R nazywamy silnie rosnącym, jeśli a n < a n+1 dla n N. c) Ciąg (a n ) n=1 R nazywamy malejącym, jeśli a n+1 a n dla n N. d) Ciąg (a n ) n=1 R nazywamy silnie malejącym, jeśli a n+1 < a n dla n N. e) Ciąg (a n ) n=1 R nazywamy stałym, jeśli a n+1 = a n dla n N. f) Ciąg rosnący lub malejący nazywamy monotonicznym, a ciąg silnie rosnący lub silnie malejący nazywamy silnie monotonicznym.. Ograniczoność. a) Ciąg (a n ) n=1 nazywamy ograniczonym od góry, jeśli istnieje M R takie, że a n M dla każdego n N. b) Ciąg (a n ) n=1 nazywamy ograniczonym od dołu, jeśli istnieje M R takie, że M a n dla każdego n N. c) Ciąg (a n ) n=1 nazywamy ograniczonym, jeśli istnieje M R takie, że a n M dla każdego n N. Łatwo zauważyć, że jeśli ciąg jest ograniczony od dołu i od góry, to jest on ograniczony i na odwrót: jeśli jest ograniczony, to jest ograniczony od góry i od dołu. 4. Ciąg arytmetyczny. Ciąg arytmetyczny to ciąg (a n ), dla którego a n+1 a n = const dla każdego n N, czyli r R n N a n+1 = a n + r S n = (a 1 + a n ) n a n+1 = a 1 + (n 1)r n ty wyraz ciągu arytmetycznego = [a 1 + (n 1)r] n a n = a n 1 + a n+1 suma n początkowych wyrazów ciągu arytmetycznego średnia arytmetyczna 5. Ciąg geometryczny. Ciąg geometryczny to ciąg (a n ), dla którego a n+1 a n q R n N = const dla każdego n N, czyli a n+1 = a n q a n+1 = a 1 q n 1 n ty wyraz ciągu geometrycznego { n an dla q = 1, S n = suma npoczątkowych wyrazów ciągu geometrycznego a 1 n dla q 1. a n = a n 1 a n+1 średnia geometryczna 57
3 Ciąg sum częściowych ciągu geometrycznego (S n ) n=1, S n = a 1 n wtedy i tylko wtedy, gdy q < 1, tzn. jest zbieżny i ma granicę S 6. Granica ciągu. S = S n = a 1 1 q Liczba g jest granicą ciągu nieskończonego (a n ) n=1, jeśli dla każdego otoczenia liczby g należą prawie wszystkie wyrazy ciągu (tzn. wszystkie poza skończoną liczbą wyrazów), tzn. a n = g ε>0 M R n>m a n a < ε. Ciąg (a n ), który ma granicę właściwą nazywamy zbieżnym. Ciąg (a n ) n=1 jest zbieżny do + wtedy i tylko wtedy, gdy dla dowolnej liczby M prawie wszystkie wyrazy ciągu są większe od M, tzn. a n = + M R m R n>m a n > M. Ciąg (a n ) n=1 jest zbieżny do wtedy i tylko wtedy, gdy dla każdej liczby M prawie wszystkie wyrazy ciągu są mniejsze od M, tzn. 7. Ważne twierdzenia. Twierdzenie o trzech ciągach a n = M R m R n>m a n < M. Jeżeli a n = b n = g oraz jeśli (c n ) n=1 jest ciągiem, którego prawie wszystkie wyrazy spełniają nierówność a n c n b n, to ciąg (c n ) n=1 jest zbieżny oraz c n = g. Twierdzenie Każdy podciąg ciągu zbieżnego jest zbieżny do tej samej granicy. Twierdzenie Jeżeli a n = a, b n = b, to a) (a n ± b n ) = a ± b, b) (a n b n ) = a b, a c) n bn = a b, jeśli b n 0, b 0. Twierdzenie Jeżeli a n = a, b n = b i prawie wszystkie wyrazy ciągów (a n ) i (b n ) spełniają nierówność a n b n, to a b. Twierdzenie o ciągu monotonicznym Każdy ciąg malejący i ograniczony od dołu jest zbieżny. Każdy ciąg rosnący i ograniczony od góry jest zbieżny. 58
4 8. Różne granice. 1 n = 0 a 1 n = = a n = 0 ( ) n N a n > 0 a 1 n = 0 = a n = + an = 0, gdy a < 1, 1, gdy a = 1, +, gdy a > 1. n n = 1 n a = 1, gdy a > 0 ( n ( = e 1 n) 1 ) n = 1 n e ( 1 + a ) n = e a n Przykładowe zadania a n a > 1, k > 1 = n k = + 1. Zbadać monotoniczność ciągu a n = 1 1 n. Badamy różnicę a n+1 a n a n+1 a n = 1 1 (n+1) (1 1 n ) = 1 n 1 (n+1) = (n+1) n n (n+1) = n+1 n (n+1) Odpowiedź: Ciąg a n jest silnie rosnący. > 0 dla każdego n N. W ciągu arytmetycznym a = 4, a 8 = 14. Obliczyć a 1, r. Korzystamy ze wzoru na n ty wyraz ciągu arytmetycznego a n = a 1 + (n 1)r Zatem a = a 1 + r = 4, zaś a 8 = a 1 + 7r = 14. Stąd r =, a 1 = 7. Odpowiedź: r =, a 1 = 7.. W ciągu arytmetycznym a 1 = 0, r = 0, 7. Obliczyć S 11. Korzystamy ze wzoru na n ty wyraz ciągu arytmetycznego a n = a 1 + (n 1)r Zatem a 1 = a 1 + 0r = a , 7 = 0, stąd a 1 = 16 Korzystamy ze wzoru na sumę n wyrazów ciągu arytmetycznego S n = [a 1+(n 1)r] n S 11 = ( ,7) 11 = (+7)11 = 14, Odpowiedź: S 11 = 14,. 59
5 4. Dla jakich wartości x liczby x, x, 4 tworzą ciąg arytmetyczny? Korzystamy ze wzoru na średnią arytmetyczną a = a 1+a x = x+4, zatem x x 1 = 0, czyli x 1 =, x = 4 Odpowiedź: x 1 =, x = Zbadać, czy ciąg a n = n + jest arytmetyczny. Ciąg jest arytmetyczny, gdy jest stała różnica pomiędzy wyrazem następnym a poprzednim. a n+1 a n = (n + 1) + (n + ) = n + + n = Odpowiedź: Ciąg jest arytmetyczny. 6. W ciągu geometrycznym a 5 =, a 10 = 64. Obliczyć a 1 i q. Korzystamy ze wzoru na n ty wyraz ciągu geometrycznego Zatem a 5 = a 1 q 4 =, zaś a 10 = a 1 q 9 = 64. Stąd q =, a 1 = 1 8. Odpowiedź: q =, a 1 = W ciągu geometrycznym S n = 11 16, a 4 = 1 54, q = 1. Obliczyć n. a n = a 1 q n 1 Korzystamy ze wzoru na n ty wyraz ciągu geometrycznego a n = a 1 q n 1 Zatem a 4 = a 1 ( 1 ) = 1 54, stąd a 1 = 1. Korzystamy ze wzoru na sumę n wyrazów ciągu geometrycznego S n = a n 1 S n = a n 1 = 1 1 ( 1 ( ( )n = ( 1 )n) = 4 1 ( 1 )n). Stąd 4 (1 ( 1 )n ) = 11 16, zatem 1 ( 1 )n = , czyli 1 ( 1 )n = 4 4 ( 1 )n = 1 4 = ( 1 )5, czyli n = 5 Odpowiedź: n = Zbadać, czy ciąg a n = n jest geometryczny. Ciąg jest geometryczny, gdy iloraz pomiędzy dowolnym wyrazem a wyrazem go poprzedzającym jest stały (niezależny od n). Obliczmy = (n+1) n = n+1 n = n a n+1 a n jest zależne od n Odpowiedź: Ciąg nie jest geometryczny. 9. Dla jakich wartości x liczby 5, x, 5 4 tworzą ciąg geometryczny? Korzystamy ze wzoru na średnią geometryczną a = a 1 a Zatem x = 5 5 4, stąd x = ± 5 4, czyli x = ± 5 Odpowiedź: x = ± 5. 60
6 10. Obliczyć sumę ciągu Jest to nieskończony ciąg geometryczny, w którym a 1 = 1 oraz q = 1. Korzystamy ze wzoru S = a 1 S = = 1 1 = 1 = Odpowiedź: S = 1 ( + ). 9n 11. Obliczyć +n+1 n n+. ( +1) ( +1)( = ( +1) 1) 1 = ( + 1) = 1 ( + ) Dziey każdy składnik licznika i mianownika przez n w najwyższej potędze z mianownika, czyli przez n. Zatem 9+ n + 1 n 1 n +. 1 n Skoro n, to 1 1 n 0, n Stąd n + 1 n 1 n + = 9 1 n = Odpowiedź:. 1. Obliczyć ( n + n n n ). Korzystając ze wzoru a b = a b a+b (n +n) (n n) n +n+ = n n n n +n+, dzie- n n = 1. y każdy składnik przez n, stąd Odpowiedź: 1., otrzymujemy 1+ 1 n n 1. Obliczyć 1 n n +5n. Korzystając ze wzoru 1 a b = a+b = n + n +5n 5n, dziey każdy składnik przez n, stąd Odpowiedź: 1 5. a b, otrzymujemy 1 1+ n + 5 n n + n +5n n (n +5n) n +5 = 1 5 = Obliczyć n +4 n 5 n +. n Dziey licznik i mianownik przez 5 n (, zatem 5 )n +( 4 5 )n = 0, bo jeśli q (0, 1), to q n 0 1+( 5 )n Odpowiedź: Obliczyć n+1 +5 n 8 4 n n+1 +5 n 8 4 n 1 7 = 4 n 4+5 n 8 4 n = 4 n 4+5 n 4 n 7, dziey każdy wyraz przez 4n 4+5 (, stąd 4 )n = 7 ( 1 4 )n Odpowiedź:. 61
7 16. Obliczyć (1 + 5 n )n (1 + 5 n )n = Odpowiedź: e Obliczyć (1 n ) 5n (1 n ) 5n = Odpowiedź: e Obliczyć ( n+ n )10n ( n+ n Odpowiedź: e Obliczyć ( n+1 n+ )n [ ( n 5 [ ( n ) n 5 ] 10 = e 10 )10n = (1 + n )10n = ( n+1 n+ )n (1+ = 1 n )n = (1+ n )n Odpowiedź: e. 0. Obliczyć n n + 5 n + 8 n. Zachodzi następująca nierówność: ] ) n 15 = e 15 (1+ [ 1 n )n (1+ n 1 ) n [ ( n ] = e e ) n ] 0 = e 0 = e 8 n n + 5 n + 8 n 8 n + 8 n + 8 n = 8 n Obliczamy pierwiastek n tego stopnia dla każdego ze składników nierówności. Jest to funkcja rosnąca, zatem znak nierówności nie zmieni się. Stąd 8 = n 8 n n n + 5 n + 8 n n 8 n n 8 Ponieważ n 1, więc skrajne ciągi są zbieżne do 8. Stosujemy twierdzenie o trzech ciągach, stąd n n + 5 n + 8 n = 8 Odpowiedź: 8. Zadania Napisać 5 pierwszych wyrazów ciągu o wyrazie ogólnym: 1. b n = sin( nπ 6 ).. d n = n n!.. W ciągu arytmetycznym a = 6, a 8 = 54. Obliczyć a 1 i r. 6
8 4. Znaleźć ciąg arytmetyczny o a 1 = 1, jeśli suma czterech pierwszych wyrazów jest razy większa od sumy czterech następnych wyrazów. 5. Dla jakich wartości x liczby log, log( x 1), log( x + ) tworzą ciąg arytmetyczny? 6. Cztery liczby tworzą ciąg geometryczny. Wyznaczyć ten ciąg, jeśli suma wyrazów skrajnych wynosi 6, zaś suma wyrazów środkowych wynosi Dla jakiego a suma 4a + a + a +... wynosi 1? 8. Podać wzór na ogólny wyraz ciągu 1, 1 4, 1 9, 1 16, Zbadać monotoniczność ciągu a n = n n W ciągu arytmetycznym a 5 = 1, a 8 = 15. Obliczyć a 1 i r. 11. W ciągu geometrycznym a = 9, a 5 = 81. Obliczyć a 1 i q. 1. Znaleźć ciąg geometryczny o wyrazach, w którym suma wyrazów wynosi 7, a iloczyn wyrazów Zbadać, czy ciąg a n = n jest geometryczny. 14. Dla ciągu o wyrazie ogólnym a n = n + n obliczyć wartość wyrażenia a 1 + a a. 15. Wyznaczyć wszystkie wyrazy ciągu a n = n 5n + 9 mniejsze od Obliczyć sumę liczb naturalnych parzystych od 0 do Wyznaczyć a 1 i q w ciągu geometrycznym, w którym a = 4, a 5 = 64. Obliczyć granicę ciągu: 18. a n = 5n6 n n a n = n + 4n n. 0. a n = 8n 5 n +6 n. 1. a n = (1 + n ) 5n.. a n = ( n 1 n+ )n+1.. a n = 1 n ln(n + e n + π n ). 6
7. CIĄGI. WYKŁAD 5. Przykłady :
WYKŁAD 5 1 7. CIĄGI. CIĄGIEM NIESKOŃCZONYM nazywamy funkcję określoną na zbiorze liczb naturalnych, dodatnich, a wyrazami ciągu są wartości tej funkcji. CIĄGIEM SKOŃCZONYM nazywamy funkcję określoną na
Bardziej szczegółowoMatematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 3
Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 3 Ciągi liczbowe Definicja Dowolną funkcję a: N R nazywamy ciągiem liczbowym. Uwaga Ze względu na tradycję tym
Bardziej szczegółowoMatematyka. Justyna Winnicka. Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego.
Matematyka Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 2017/2018 kontakt, konsultacje, koordynator mail: justa kowalska@yahoo.com,
Bardziej szczegółowoa 1, a 2, a 3,..., a n,...
III. Ciągi liczbowe. 1. Definicja ciągu liczbowego. Definicja 1.1. Ciągiem liczbowym nazywamy funkcję a : N R odwzorowującą zbiór liczb naturalnych N w zbiór liczb rzeczywistych R i oznaczamy przez {a
Bardziej szczegółowoS n = a 1 1 qn,gdyq 1
Spis treści Powtórzenie wiadomości... 9 Zadania i zbiory... 10 Obliczenia... 18 Ciągi... 27 Własności funkcji... 31 Funkcje liniowe i kwadratowe... 39 Wielomiany i wyrażenia wymierne... 45 Funkcje wykładnicze
Bardziej szczegółowoWykład 8. Informatyka Stosowana. 26 listopada 2018 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 31
Wykład 8 Informatyka Stosowana 26 listopada 208 Magdalena Alama-Bućko Informatyka Stosowana Wykład 8 26..208, M.A-B / 3 Definicja Ciagiem liczbowym {a n }, n N nazywamy funkcję odwzorowujac a zbiór liczb
Bardziej szczegółowoMatematyka i Statystyka w Finansach. Rachunek Różniczkowy
Rachunek Różniczkowy Ciąg liczbowy Link Ciągiem liczbowym nieskończonym nazywamy każdą funkcję a która odwzorowuje zbiór liczb naturalnych N w zbiór liczb rzeczywistych R a : N R. Tradycyjnie wartość a(n)
Bardziej szczegółowoWYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki
WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt
Bardziej szczegółowoWykład 7. Informatyka Stosowana. 21 listopada Informatyka Stosowana Wykład 7 21 listopada / 27
Wykład 7 Informatyka Stosowana 21 listopada 2016 Informatyka Stosowana Wykład 7 21 listopada 2016 1 / 27 Relacje Informatyka Stosowana Wykład 7 21 listopada 2016 2 / 27 Definicja Iloczynem kartezjańskim
Bardziej szczegółowoCiągi. Granica ciągu i granica funkcji.
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Ciągi. Granica ciągu i granica funkcji.. Ciągi Ciąg jest to funkcja określona na zbiorze N lub jego podzbiorze. Z tego względu ciągi dziey na
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era
Bardziej szczegółowoCiągi liczbowe wykład 3
Ciągi liczbowe wykład 3 dr Mariusz Grządziel 3 kwietnia 203 Definicja (ciągu liczbowego). Ciagiem liczbowym nazywamy funkcję odwzorowuja- ca zbiór liczb naturalnych w zbiór liczb rzeczywistych. Wartość
Bardziej szczegółowoFinanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014)
dr inż. Ryszard Rębowski DEFINICJA CIĄGU LICZBOWEGO Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z grudnia 04) Definicja ciągu liczbowego Spośród
Bardziej szczegółowoCzym jest ciąg? a 1, a 2, lub. (a n ), n = 1,2,
Ciągi liczbowe Czym jest ciąg? Ciąg liczbowy, to funkcja o argumentach naturalnych, której wartościami są liczby rzeczywiste. Wartość ciągu dla liczby naturalnej n oznaczamy symbolem a n i nazywamy n-tym
Bardziej szczegółowoZnaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:
Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie
Bardziej szczegółowo4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.
Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,
Bardziej szczegółowoZajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
Bardziej szczegółowoKurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 9 Zadania ciągi
1 TEST WSTĘPNY 1. (1p) Dany jest ciąg (a n) określony wzorem a n = (-1) n dla n 1. Wówczas wyraz a3 tego ciągu jest równy: A. B. C. - D. - 2. (2p) Ile wyrazów ujemnych ma ciąg określony wzorem a n = n
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
Bardziej szczegółowoCiagi liczbowe wykład 4
Ciagi liczbowe wykład 4 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy, r. akad. 2016/2017 Definicja (ciagu liczbowego) Ciagiem liczbowym nazywamy funkcję
Bardziej szczegółowoTematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych
Tematyka do egzaminu ustnego z matematyki 3 semestr LO dla dorosłych I. Sumy algebraiczne 1. Dodawanie i odejmowanie sum algebraicznych 2. Mnożenie sum algebraicznych 3. Wzory skróconego mnożenia - zastosowanie
Bardziej szczegółowoCiągi liczbowe. - oznacza, że a(1) = a 1, a(2) = a 2, a(n) = a n a 1, a 2, a 3, a 4,... a n a(n) a n
Ciągi liczbowe Spis treści Ciąg liczbowy Ciąg liczbowy skończony Ciąg liczbowy nieskończony Przykłady i sposoby określania ciągu, suma n początkowych wyrazów ciągu Suma n początkowych, kolejnych wyrazów
Bardziej szczegółowoZADANIE 1 Ciag (a n ), gdzie n 1, jest rosnacym ciagiem geometrycznym. Wyznacz wartość największa 2xa 6 a 2 a 4 a 3 x 2 a 3 a 6. ZADANIE 2 ZADANIE 3
ZADANIE Ciag (a n ), gdzie n, jest rosnacym ciagiem geometrycznym. Wyznacz wartość największa funkcji f (x) = 2xa 6 a 2 a 4 a 3 x 2 a 3 a 6. ZADANIE 2 Długości boków trójkata tworza ciag geometryczny.
Bardziej szczegółowoAnaliza matematyczna. 1. Ciągi
Analiza matematyczna 1. Ciągi Definicja 1.1 Funkcję a: N R odwzorowującą zbiór liczb naturalnych w zbiór liczb rzeczywistych nazywamy ciągiem liczbowym. Wartość tego odwzorowania w punkcie n nazywamy n
Bardziej szczegółowoWSTĘP DO ANALIZY I ALGEBRY, MAT1460
WSTĘP DO ANALIZY I ALGEBRY, MAT460 Listy zadań Literatura polecana. M.Gewert, Z.Skoczylas Wstęp do analizy i algebry. Teoria,przykłady,zadania.,Oficyna Wydawnicza GiS, Wrocław 04.. D.Zakrzewska, M.Zakrzewski,
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1.
Czwartek 28 marca 2013 - zaczynamy od omówienia zadań z kolokwium nr 1. 122. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 123. Dla ilu trójek liczb rzeczywistych dodatnich a,
Bardziej szczegółowoCIĄGI wiadomości podstawowe
1 CIĄGI wiadomości podstawowe Jak głosi definicja ciąg liczbowy to funkcja, której dziedziną są liczby naturalne dodatnie (w zadaniach oznacza się to najczęściej n 1) a wartościami tej funkcji są wszystkie
Bardziej szczegółowoDany jest ciąg określony wzorem dla. Oblicz i. Piąty wyraz ciągu określonego wzorem, gdzie jest równy A) 1 B) 5 C) 10 D) 0,5.
Zadanie 1 Dany jest ciąg określony wzorem dla. Oblicz i. Zadanie 2 Piąty wyraz ciągu określonego wzorem, gdzie jest równy A) 1 B) 5 C) 10 D) 0,5. Zadanie 3 Dany jest ciąg o wzorze ogólnym, gdzie. Piąty
Bardziej szczegółowoPrzykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny:
Podstawowe definicje Definicja ciągu Ciągiem nazywamy funkcję na zbiorze liczb naturalnych, tzn. przyporządkowanie każdej liczbie naturalnej jakiejś liczby rzeczywistej. (Mówimy wtedy o ciągu o wyrazach
Bardziej szczegółowoLogarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie
Bardziej szczegółowoBlok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n
V. Napisz 4 początkowe wyrazy ciągu: Blok V: Ciągi. Różniczkowanie i całkowanie a) a n = n b) a n = n + 3 n! c) a n = n! n(n + ) V. Oblicz (lub zapisz) c, c 3, c k, c n k dla: a) c n = 3 n b) c n = 3n
Bardziej szczegółowoCiągi. Kurs matematyki w Oratorium (http://www.salezjanie.rumia.pl/math)
Ciągi Kurs matematyki w Oratorium (http://www.salezjanie.rumia.pl/math) Spis treści 1 Ciągi liczbowe 1 1.1 Podstawowe własności ciągów................... 2 1.2 Granica ciągu............................
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
Bardziej szczegółowoWZÓR OGÓLNY CIĄGU GEOMETRYCZNEGO
WZÓR OGÓLNY CIĄGU GEOMETRYCZNEGO, to ciąg, którego kolejne wyrazy powstają poprzez mnożenie poprzednich wyrazów przez liczbę, którą nazywamy ilorazem ciągu geometrycznego i oznaczamy: q Do opisu ciągu
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, zima 2014/15
Ćwiczenia 0.10.014 Powtórka przed sprawdzianem nr 1. Wzory skróconego mnożenia dwumian Newtona procenty. Postęp arytmetyczny i geometryczny. Ćwiczenia 138.10.014 Sprawdzian nr 1: 1.10.014 godz. 8:15-8:40
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, zima 2013/14. Czwartek 21 listopada zaczynamy od omówienia zadań z kolokwium nr 2.
Czwartek 21 listopada 2013 - zaczynamy od omówienia zadań z kolokwium nr 2. Uprościć wyrażenia 129. 4 2+log 27 130. log 3 2 log 59 131. log 6 2+log 36 9 log 132. m (mn) log n (mn) dla liczb naturalnych
Bardziej szczegółowoRozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1.
Rozdział 5 Szeregi liczbowe 5. Szeregi liczbowe Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy ( ). Ciąg (s n ) określony wzorem s n = n a j, n N, nazywamy ciągiem sum częściowych ciągu
Bardziej szczegółowoFunkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, zima 2012/13
Poniedziałek 12 listopada 2012 - zaczynamy od omówienia zadań z kolokwium nr 1. Wtorek 13 listopada 2012 - odbywają się zajęcia czwartkowe. 79. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log
Bardziej szczegółowoBAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA
BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA 1. Podaj zbiór wartości i monotoniczność funkcji: b) c) j) k) l) wskazówka: - oblicz wierzchołek (bez miejsc zerowych!) i naszkicuj wykres (zwróć uwagę na
Bardziej szczegółowoMatematyka podstawowa V. Ciągi
Matematyka podstawowa V Ciągi Teoria ciąg arytmetyczny - pierwszy wyraz ciągu - różnica Kolejny wyraz ciągu arytmetycznego powstaje przez dodanie do poprzedniego różnicy. = + Np. =2,=3 :2,5,8,11 = 4,=2
Bardziej szczegółowoMatematyka ZLic - 2. Granica ciągu, granica funkcji. Ciągłość funkcji, własności funkcji ciągłych.
Matematyka ZLic -. Granica ciągu, granica funkcji. Ciągłość funkcji, własności funkcji ciągłych. Granica ciągu Ciąg a n ma granicę właściwą g R i piszemy jeśli lim n a n g lub a n g gdy n NN n N a n g
Bardziej szczegółowoFunkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
Bardziej szczegółowoZbiory ograniczone i kresy zbiorów
Zbiory ograniczone i kresy zbiorów Def.. Liczb m nazywamy ograniczeniem dolnym a liczb M ograniczeniem górnym zbioru X R gdy (i) x m; (ii) x M. Mówimy,»e zbiór X jest ograniczony z doªu (odp. z góry) gdy
Bardziej szczegółowoFunkcje rzeczywiste jednej. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Funkcje rzeczywiste jednej zmiennej rzeczywistej Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Definicje Funkcją (odwzorowaniem) f, odwzorowującą zbiór D w zbiór P nazywamy
Bardziej szczegółowoKrzysztof Rykaczewski. Szeregi
Krzysztof Rykaczewski Spis treści 1 Definicja szeregu 2 Zbieżność szeregu 3 Kryteria zbieżności szeregów 4 Iloczyn Cauchy ego szeregów 5 Bibliografia 1 / 13 Definicja szeregu Niech dany będzie ciąg (a
Bardziej szczegółowoZakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/
Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt
Bardziej szczegółowoWYRAŻENIA ALGEBRAICZNE
WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.
Bardziej szczegółowo(x 1), 3 log 8. b) Oblicz, ile boków ma wielokat wypukły, w którym liczba przekatnych jest pięć razy większa od liczby boków.
ZADANIE 1 Długości boków trójkata tworza trzy kolejne wyrazy ciagu arytmetycznego o różnicy 1. Oblicz długości boków tego trójkata, jeśli jego pole wynosi 0, 75 15. ZADANIE 2 Pierwszy, trzeci i jedenasty
Bardziej szczegółowoSkrypt 16. Ciągi: Opracowanie L6
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 16 Ciągi: 1. Ciągi liczbowe.
Bardziej szczegółowoUczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów
Wymagania edukacyjne PRZEDMIOT: Matematyka KLASA: III Th ZAKRES: zakres podstawowy Poziom wymagań Lp. Dział programu Konieczny-K Podstawowy-P Rozszerzający-R Dopełniający-D Uczeń: 1. Ciągi liczbowe. -zna
Bardziej szczegółowoMatematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d
C. Bagiński Materiały dydaktyczne 1 Matematyka Dyskretna /008 rozwiązania 1. W każdym z następujących przypadków podać jawny wzór na s n i udowodnić indukcyjnie jego poprawność: (a) s 0 3, s 1 6, oraz
Bardziej szczegółowoGranice ciągów liczbowych
Granice ciągów liczbowych Obliczyć z definicji granicę ciągu o wyrazie, gdzie jest pewną stałą liczbą. Definicja: granicą ciągu jest liczba, jeśli Sprawdzamy, czy i kiedy granica rozpatrywanego ciągu wynosi
Bardziej szczegółowod) a n = e) a n = n 3 - n 2-16n + 16 f) a n = n 3-2n 2-50n +100
Ciągi - zadania Zad. 1 Oblicz sześć początkowych wyrazów ciągu (a n ) określonego wzorem a) a n = 3n + 2 b) a n = (n - 2)n c) a n = n 2-4 d) a n =n e) a n = f) a n = g) a n =(-1) n 2 n+3 h) a n = n - 2
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt
Bardziej szczegółowoCiąg monotoniczny. Autorzy: Katarzyna Korbel
Ciąg monotoniczny Autorzy: Katarzyna Korbel 07 Ciąg monotoniczny Autor: Katarzyna Korbel Ciągi, tak jak funkcje, mogą mieć różne własności, których znajomość może przyczynić się do dalszej analizy ich
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt
Bardziej szczegółowo6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.).
6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.). 0 grudnia 008 r. 88. Obliczyć podając wynik w postaci ułamka zwykłego a) 0,(4)+ 3 3,374(9) b) (0,(9)+1,(09)) 1,() c) (0,(037))
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, lato 2014/15
Ćwiczenia 5/6, 10, 17.03.2015 (obie grupy) 33. Połączyć podane warunki w grupy warunków równoważnych dla dowolnej liczby naturalnej n. a) liczba n jest nieparzysta b) liczba n jest względnie pierwsza z
Bardziej szczegółowoKRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom podstawowy
KRYTERIA OCENIANIA ODPOWIEDZI Matematyka Poziom podstawowy Marzec 09 Zadania zamknięte Za każdą poprawną odpowiedź zdający otrzymuje punkt. Poprawna odpowiedź. D 8 9 8 7. D. C 9 8 9 8 8 9 8 9 8 ( 89 )
Bardziej szczegółowoE-learning - matematyka - poziom rozszerzony. Ciągi liczbowe. Ciąg arytmetyczny i ciąg geometryczny. Materiały merytoryczne do kursu
E-learning - matematyka - poziom rozszerzony Ciągi liczbowe Ciąg arytmetyczny i ciąg geometryczny Materiały merytoryczne do kursu Ciągi arytmetyczne i ciągi geometryczne stanowią istotne klasy ciągów zarówno
Bardziej szczegółowo1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
Bardziej szczegółowo(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008
Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5
Bardziej szczegółowoZbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R.
Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R. Liczby naturalne - to liczby całkowite, dodatnie: 1,2,3,4,5,6,... Czasami
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
Bardziej szczegółowoRozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone
Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy
Bardziej szczegółowo1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.
10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych
Bardziej szczegółowo1. Funkcje monotoniczne, wahanie funkcji.
1. Funkcje monotoniczne, wahanie funkcji. Zbiór X będziemy nazywali uporządkowanym, jeśli określona jest relacja zawarta w produkcie kartezjańskim X X, która jest spójna, antysymetryczna i przechodnia.
Bardziej szczegółowoSuma dziewięciu poczatkowych wyrazów ciagu arytmetycznego wynosi 18, a suma siedmiu poczatkowych
www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI CIAGI ARYTMETYCZNE ZADANIE 1 Suma drugiego, czwartego i szóstego wyrazu ciagu arytmetycznego jest równa 42, zaś suma kwadratów wyrazów drugiego
Bardziej szczegółowoTechnikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Bardziej szczegółowoCiąg arytmetyczny i jego własności
Ciąg arytmetyczny i jego własności Ćw.1. Ciąg (a ) określony jest wzorem an =3n-2. a) Oblicz wyrazy: a1; a2, a3, a5, a6. b) Oblicz różnice: a2-a1, a3-a2, a6-a5, a20-al9. c) Wyznacz różnicę an+l - an. d)
Bardziej szczegółowoLista zagadnień omawianych na wykładzie w dn r. :
Lista zagadnień omawianych na wykładzie w dn. 29.0.208r. : Granica funkcji Definicja sąsiedztwa punktu. Sąsiedztwo 0 R o promieniu r > 0: S 0, r = 0 r, 0 + r\{ 0 } 2. Sąsiedztwo lewostronne 0 R o promieniu
Bardziej szczegółowoDydaktyka matematyki, IV etap edukacyjny (ćwiczenia) Ćwiczenia nr 7 Semestr zimowy 2018/2019
Dydaktyka matematyki, IV etap edukacyjny (ćwiczenia) Ćwiczenia nr 7 Semestr zimowy 2018/2019 Zadanie z wykładu i ćwiczeń Dany jest ciąg rekurencyjny: x 1 = 1, x n+1 = x n 2 + 1 x n dla n 1. Ograniczoność.
Bardziej szczegółowoWersja testu A 25 września 2011
1. Czy istnieje liczba całkowita dodatnia o sumie cyfr równej 399, podzielna przez a) 3 ; b) 5 ; c) 6 ; d) 9? 2. Czy równość (a+b) 5 = a 3 +3a 2 b+3ab 2 +b 3 jest prawdziwa dla a) a = 8/7, b = 1/7 ; b)
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, zima 2013/14
Wzory skróconego mnożenia, procenty, postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie - rozwiązywanie równań i nierówności. Szacowanie wyrażeń. W dniu 23/24 października
Bardziej szczegółowoMATEMATYKA I SEMESTR WSPIZ (PwZ) 1. Ciągi liczbowe
MATEMATYKA I SEMESTR WSPIZ (PwZ). Ciągi liczbowe.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony) liczbom naturalnym.
Bardziej szczegółowoMatematyka 2 wymagania edukacyjne
Matematyka wymagania edukacyjne Zakres podstawowy POZIOMY WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x
WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania
Bardziej szczegółowoEGZAMIN PISEMNY Z ANALIZY I R. R n
EGZAMIN PISEMNY Z ANALIZY I R Instrukcja obsługi. Za każde zadanie można dostać 4 punkty. Rozwiązanie każdego zadania należy napisać na osobnej kartce starannie i czytelnie. W nagłówku rozwiązania należy
Bardziej szczegółowoPróbny egzamin maturalny z matematyki Poziom rozszerzony
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2016 POZIOM ROZSZERZONY 1. Rozwiązania zadań i odpowiedzi wpisuj
Bardziej szczegółowoModel odpowiedzi i schemat oceniania do arkusza II
Model odpowiedzi i schemat oceniania do arkusza II Zadanie 12 (3 pkt) Z warunków zadania : 2 AM = MB > > n Wprowadzenie oznaczeń, naprzykład: A = (x, y) i obliczenie współrzędnych wektorów n Obliczenie
Bardziej szczegółowoFunkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa.
Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Monotoniczność i różnowartościowość. Definicja 1 Niech f : X R, X R. Funkcję f nazywamy rosnącą w
Bardziej szczegółowoAnaliza Matematyczna Ćwiczenia
Analiza Matematyczna Ćwiczenia Spis treści Ciągi i ich własności Granica ciągu Granica funkcji 4 4 Ciągłość funkcji 6 Szeregi 8 6 Pochodna funkcji 7 Zastosowania pochodnej funkcji 8 Badanie przebiegu zmienności
Bardziej szczegółowoZapisujemy to symbolicznie jako równość:. Mówimy też, że ciąg posiada granicę niewłaściwą (równą nieskończoności).
Ciągi rozbieżne do Def. Mówimy, że ciąg jest rozbieżny do, jeśli Zapisujemy to symbolicznie jako równość:. Mówimy też, że ciąg posiada granicę niewłaściwą (równą nieskończoności). Można obrazowo powiedzieć,
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, lato 2012/13. W dniu 21 lutego 2013 r. omawiamy test kwalifikacyjny.
W dniu 21 lutego 2013 r. omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie. 1. Dane są liczby naturalne m, n. Wówczas
Bardziej szczegółowoMatematyka. Justyna Winnicka. rok akademicki 2016/2017. Szkoªa Gªówna Handlowa
Matematyka Justyna Winnicka Szkoªa Gªówna Handlowa rok akademicki 2016/2017 kontakt, konsultacje, koordynator mail: justa_kowalska@yahoo.com, jkowal4@sgh.waw.pl, justyna.winnicka@sgh.waw.pl konsultacje:
Bardziej szczegółowoPochodne funkcji wraz z zastosowaniami - teoria
Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie
Bardziej szczegółowoOLIMPIADA MATEMATYCZNA
OLIMPIADA MATEMATYCZNA Na stronie internetowej wwwomgedupl Olimpiady Matematycznej Gimnazjalistów (OMG) ukazały się ciekawe broszury zawierające interesujące zadania wraz z pomysłowymi rozwiązaniami z
Bardziej szczegółowoRACHUNEK RÓŻNICZKOWY- sprawdziany i kartkówki. klasa II 2018/19. Adam Stachura
RACHUNEK RÓŻNICZKOWY- sprawdziany i kartkówki klasa II 08/9 Adam Stachura Sprawdzian. Granice funkcji- przykładowe zadania ) 8 ZADANIE. Obliczyć granicę. 4 +6 4 Rozwiazanie. Dziedzina funkcji, której granice
Bardziej szczegółowoMATURA 2012. Przygotowanie do matury z matematyki
MATURA 01 Przygotowanie do matury z matematyki Część V: Ciągi liczbowe ROZWIĄZANIA Powtórka jest organizowana przez redaktorów portalu MatmaNa6.pl we współpracy z dziennikarzami Gazety Lubuskiej. Witaj,
Bardziej szczegółowoSzeregi o wyrazach dodatnich. Kryteria zbieżności d'alemberta i Cauchy'ego
Szeregi o wyrazach dodatnich. Kryteria zbieżności d'alemberta i Cauchy'ego Przy założeniu, że wszystkie składniki szeregu jest rosnący. Wynika stąd natychmiast stwierdzenie: są dodatnie, ciąg jego sum
Bardziej szczegółowoFunkcje: wielomianowa, wykładnicza, logarytmiczna wykład 2
Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 2 dr Mariusz Grządziel semestr zimowy 2013 Potęgowanie Dla dowolnej liczby dodatniej a oraz liczy wymiernej w = p/q definiujemy: a w (a 1/q ) p.
Bardziej szczegółowoPodstawy analizy matematycznej II
Podstawy analizy matematycznej II Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań
Bardziej szczegółowoZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A03 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Dany jest ciąg arytmetyczny (a
Bardziej szczegółowoMATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza
MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe
Bardziej szczegółowo