Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych"

Transkrypt

1 Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Marcin Michalski Wprowadzenie Jedną z intuicji na temat liczb rzeczywistych jest myślenie o nich jako liczbach, które można dobrze (z dowolną dokładnością) przybliżyć np. pewnym ułamkiem w rozwinięciu dziesiętnym. Chociażby: π = możemy przybliżać kolejno przez 3, 3.1, 3.14, 3.141, , itd. Intuicja, aby skojarzyć z daną liczbą rzeczywistą ciąg liczb wymiernych do niej zbieżny generalnie jest słuszna, trzeba nią jednak posłużyć się rozważnie. Istnieje wiele ciągów liczb wymiernych zbieżnych do danej liczby rzeczywistej (kłopot z jednacznością) oraz nie jest trywialną sprawą określić liczbę rzeczywistą przez ciąg liczb wymiernych do niej zbieżny nie mając jednak jeszcze do dyspozycji samych liczb rzeczywistych (ciąg liczb wymiernych zbieżny do... No właśnie, czego?). W tej sprawie przychodzą nam w sukurs... Ciągi Cauchy ego i pewna relacja Z ciągami zbieżnymi silnie związane są ciągi Cauchy ego. Dla skupienie uwagi przywołajmy ich definicję. Definicja.1 Ciąg (x n ) n N nazywamy ciągiem Cauchy ego, jeśli: ( ϵ > 0)( N N)( m, n > N)( x n x m < ϵ) 1

2 Definicję tę jednak trzeba odrobinę stuningować, aby odpowiadała naszym potrzebom, tj. wyrugować z niej liczby rzeczywiste. Mamy więc następującą: Definicja. Ciąg (x n ) n N nazywamy ciągiem Cauchy ego, jeśli: ( ω > 0, ω Q)( N N)( m, n > N)( x n x m < ω) Ba! Możemy nawet zamienić ( ω > 0, ω Q)... na ( k N...) i zażądać x n x m < 1 k+1. Fakt.1 Powyższe definicje są równoważne. Dowód. ćw. Bycie ciągiem Cauchy ego ujmuje właśnie tę cechę, którą chcemy wyrazić, tzn. dla dostatecznie odległych wyrazów ciąg ten kumuluje się w pewnym małym otoczeniu. Dla ciągów zbieżnych jest to faktycznie otoczenie granicy ciągu, jednak żyjąc w liczbach wymiernych takiej granicy dla ciągu Cauchy ego może nie być. Chcemy zatem uzupełnić zbiór liczb wymiernych o te brakujące granice. W tym celu oznaczmy przez C zbiór ciągów Cauchy ego o wyrazach wymiernych oraz zdefiniujmy relację nad C: (x n ) (y n ) lim n (x n y n ) = 0 Słownie: dwa ciągi Cauchy ego liczb wymiernych są w relacji, jeśli od pewnego momentu są blisko siebie. Jak istotna jest to dla nas relacja, pokazuje następujące twierdzenie. Twierdzenie.1 jest relacją równoważności. Dowód. Trzeba sprawdzić, czy relacja ta jest zwrotna, symetryczna i przechodnia. Niech (p n ), (q n ) oraz (r n ) będą ciągami z C. Zwrotność: Oczywista, ponieważ lim n (p n p n ) = 0. Symetryczność:

3 Oczywista z własności modułu liczby wymiernej ( p n q n = q n p n ). Przechodniość: Trochę mniej oczywista. Niech (p n ) (q n ) oraz (q n ) (r n ). Ustalmy dowolne k N. Wtedy istnieje N 1 N, że dla każdego n > N 1 p n q n < 1 oraz (k+1) istnieje N N, że dla każdego n > N q n r n < 1. Wtedy też dla (k+1) n > max{n 1, N } mamy: p n r n = p n q n +q n r n p n q n + q n r n < 1 (k + 1) + 1 (k + 1) = 1 k + 1, co z dowolności k oznacza, że lim n (p n r n ) = 0, a zatem (p n ) (r n ). Jest zatem relacją równoważności i mamy rozbicie C na rozłączne klasy abstrakcji. Jeśli dwa ciągi są w danej klasie, to znaczy, że od odpowiednio dalekiego miejsca różnią się dowolnie mało. Wobec tego... (uwaga, uwaga!) Definicja.3 Zbiorem liczb rzeczywistych nazywamy C/, tzn. liczbami rzeczywistymi są klasy abstrakcji ciągów Cauchy ego o wyrazach wymiernych. 3 Liczby rzeczywiste Możemy zatem się już cieszyć liczbami rzeczywistymi... Czy aby na pewno? Na pierwszy rzut oka nie przypomina to, wydawać by się mogło, starych i dobrze znanych liczb rzeczywistych. Pokażemy jednak, że rzeczywiście klasy abstrakcji ciągów Cauchy ego liczb wymiernych to liczby rzeczywiste. A uczynimy to przez sprawdzenie, że spełniają wszystkie wymagane aksjomaty. Na początek możemy zlokalizować, jak w tym zbiorze zlokalizować liczby wymierne. Definicja 3.1 Liczbą wymierną w C/ nazywamy [(q, q,...)] dla q Q. Następnie zobaczmy jak wygląda dodawanie i mnożenie w C/. Definicja 3. Niech x, y C/ oraz x = [(p n )] i y = [(q n )] dla pewnych ciągów (p n ), (q n ) C. Wtedy: 3

4 1. x + y = [(p n + q n )]. x y = [(p n q n )] Definiując działania angażujące klasy abstrakcji musimy sprawdzić, czy są one dobrze określone, tzn. czy przypadkiem wybór innych reprezentantów z klasy nie spowoduje otrzymania innego wyniku dodawania lub mnożenia. Dowiedziemy następujący... Fakt 3.1 Dodawanie i mnożenie w C/ są dobrze określone. Dowód. Niech (p n) (p n ) i (q n) (q n ). Pokażemy najpierw, że [(p n +q n )] = [p n + q n]. Mamy: (p n + q n ) (p n + q n) = (p n p n) + (q n q n) n 0, Z równoważności odpowiednio ciągów (p n ) i (p n) oraz (q n ) i (q n). Dla mnożenia wygląda to następująco: p n q n p nq n = p n (q n q n) + q n(p n p n) n 0, Mając podstawowe działania łatwo pokazać, korzystając głównie z arytmetyki granic, że faktycznie C/ spełnia pozostałe aksjomaty tych działań dotyczące, jak przemienność, łączność, rozdzielność, i istnienie 0. Nieco więcej uwagi wymaga... Twierdzenie 3.1 Dla każdej liczby rzeczywistej x 0 istnieje liczba rzeczywista y taka, że xy = 1. Dowód. x = [(p n )] dla pewnego (p n ) / [(0, 0,...)]. Zauważmy, że... Lemat 3.1 Jeśli C (p n ) / [(0, 0,...)], to (p n ) ma wyrazy od pewnego miejsca oddalone od 0 o pewną dodatnią stałą. Dowód. (p n ) / [(0, 0,...)] oznacza, że (p n ) nie jest zbieżny do 0. Stąd istnieje k N, że dla każdego n N istnieje n 0 > n, że: p n0 1 k

5 (p n ) jest ciągiem Cauchy ego, zatem istnieje N N takie, że dla m, n > N: Dla N istnieje n 0 > N, że: Ponadto: p n p m < 1 (k + 1). p n0 1 k + 1. p n0 p n0 p n + p n i ponieważ n 0 > N, to dla n > N mamy: p n p n0 p n0 p n 1 k (k + 1) = 1 (k + 1). Wobec powyższego lematu istnieje M Q i N N takie, że dla n > N 1 1 p n > M > 0. Weźmy zatem ciąg (q n ) = (1, 1,..., 1, }{{} p N+1, p N+,...) i połóżmy N razy y = [(q n )]. Wtedy xy jest klasą abstrakcji ciągu od pewnego momentu stale równego 1, a więc xy = 1. Dowód jest prawie skończony, trzeba jeszcze tylko udowodnić legalność [(q n )], tzn., że (q n ) jest ciągiem Cauchy ego o wyrazach wymiernych. Lemat 3. Dla każdego ciągu (p n ) C nierównoważnego ciągowi (0, 0,...) ciąg (1/p n ) również należy do C. Dowód. ćw. Możemy teraz powiedzieć co nieco o porządku w C/. Definicja 3.3 Niech x = [(p n )] dla pewnego (p n ) C. Mówimy, że x > 0, jeśli x 0 i (p n ) ma od pewnego miejsca wyrazy dodatnie. Mówimy, że x > y, jeśli x y > 0. Naturalnie i tym razem powinniśmy sprawdzić, że powyższe definicje są dobrze określone. Argumentacja przebiega podobnie do tego, co działo się w Lemacie 3.1. Należałoby też sprawdzić, że > jest rzeczywiście (ostrym) porządkiem. Zostawimy to jako ćwiczenia. 5

6 Twierdzenie 3. Dla liczb rzeczywistych x, y, z, jeśli x > y, to x+z > y+z. Dowód. Niech x = [(p n )], y = [(q n )] oraz z = [(r n )]. x y > 0, zatem ciąg (p n q n ) ma od pewnego miejsca wyrazy większe od 0. Tym samym taką własność ma ciąg ((p n + r n ) (q n + r n )) i nadal nie jest to ciąg równoważny ciągowi stale równemu 0. Stąd x + z > y + z. Nieomal identycznie dowodzi się, że... Twierdzenie 3.3 Dla liczb rzeczywistych x, y i z, jeśli x > y i z > 0, to xz > yz. Zachodzi również... Twierdzenie 3.4 (Prawo trychotomii) Dla wszystkich liczb rzeczywistych x, y zachodzi dokładnie jedno z: x > y, x = y, y > x. Dowód. Załóżmy, że x y. Niech x = [(p n )] i y = [(q n )]. Wtedy (p n q n ) jest ciągiem Cauchy ego nierównoważnym ciągowi stale równemu 0. Na mocy Lematu 3.1 ciąg ten jest oddzielony od 0 dodatnią stałą, a ponieważ jest Cauchy ego, to nie zmienia znaku. Wobec tego x y > 0 lub x y < 0. Pokażemy także, że zbiór Q (dobrze rozumiany) jest gęsty w C/, tzn. Twierdzenie 3.5 Niech x i y będą liczbami rzeczywistymi. Jeśli x > y, to istnieje q Q, że x > q > y. Dowód. Niech x = [(p n )] i y = [(q n )]. x > y, więc x y > 0, a stąd istnieje M > 0 (wymierne) i N 1 N, że p n q n > M dla n > N 1 (Lemat 3.1). Ponadto, ponieważ q n jest Cauchy ego, to dla M istnieje N, że dla n, m > N mamy q n q m < M. Ustalmy N > N 1, N. Wtedy dla n > N 1, N : p n > M + q N, ponieważ: p n q N = p n q n + q n q N > M, co daje p n > M + q N. Ponadto M + q N > q n, bo M > q n q N. Zatem ostatecznie: p n > M + q N > q n 6

7 i M + q N x, y. To daje nam tezę twierdzenia. Przyda nam się również... Twierdzenie 3.6 (Zasada Archimedesa dla C/ ) Niech 0 < x < y będą liczbami rzeczywistymi. Wtedy istnieje N N, że Nx > y. Dowód. Z gęstości Q w C/ istnieje q Q, że 0 < q < x. To oznacza, że również q < y. Niech y = [(p n )]. Z definicji istnieje n 0 N, że dla n > n 0 p n q > 0. Ponadto... Lemat 3.3 Ciągi Cauchy ego są ograniczone. Dowód. Niech (x n ) będzie ciągiem Cauchy ego. Ustalmy ϵ = 1. Istnieje N N, że dla n, m > N x n x m < 1. Niech M = max{ x 0, x 1,..., x N+1 }. Wtedy jeśli n < N + 1, to x n M, a jeśli n N + 1, to: x n x n x N+1 x N+1 M + 1. Zatem (p n ) jest ograniczony, powiedzmy że przez M. Wtedy z zasady Archimedesa dla liczb wymiernych istnieje N N, że Nq > M. Dla wszystkich n > n 0 mamy Nq > M p n, więc Nq > y, a zatem również Nx > y. Będąc wyekwipowani w porządek możemy zdefiniować dla liczb rzeczywistych moduł tak samo, jak dla liczb wymiernych, tzn. Definicja 3.4 Niech x będzie liczbą rzeczywistą. Wtedy x = x, gdy x 0 i x = x, gdy x < 0. x nazywamy modułem liczby x. Wraz z modułem dostajemy wszystkiego jego normalne własności, w tym np. nierówność trójkąta (proste ćwiczenie). Za dobrze określonym modułem liczby rzeczywsitej przychodzi również dobrze określona zbieżność ciągów liczb rzeczywistych oraz własność Cauchy ego. W ten sposób zbliżamy się do ostatniej własności zbioru liczb rzeczywistych, którą chcemy udowodnić. Mianowicie... Twierdzenie 3.7 C/ spełnia aksjomat ciągłości Dedekinda, tzn. dla każdego ograniczonego z góry niepustego zbioru A C/ mamy sup A C/. 7

8 Dowód. Określmy dwa ciągi liczb wymiernych: (l n ) oraz (u n ). u 0 = p Q, p > M, l 0 = q dla pewnego q < a dla dowolnego a A. Dla n > 0 niech: u n+1 = u n + l n, jeśli u n+l n jest ograniczeniem górnym A, w przeciwnym razie u n+1 = u n ; l n+1 = u n + l n, jeśli u n+l n nie jest ograniczeniem górnym A, w przeciwnym razie l n+1 = l n. Pokażemy, że te ciągi są ciągami Cauchy ego. Ujmiemy to ogólnie w... Lemat 3.4 Jeśli ciąg (x n ) jest niemalejący i ograniczony z góry, to jest ciągiem Cauchy ego. Dowód. Niech M będzie jego ograniczeniem z góry i przypuśćmy, że nie jest Cauchy ego. Wtedy istnieje ϵ > 0, że dla każdego n N istnieją n 0, m 0 > n, że: x n0 x m0 > ϵ. Z zasady Archimedesa istnieje N N, że Nϵ > M x 0. Dla n = 0 istnieją n 0, m 0 > 0, n 0 > m 0, że x n0 x m0 > ϵ, skąd x n0 x 0 > ϵ Dla n = n 0 istnieją n 1, m 1 > n 0, n 1 > m 1, że x n1 x m1 > ϵ, skąd x n1 x 0 > ϵ.. Iterując tak N-razy otrzymujemy x nn x 0 > Nϵ > M x 0, czyli x nn > M. Sprzeczność dowodzi tezy. Ciąg (l n ) jest ograniczony z góry i niemalejący, więc z marszu jest on Cauchy ego. (u n ) jest nierosnący i ograniczony z dołu, więc ( u n ) jest niemalejący i ograniczony z góry, więc jest Cauchy ego, a stąd również (u n ) jest Cauchy ego. Ponadto ciągi te są równoważne. Mamy: lub u n l n = u n 1 + l n 1 l n 1 = 1 (u n 1 l n 1 ) u n l n = u n 1 u n 1 + l n 1 = 1 (u n 1 l n 1 ), co w obu przypadkach daje to samo. Proste rozumowanie indukcyjne pokazuje, że: u n l n = n (u 0 l 0 ), 8

9 co oczywiście jest zbieżne do 0. Udowodnimy, że u = [(u n )] = sup A. Przypuśćmy najpierw, że istnieje a A, że a > u. Z gęstości Q wynika, że istnieje w Q, że a > w > u. To oznacza, że istnieje N N, że dla n > N w > u n i także a > u n, co jest sprzeczne z określeniem (u n ). Stąd u jest ograniczeniem górnym A. To może u nie jest najmniejszym ograniczeniem? Tu posłużymy się z kolei ciągiem (l n ). Przypuśćmy, że istnieje M- ograniczenie górne A takie, że M < u. Wtedy z kolei istnieje liczba wymierna w taka, że M < w < u. Wtedy też dla prawie wszystkich n N w < l n i także M < l n, co jest sprzeczne z określeniem (l n ). Stąd ostatecznie u jest najmniejszym ograniczeniem górnym zbioru A i zbiór C/ spełnia aksjomat ciągłości Dedekinda. To w zasadzie kończy konstrukcję liczb rzeczywistych. Teraz z czystym sumieniem możemy napisać, że R = C/ i wiemy, że liczby rzeczywiste rzeczywiście istnieją, a nie funkcjonują li tylko jako aksjomatyczna struktura. 9

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Marcin Michalski, 015-1 Wprowadzenie Jedną z intuicji na temat liczb rzeczywistych jest myślenie o nich jako liczbach, które

Bardziej szczegółowo

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy

Bardziej szczegółowo

Analiza matematyczna. 1. Ciągi

Analiza matematyczna. 1. Ciągi Analiza matematyczna 1. Ciągi Definicja 1.1 Funkcję a: N R odwzorowującą zbiór liczb naturalnych w zbiór liczb rzeczywistych nazywamy ciągiem liczbowym. Wartość tego odwzorowania w punkcie n nazywamy n

Bardziej szczegółowo

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny:

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny: Podstawowe definicje Definicja ciągu Ciągiem nazywamy funkcję na zbiorze liczb naturalnych, tzn. przyporządkowanie każdej liczbie naturalnej jakiejś liczby rzeczywistej. (Mówimy wtedy o ciągu o wyrazach

Bardziej szczegółowo

Dlaczego nie wystarczają liczby wymierne

Dlaczego nie wystarczają liczby wymierne Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości

Bardziej szczegółowo

020 Liczby rzeczywiste

020 Liczby rzeczywiste 020 Liczby rzeczywiste N = {1,2,3,...} Z = { 0,1, 1,2, 2,...} m Q = { : m, n Z, n 0} n Operacje liczbowe Zbiór Dodawanie Odejmowanie Mnożenie Dzielenie N Z Q Pytanie Dlaczego zbiór liczb wymiernych nie

Bardziej szczegółowo

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Rozdział 6. Ciągłość. 6.1 Granica funkcji Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz

Bardziej szczegółowo

Aproksymacja diofantyczna

Aproksymacja diofantyczna Aproksymacja diofantyczna Szymon Draga Ustroń, 4 listopada 0 r Wprowadzenie Jak wiadomo, każdą liczbę niewymierną można (z dowolną dokładnością) aproksymować liczbami wymiernymi Powstaje pytanie, w jaki

Bardziej szczegółowo

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1.

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1. Rozdział 5 Szeregi liczbowe 5. Szeregi liczbowe Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy ( ). Ciąg (s n ) określony wzorem s n = n a j, n N, nazywamy ciągiem sum częściowych ciągu

Bardziej szczegółowo

domykanie relacji, relacja równoważności, rozkłady zbiorów

domykanie relacji, relacja równoważności, rozkłady zbiorów 1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2005/06, semestr 1. Tadeusz Rzeżuchowski

ANALIZA MATEMATYCZNA 2005/06, semestr 1. Tadeusz Rzeżuchowski ANALIZA MATEMATYCZNA 2005/06, semestr 1. Tadeusz Rzeżuchowski 1 Spis treści 1 Zbiory liczbowe 5 1.1 Krótka informacja o zbiorach liczb naturalnych, całkowitych i wymiernych 5 1.1.1 Liczby naturalne.........................

Bardziej szczegółowo

E-learning - matematyka - poziom rozszerzony. Funkcja wykładnicza. Materiały merytoryczne do kursu

E-learning - matematyka - poziom rozszerzony. Funkcja wykładnicza. Materiały merytoryczne do kursu E-learning - matematyka - poziom rozszerzony Funkcja wykładnicza Materiały merytoryczne do kursu Definicję i własności funkcji wykładniczej poprzedzimy definicją potęgi o wykładniku rzeczywistym. Poprawna

Bardziej szczegółowo

jest ciągiem elementów z przestrzeni B(R, R)

jest ciągiem elementów z przestrzeni B(R, R) Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)

Bardziej szczegółowo

BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH

BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH WSTĘP Zbiór liczb całkowitych można definiować na różne sposoby. Jednym ze sposobów określania zbioru liczb całkowitych jest

Bardziej szczegółowo

Łatwy dowód poniższej własności pozostawiamy czytelnikowi.

Łatwy dowód poniższej własności pozostawiamy czytelnikowi. Rozdział 3 Logarytm i potęga 3.1 Potęga o wykładniku naturalnym Definicja potęgi o wykładniku naturalnym. Niech x R oraz n N. Potęgą o podstawie x i wykładniku n nazywamy liczbę x n określoną następująco:

Bardziej szczegółowo

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11 M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X

Bardziej szczegółowo

ĆWICZENIA Z ARYTMETYKI TEORETYCZNEJ 1. LICZBY NATURALNE. x + 1 = x, x + y = (x + y). ( y + (z + w) ) + w = x + (d) jeśli (x) = 1, to x = 1,

ĆWICZENIA Z ARYTMETYKI TEORETYCZNEJ 1. LICZBY NATURALNE. x + 1 = x, x + y = (x + y). ( y + (z + w) ) + w = x + (d) jeśli (x) = 1, to x = 1, ĆWICZENIA Z ARYTMETYKI TEORETYCZNEJ 1. LICZBY NATURALNE. Dodawanie liczb naturalnych. Przypomnijmy, że dodawanie "+" jest działaniem scharakteryzowanym jednoznacznie przez warunki: (1 + ) (2 + ) x + 1

Bardziej szczegółowo

1 Liczby rzeczywiste. 1.1 Dlaczego nie wystarczają liczby wymierne

1 Liczby rzeczywiste. 1.1 Dlaczego nie wystarczają liczby wymierne Liczby rzeczywiste. Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być:.

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2015 andrzej.lachwa@uj.edu.pl 3/15 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej

Bardziej szczegółowo

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = : 4. Zbiory borelowskie. Zbiór wszystkich podzbiorów liczb naturalnych będziemy oznaczali przez ω. Najmniejszą topologię na zbiorze ω, w której zbiory {A ω : x A ω \ y}, gdzie x oraz y są zbiorami skończonymi,

Bardziej szczegółowo

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości. Własności Odległości i normy w Będziemy się teraz zajmować funkcjami od zmiennych, tzn. określonymi na (iloczyn kartezja/nski egzemplarzy ). Punkt należący do będziemy oznaczać jako Przykł. Wysokość terenu

Bardziej szczegółowo

Ciągi. Pojęcie granicy ciągu.

Ciągi. Pojęcie granicy ciągu. Rozdział 2 Ciągi. Pojęcie granicy ciągu. Definicja 2.. Ciąg jest to funkcja określona na zbiorze liczb naturalnych. Będziemy rozważać ciągi o wyrazach rzeczywistych, czyli zgodnie z powyższą definicją

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

Działanie grupy na zbiorze

Działanie grupy na zbiorze Działanie grupy na zbiorze Definicja 0.1 Niech (G, ) będzie dowolną grupą oraz X niepustym zbiorem, to odwzorowanie : G X X nazywamy działaniem grupy G na zbiorze X jeślinastępujące warunki są spełnione:

Bardziej szczegółowo

Definicja odwzorowania ciągłego i niektóre przykłady

Definicja odwzorowania ciągłego i niektóre przykłady Odwzorowania Pojęcie odwzorowania pomiędzy dwoma zbiorami było już definiowane, ale dawno, więc nie od rzeczy będzie przypomnieć, że odwzorowaniem nazywamy sposób przyporządkowania (niekoniecznie każdemu)

Bardziej szczegółowo

Funkcja wykładnicza kilka dopowiedzeń

Funkcja wykładnicza kilka dopowiedzeń Funkcje i ich granice Było: Zbiór argumentów; zbiór wartości; monotoniczność; funkcja odwrotna; funkcja liniowa; kwadratowa; wielomiany; funkcje wymierne; funkcje trygonometryczne i ich odwrotności; funkcja

Bardziej szczegółowo

F t+ := s>t. F s = F t.

F t+ := s>t. F s = F t. M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną

Bardziej szczegółowo

Krzysztof Rykaczewski. Szeregi

Krzysztof Rykaczewski. Szeregi Krzysztof Rykaczewski Spis treści 1 Definicja szeregu 2 Zbieżność szeregu 3 Kryteria zbieżności szeregów 4 Iloczyn Cauchy ego szeregów 5 Bibliografia 1 / 13 Definicja szeregu Niech dany będzie ciąg (a

Bardziej szczegółowo

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Leszek Skrzypczak 1. Niech E = {x [0, 1] : x = k 2 n k = 1, 2,... 2 n, n = 1, 2, 3,...} Wówczas: (a) Dla dowolnych liczb wymiernych p, q [0,

Bardziej szczegółowo

Egzamin z logiki i teorii mnogości, rozwiązania zadań

Egzamin z logiki i teorii mnogości, rozwiązania zadań Egzamin z logiki i teorii mnogości, 08.02.2016 - rozwiązania zadań 1. Niech φ oraz ψ będą formami zdaniowymi. Czy formuła [( x : φ(x)) ( x : ψ(x))] [ x : (φ(x) ψ(x))] jest prawem rachunku kwantyfikatorów?

Bardziej szczegółowo

Notatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 1 Jacek M. Jędrzejewski Wstęp W naszym konspekcie będziemy stosowali następujące oznaczenia: N zbiór liczb naturalnych dodatnich, N 0 zbiór liczb naturalnych (z zerem),

Bardziej szczegółowo

Funkcje addytywne gorszego sortu

Funkcje addytywne gorszego sortu Rafał Filipów Wydział Matematyki, Fizyki i Informatyki Definicja funkcji addytywnych Definicja Funkcja f jest funkcją addytywną, gdy spełnia równanie funkcyjne Cauchy ego tzn. gdy dla wszystkich x, y R.

Bardziej szczegółowo

Wykład z Analizy Matematycznej 1 i 2

Wykład z Analizy Matematycznej 1 i 2 Wykład z Analizy Matematycznej 1 i 2 Stanisław Spodzieja Łódź 2004/2005 http://www.math.uni.lodz.pl/ kfairr/analiza/ Wstęp Książka ta jest nieznacznie zmodyfikowaną wersją wykładu z analizy matematycznej

Bardziej szczegółowo

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe

Bardziej szczegółowo

1 Nierówność Minkowskiego i Hoeldera

1 Nierówność Minkowskiego i Hoeldera 1 Nierówność Minkowskiego i Hoeldera Na państwa użytek załączam precyzyjne sformułowania i dowody nierówności Hoeldera i Minkowskiego: Twierdzenie 1.1 Nierówność Hoeldera). Niech p, q będą takimi liczbami

Bardziej szczegółowo

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami. M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A

Bardziej szczegółowo

8 Całka stochastyczna względem semimartyngałów

8 Całka stochastyczna względem semimartyngałów M. Beśka, Całka Stochastyczna, wykład 8 148 8 Całka stochastyczna względem semimartyngałów 8.1 Całka stochastyczna w M 2 Oznaczmy przez Ξ zbiór procesów postaci X t (ω) = ξ (ω)i {} (t) + n ξ i (ω)i (ti,

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

Zbiory, relacje i funkcje

Zbiory, relacje i funkcje Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację

Bardziej szczegółowo

Matematyka ZLic - 2. Granica ciągu, granica funkcji. Ciągłość funkcji, własności funkcji ciągłych.

Matematyka ZLic - 2. Granica ciągu, granica funkcji. Ciągłość funkcji, własności funkcji ciągłych. Matematyka ZLic -. Granica ciągu, granica funkcji. Ciągłość funkcji, własności funkcji ciągłych. Granica ciągu Ciąg a n ma granicę właściwą g R i piszemy jeśli lim n a n g lub a n g gdy n NN n N a n g

Bardziej szczegółowo

1. Struktury zbiorów 2. Miara 3. Miara zewnętrzna 4. Miara Lebesgue a 5. Funkcje mierzalne 6. Całka Lebesgue a. Analiza Rzeczywista.

1. Struktury zbiorów 2. Miara 3. Miara zewnętrzna 4. Miara Lebesgue a 5. Funkcje mierzalne 6. Całka Lebesgue a. Analiza Rzeczywista. Literatura P. Billingsley, Miara i prawdopodobieństwo, PWN, Warszawa 1997, P. R. Halmos, Measure theory, Springer-Verlag, 1994, W, Kołodziej, naliza matematyczna, PWN, Warszawa 1978, S. Łojasiewicz, Wstęp

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2014 andrzej.lachwa@uj.edu.pl 3/15 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej

Bardziej szczegółowo

E-learning - matematyka - poziom rozszerzony. Granice ciągów. Materiały merytoryczne do kursu

E-learning - matematyka - poziom rozszerzony. Granice ciągów. Materiały merytoryczne do kursu E-learning - matematyka - poziom rozszerzony Granice ciągów Materiały merytoryczne do kursu N początku następnego: Przyjmiemy następujące oznaczenia: N - zbiór liczb naturalnych, N = {1, 2,..., }, Z -

Bardziej szczegółowo

Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014)

Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014) dr inż. Ryszard Rębowski DEFINICJA CIĄGU LICZBOWEGO Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z grudnia 04) Definicja ciągu liczbowego Spośród

Bardziej szczegółowo

5. Logarytmy: definicja oraz podstawowe własności algebraiczne.

5. Logarytmy: definicja oraz podstawowe własności algebraiczne. 5. Logarytmy: definicja oraz podstawowe własności algebraiczne. 78. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 a) 4 2+log 27 = (2 2 ) log 27 4 = 28 2 = 784 29 listopada 2008

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13 35. O zdaniu 1 T (n) udowodniono, że prawdziwe jest T (1), oraz że dla dowolnego n 6 zachodzi implikacja T (n) T (n+2). Czy można stąd wnioskować, że a) prawdziwe jest T (10), b) prawdziwe jest T (11),

Bardziej szczegółowo

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie

Bardziej szczegółowo

1 Określenie pierścienia

1 Określenie pierścienia 1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące

Bardziej szczegółowo

Relacje. opracował Maciej Grzesiak. 17 października 2011

Relacje. opracował Maciej Grzesiak. 17 października 2011 Relacje opracował Maciej Grzesiak 17 października 2011 1 Podstawowe definicje Niech dany będzie zbiór X. X n oznacza n-tą potęgę kartezjańską zbioru X, tzn zbiór X X X = {(x 1, x 2,..., x n ) : x k X dla

Bardziej szczegółowo

Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013

Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013 Zdzisław Dzedzej Politechnika Gdańska Gdańsk, 2013 1 PODSTAWY 2 3 Definicja. Przestrzeń metryczna (X, d) jest zwarta, jeśli z każdego ciągu {x n } w X można wybrać podciąg zbieżny {x nk } w X. Ogólniej

Bardziej szczegółowo

Algebra liniowa z geometrią. wykład I

Algebra liniowa z geometrią. wykład I Algebra liniowa z geometrią wykład I 1 Oznaczenia N zbiór liczb naturalnych, tutaj zaczynających się od 1 Z zbiór liczb całkowitych Q zbiór liczb wymiernych R zbiór liczb rzeczywistych C zbiór liczb zespolonych

Bardziej szczegółowo

Ośrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski,

Ośrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski, Procesy Stochastyczne, wykład, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 27 luty, 2012 Ośrodkowość procesów Dalej zakładamy, że (Ω, Σ, P) jest zupełną przestrzenią miarową. Definicja.

Bardziej szczegółowo

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych

Bardziej szczegółowo

granicą ciągu funkcyjnego (f n ) n N W symbolicznym zapicie fakt, że f jest granicą ciągu funkcyjnego (f n ) n N możemy wyrazić następująco: ε>0 N N

granicą ciągu funkcyjnego (f n ) n N W symbolicznym zapicie fakt, że f jest granicą ciągu funkcyjnego (f n ) n N możemy wyrazić następująco: ε>0 N N 14. Określenie ciągu i szeregu funkcyjnego, zbieżność punktowa i jednostajna. Własności zbieżności jednostajnej. Kryterium zbieżności jednostajnej szeregu funkcyjnego. 1 Definicja Ciąg funkcyjny Niech

Bardziej szczegółowo

Uniwersyteckie Koło Matematyczne - Tajemnicza liczba e.

Uniwersyteckie Koło Matematyczne - Tajemnicza liczba e. Uniwersyteckie Koło Matematyczne - Tajemnicza liczba e. Filip Piękniewski Wydział Matematyki i Informatyki Uniwersytetu Mikołaja Kopernika http://www.mat.umk.pl/ philip 17 grudnia 2009 Filip Piękniewski,

Bardziej szczegółowo

Zapisujemy to symbolicznie jako równość:. Mówimy też, że ciąg posiada granicę niewłaściwą (równą nieskończoności).

Zapisujemy to symbolicznie jako równość:. Mówimy też, że ciąg posiada granicę niewłaściwą (równą nieskończoności). Ciągi rozbieżne do Def. Mówimy, że ciąg jest rozbieżny do, jeśli Zapisujemy to symbolicznie jako równość:. Mówimy też, że ciąg posiada granicę niewłaściwą (równą nieskończoności). Można obrazowo powiedzieć,

Bardziej szczegółowo

Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa.

Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Monotoniczność i różnowartościowość. Definicja 1 Niech f : X R, X R. Funkcję f nazywamy rosnącą w

Bardziej szczegółowo

1. Wykład NWD, NWW i algorytm Euklidesa.

1. Wykład NWD, NWW i algorytm Euklidesa. 1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ BAZY PRZESTRZENI WEKTOROWYCH

ALGEBRA Z GEOMETRIĄ BAZY PRZESTRZENI WEKTOROWYCH ALGEBRA Z GEOMETRIĄ 1/10 BAZY PRZESTRZENI WEKTOROWYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 11, 18.12.2013 Typeset by Jakub Szczepanik. Istnienie bazy Tak jak wśród wszystkich pierścieni wyróżniamy

Bardziej szczegółowo

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. 3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X

Bardziej szczegółowo

Egzamin z Analizy Matematycznej I dla Informatyków, 28 I 2017 Część I

Egzamin z Analizy Matematycznej I dla Informatyków, 28 I 2017 Część I Egzamin z Analizy Matematycznej I dla Informatyków, 28 I 2017 Część I Czas na rozwiązanie zadań cz. I: 2 godz. Do zdobycia: 60 pkt. Nie wolno korzystać z notatek, kalkulatorów, telefonów, pomocy sąsiadów,

Bardziej szczegółowo

Grupy, pierścienie i ciała

Grupy, pierścienie i ciała Grupy, pierścienie i ciała Definicja: Niech A będzie niepustym zbiorem. Działaniem wewnętrznym (lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. Niech ponadto B będzie niepustym zbiorem.

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Rozdział 1 Podstawowe struktury algebraiczne 1.1. Działania wewnętrzne Niech X będzie zbiorem niepustym. Dowolną funkcję h : X X X nazywamy działaniem wewnętrznym w zbiorze X. Działanie wewnętrzne, jak

Bardziej szczegółowo

1 Funkcje uniwersalne

1 Funkcje uniwersalne 1 1 Funkcje uniwersalne 1.1 Konstrukcja funkcji uniweralnej Niech P będzie najmniejszym zbiorem liczb spełniającym warunki 1) 0, 2, 0, 0, 2, 1, 0, 2, 2 P, 2) 0, n, 3, k P dla wszystkich n > 0 oraz k takich,

Bardziej szczegółowo

Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga

Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga RAP 412 21.01.2009 Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga Wykładowca: Andrzej Ruciński Pisarz: Łukasz Waszak 1 Wstęp Na ostatnim wykładzie przedstawiliśmy twierdzenie o zbieżności

Bardziej szczegółowo

Teoria miary i całki

Teoria miary i całki Teoria miary i całki Spis treści 1 Wstęp 3 2 lgebra zbiorów 5 3 Pierścienie, ciała, σ ciała zbiorów. 7 3.1 Definicja pierścienia ciała i σ ciała............... 7 3.2 Pierścień, ciało i σ ciało generowane

Bardziej szczegółowo

Dwa równania kwadratowe z częścią całkowitą

Dwa równania kwadratowe z częścią całkowitą Dwa równania kwadratowe z częścią całkowitą Andrzej Nowicki Wydział Matematyki i Informatyki Uniwersytet M. Kopernika w Toruniu anow @ mat.uni.torun.pl 4 sierpnia 00 Jeśli r jest liczbą rzeczywistą, to

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

KONGRUENCJE. 1. a a (mod m) a b (mod m) b a (mod m) a b (mod m) b c (mod m) a c (mod m) Zatem relacja kongruencji jest relacją równoważności.

KONGRUENCJE. 1. a a (mod m) a b (mod m) b a (mod m) a b (mod m) b c (mod m) a c (mod m) Zatem relacja kongruencji jest relacją równoważności. KONGRUENCJE Dla a, b, m Z mówimy, że liczba a przystaje do liczby b modulo m a b (mod m) m (a b) (a b (mod m) można też zapisać jako: a = km + b, k Z). Liczbę m nazywamy modułem kongruencji. Własności:

Bardziej szczegółowo

Grzegorz Bobiński. Wykład monograficzny Programowanie Liniowe i Całkowitoliczbowe

Grzegorz Bobiński. Wykład monograficzny Programowanie Liniowe i Całkowitoliczbowe Grzegorz Bobiński Wykład monograficzny Programowanie Liniowe i Całkowitoliczbowe Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu 2012 Spis treści Notacja 1 1 Podstawowe pojęcia

Bardziej szczegółowo

2. Definicja pochodnej w R n

2. Definicja pochodnej w R n 2. Definicja pochodnej w R n Niech będzie dana funkcja f : U R określona na zbiorze otwartym U R n. Pochodną kierunkową w punkcie a U w kierunku wektora u R n nazywamy granicę u f(a) = lim t 0 f(a + tu)

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Analiza matematyczna I (skrypt wykładu) Wydział MIiM UW, 2010/11

Analiza matematyczna I (skrypt wykładu) Wydział MIiM UW, 2010/11 Analiza matematyczna I (skrypt wykładu) Wydział MIiM UW, 200/ wersja z dnia: czerwca 20 Spis treści Liczby rzeczywiste. Aksjomatyka liczb rzeczywistych.......................... Aksjomaty ciała przemiennego.....................

Bardziej szczegółowo

Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd.

Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd. Modelowanie wybranych pojęć matematycznych semestr letni, 206/207 Wykład 0 Własności funkcji cd. Ciągłość funkcji zastosowania Przybliżone rozwiązywanie równań Znajdziemy przybliżone rozwiązanie równania

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

6. Punkty osobliwe, residua i obliczanie całek

6. Punkty osobliwe, residua i obliczanie całek 6. Punkty osobliwe, residua i obliczanie całek Mówimy, że funkcja holomorficzna f ma w punkcie a zero krotności k, jeśli f(a) = f (a) = = f (k ) (a) = 0, f (k) (a) 0. Rozwijając f w szereg Taylora w otoczeniu

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań

Andrzej Wiśniewski Logika II. Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań 1 Struktury modelowe Przedstawimy teraz pewien

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie Rozdział 7 Różniczkowalność Jedną z konsekwencji pojęcia granicy funkcji w punkcie jest pojęcie pochodnej funkcji. W rozdziale tym podamy podstawowe charakteryzacje funkcji związane z pojęciem pochodnej.

Bardziej szczegółowo

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Wykład 4. Określimy teraz pewną ważną klasę pierścieni. Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia

Bardziej szczegółowo

Rozkład figury symetrycznej na dwie przystające

Rozkład figury symetrycznej na dwie przystające Rozkład figury symetrycznej na dwie przystające Tomasz Tkocz 10 X 2010 Streszczenie Tekst zawiera notatki do referatu z seminarium monograficznego Wybrane zagadnienia geometrii. Całość jest oparta na artykule

Bardziej szczegółowo

Krzywa uniwersalna Sierpińskiego

Krzywa uniwersalna Sierpińskiego Krzywa uniwersalna Sierpińskiego Małgorzata Blaszke Karol Grzyb Streszczenie W niniejszej pracy omówimy krzywą uniwersalną Sierpińskiego, zwaną również dywanem Sierpińskiego. Pokażemy klasyczną metodę

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

Teoria Liczb Rzeczywistych

Teoria Liczb Rzeczywistych Matematyka Teoria Liczb Rzeczywistych Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag Matematyka p. 1 Teoria Liczb Rzeczywistych Najnowsza

Bardziej szczegółowo

Rozdział 7 Relacje równoważności

Rozdział 7 Relacje równoważności Rozdział 7 Relacje równoważności Pojęcie relacji. Załóżmy, że dany jest niepusty zbiór A oraz własność W, którą mogą mieć niektóre elementy zbioru A. Własność W wyznacza pewien podzbiór W A zbioru A, złożony

Bardziej szczegółowo

Matematyka dyskretna. 1. Relacje

Matematyka dyskretna. 1. Relacje Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli

Bardziej szczegółowo

Analiza Matematyczna. Teoria Liczb Rzeczywistych

Analiza Matematyczna. Teoria Liczb Rzeczywistych Analiza Matematyczna. Teoria Liczb Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk 12 marca 2017

Bardziej szczegółowo

Krzysztof Gniłka. Twierdzenie o rekurencji uniwersalnej

Krzysztof Gniłka. Twierdzenie o rekurencji uniwersalnej Krzysztof Gniłka Twierdzenie o rekurencji uniwersalnej Spis treści Wstęp 3 Rozdział 1 Definicje i pomocnicze lematy 4 1 Części całkowite liczb 4 2 Logarytmy 9 3 Notacja asymptotyczna 12 Rozdział 2 Metoda

Bardziej szczegółowo

Równoliczność zbiorów

Równoliczność zbiorów Logika i Teoria Mnogości Wykład 11 12 Teoria mocy 1 Równoliczność zbiorów Def. 1. Zbiory X i Y nazywamy równolicznymi, jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy,że ustala równoliczność

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Definicja ciągu liczbowego. Definicja 1.1. Ciągiem liczbowym nazywamy funkcję a : N R odwzorowującą zbiór liczb naturalnych N w zbiór liczb rzeczywistych R i oznaczamy przez {a

Bardziej szczegółowo

Temat: Ciągi i szeregi funkcyjne

Temat: Ciągi i szeregi funkcyjne Emilia Domińczyk Aleksandra Chrzuszcz Temat: Ciągi i szeregi unkcyjne 1.Co to jest ciąg unkcyjny? Co to jest szereg unkcyjny? Podać przykłady. Deinicja ciągu unkcyjnego Niech X c R, X Ø. Funkcję określoną

Bardziej szczegółowo

Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych

Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych Arytmetyka liczb całkowitych Wykład 1 Na początku zajmować się będziemy zbiorem liczb całkowitych Z = {0, ±1, ±2,...}. Zakładamy, że czytelnik zna relację

Bardziej szczegółowo

LXI Olimpiada Matematyczna

LXI Olimpiada Matematyczna 1 Zadanie 1. LXI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 21 kwietnia 2010 r. (pierwszy dzień zawodów) Dana jest liczba całkowita n > 1 i zbiór S {0,1,2,...,n 1}

Bardziej szczegółowo

4. Granica i ciągłość funkcji

4. Granica i ciągłość funkcji 4. Granica i ciągłość funkcji W niniejszym rozdziale wprowadzamy pojęcie granicy funkcji, definiujemy funkcje ciągłe i omawiamy ich podstawowe własności. Niech f będzie funkcją określoną na przedziale

Bardziej szczegółowo

XI Olimpiada Matematyczna Gimnazjalistów

XI Olimpiada Matematyczna Gimnazjalistów XI Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (24 września 2015 r.) Rozwiązania zadań testowych 1. Dane są takie dodatnie liczby a i b, że 30% liczby a

Bardziej szczegółowo

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami: 9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym

Bardziej szczegółowo

Analiza matematyczna I (skrypt wykładu) Wydział MIiM UW, 2010/11

Analiza matematyczna I (skrypt wykładu) Wydział MIiM UW, 2010/11 Analiza matematyczna I (skrypt wykładu) Wydział MIiM UW, 2010/11 wersja z dnia: 1 czerwca 2011 Spis treści 1 Liczby rzeczywiste 1 1.1 Aksjomatyka liczb rzeczywistych........................ 1 1.1.1 Aksjomaty

Bardziej szczegółowo

6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.).

6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.). 6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.). 0 grudnia 008 r. 88. Obliczyć podając wynik w postaci ułamka zwykłego a) 0,(4)+ 3 3,374(9) b) (0,(9)+1,(09)) 1,() c) (0,(037))

Bardziej szczegółowo