ANALIZA PROBABILISTYCZNA WYBRANYCH SEKWENCYJNYCH ALGORYTMÓW PAKOWANIA

Wielkość: px
Rozpocząć pokaz od strony:

Download "ANALIZA PROBABILISTYCZNA WYBRANYCH SEKWENCYJNYCH ALGORYTMÓW PAKOWANIA"

Transkrypt

1 eszyty Nauowe WSIf Vol 7, Nr, 8 Wocech Horzels Uwersytet Łódz, Katedra Iforaty Stosowae, Wyższa Szoła Iforaty w Łodz ANAIA ROBABIISTYCNA WYBRANYCH SKWNCYJNYCH AGORYTMÓW AKOWANIA Streszczee adae aowaa w lasyczy uęcu olega a rozeszczeu lsty ładuów {a,a,,a } o rozarach erzeraczaących w ale lośc oeów o rozarze edostowy, wyaga sę rzy ty, aby żade z oeów e był rzeładoway. Wśród etod rozwązaa taego zadaa est też lasa algorytów sewecyych. Od algorytu sewecyego wyaga sę dodatowo aby zadaa ueszczae w oeu tworzyły sewecę: J,, l D A s l A s < < l A s, dla s J A W esze racy rzedstawoo rzyład algorytu sewecyego S oraz rzerowadzoo ełą aalzę ego zachowaa. Dowedzoo twerdzea oreślaącego wartość wsółczya srawośc algorytu R S. 5 dla agorszego rzyadu. Aalza robablstycza rzerowadzoa została dla esończoego cągu ezależych zeych losowych o edaowy rozładze { ξ, ξ,...}. W racy oazao ograczee dla asytotyczego wsółczya adwyż algorytu S R S, U, > Sforułowae robleu Klasycze zadae aowaa olega a rozeszczeu lsty ładuów a,, a, o rozarach e rzeraczaących, w ale lośc oeów o rozarze edostowy. Wyaga sę rzy ty, aby żade z oeów e był rzeładoway, t. aby sua eleetów zaaowaych do ego e rzeraczała wartośc. Ta ostawoy roble osada różorae ratycze zastosowaa oczyaąc od otyalego załadowaa cężarówe czy zaełea telewzyych bloów relaowych, aż o rówoere obcążae racą rocesorów w aszyach welorocesorowych czy otyalzacę rzesyłaa aetów w secach outerowych []. ołóży I],]. 39

2 Aalza robablstycza... DFINICJA. Nech J będze dowoly sończoy odzbore zboru lczb aturalych ech J ozacza oc tego zboru. Ozaczy U J N, J I J oraz U. leet azyway lstą, eżel to ówy, że lsta a długość ozaczay. Jeżel I J, to zbór J azyway zbore desów lsty ozaczay D. Ozaczy rzez S suę wszystch eleetów lsty: D Nech J ozacza zbór {,,, } N. DFINICJA. Nech B będze dowoly zbore sończoy - B B eleetowy rozbce zboru B azyway fucę: : J sełaącą astęuące waru:. J B Ø B B., J Ø 3. U B B. J B czbę azyway ocą rozbca. Ozaczy rzez B odzbór zboru B J sładaący sę ze wszystch -eleetowych rozbć zboru B, zaś rzez B zbór U B. Jeśl B, to rzez ozaczay oc. Nech dale ozacza zbór U J J N J, zaś zbór U. DFINICJA 3. Algoryte aowaa A azyway odwzorowae A : sełaące astęuące waru:. A D ;. A. J A Wartość A azyway rezultate wye dzałaa algorytu A dla lsty. Ozaczay rzez A zbór wszystch algorytów aowaa. 4

3 W. Horzels e względu a zastosowaa ratycze eleety lsty azywać będzey dale zadaa, atoast zbory otrzyae w wyu rozbca oea. Będzey ówć też, że zadae zostało zaaowae algoryte A do -ego oea, eżel A. DFINICJA 4. Rozbce D azyway uaowae lsty, eżel J 3 Ozaczy rzez a zbór wszystch ożlwych uaowań lsty. DFINICJA 5. Nech. Uaowae OT sełaące warue: a OT azyway otyaly uaowae lsty. e względu a sończoą długość lsty, a zate róweż sończoą lość rozbć zboru D, dla dowole lsty stee uaowae otyale. DFINICJA 6. Nech OT będze ta algoryte aowaa, że OT OT. Wtedy algoryt OT azyway otyaly algoryte aowaa. DFINICJA 7. Nech różcę A A. Stratą algorytu aowaa A azyway A - A leva 4 ozaczay ą WS A. Jedą z etod rozważaa srawośc algorytów est etoda zwaa aalzą agorszego rzyadu. olega oa a wyszuwau tach lst, że algoryt dae agorsze ożlwe dla ego wy. Jeżel otrafy doweść, że zalezoa lsta est oszuway agorszy rzyade, to zysuey ewość, ż algoryt zachowue sę e gorze ż dla te lsty []. Forale aalza taa wyaga wrowadzea lu dalszych oęć. DFINICJA 8. Nech A będze algoryte aowa, lstą zadań. Wsółczye srawośc algorytu A dla lsty azyway A stosue ozaczay rzez R A. OT 4

4 Aalza robablstycza... Aalogcze defuey wsółczy srawośc dla dualego algorytu aowaa ao stosue rezultatu tego algorytu otyalego. DFINICJA 9. Nech A będze algoryte aowaa. Wyrażee: } 5 ax{r A dla wszystch lst, tach że OT azyway wsółczye adwyż algorytu A ozaczay rzez R A. DFINICJA. Nech A będze algoryte aowaa. Wyrażee: lsu R A azyway asytotyczy wsółczye adwyż algorytu A ozaczay rzez R A. W ratyce będzey szuać asytotyczego stosuu adwyż tę lczbę uzawać za wartość srawośc algorytu. odaa wcześe etoda adaa agorszych rzyadów dae co rawda ewość, że algoryt e zachowa sę gorze ż rzewduey, ale w welu zastosowaach rzyad agorszych lst albo wcale e będą wystęować, albo będą bardzo rzade. Stąd oawa sę otrzeba zalezea tae ary srawośc algorytu, tóra będze lee oddawać rzeczywste sytuace. oszuwae wyów dzałaa algorytu dla lst geerowaych losowo oże lee oazywać zachowae sę algorytu. W badaach tach stadardowo załada sę, że rozary oszczególych eleetów lsty są wyberae ezależe, zgode z edaowy rozłade rawdoodobeństwa, co orawe oddae rzeczywste waru węszośc zadań. Metoda aalzy robablstycze olega a zadowau oczewaych wartośc dzałaa algorytu dla lst ładuów geerowaych losowo. Rozład z a geerowae są ładu a oczywsty wływ a wy dzałaa algorytu, stąd właścwe doberae rozładów w zależośc od ratyczych otrzeb ozwala a dobór odowedego algorytu dla daego zadaa []. Nech F będze rozłade rawdoodobeństwa dla zeych losowych, D, t. dla ładuów. Rezultat algorytu est wtedy róweż zeą losową. Aalzę algorytu A oża w ta rzyadu ograczyć do badaa wartośc wyrażea [A]. Dodatowo, dla leszego obrazu dzałaa algorytu, aalzue sę ego oczewaą srawość: 4

5 W. Horzels DFINICJA. Nech A będze algoryte aowaa ech ξ, ξ,..., ξ, gdze ξ są ezależy zey losowy o edaowy rozładze F. Oczewaą srawoścą algorytu A azyway [R A ] ozaczay R A,F. DFINICJA. Nech A będze algoryte dla zadaa aowaa ech ξ, ξ,..., ξ, gdze ξ są ezależy zey losowy o edaowy rozładze F. Wyrażee : l su R A, F 6 azyway asytotyczą oczewaą srawoścą algorytu A ozaczay rzez R. A, F rzedstawy teraz ewą wybraą lasę algorytów dla taego zadaa lasę algorytów sewecyych. Od algorytu sewecyego wyaga sę dodatowo aby zadaa ueszczae w oeu tworzyły sewecę: DFINICJA. Nech A będze -rzebegowy algoryte aowaa. Jeżel 7 J,, l A s l A s < < l A s, dla s J D A to algoryt ta azyway sewecyy algoryte aowaa. Algoryt sewecyy S Rozatrzy teraz astęuący algoryt: w -ty rzebegu dla,-,, baday suy oleych eleetów z lsty D \ U D. J Jeżel sua tych ładuów e rzeracza to auey e do oea, w rzecwy rzyadu rzechodzy do astęe gruy zadań ta aż do wyczeraa lsty. bór D słada sę ze wszystch desów zadań zaaowaych według te zasady w -ty rou. Na oec ozostałe zadaa auey do owego oea. 43

6 Aalza robablstycza... 3 Aalza agorszego rzyadu dla algorytu S Dla ta oreśloego algorytu oża łatwo oazać astęuący leat [3]. MAT. Dla algorytu S! dla dowole lsty zachodz: WSS < S. 8 Na odstawe owyższego leatu oażey ograczee dla agorszego rzyadu: TWIRDNI. R S 9 Dowód: auważy aerw, że OT S WS S co dae R S. druge stroy rozatruąc lstę: S < l,...,,,..., dostaey OT oraz S, a stąd razy razy R S. rzechodząc do gracy dostaey uwzględaąc OT S R S dostaey tezę twerdzea. 4 Aalza robablstycza algorytu S Do aalzy robablstycze oawaego algorytu wyorzystae odel robablstyczy oeraący sę a esończoych cągach ezależych zeych losowych o edaowy rozładze [3]. Ozaczy rzez f g gęstośc rozładów zeych ξ ξ, rzez q rawdoodobeństwa wyboru ozostawea a lśce ładuu ξ w - ty rzebegu algorytu oraz rzez Y lczbę ładuów zaaowaych w -ty rzebegu lczbę ozostałych a lśce ładuów o -ty rzebegu. W dalszych rozważaach rzyey dla zeych losowych rozład edostay a rzedzale [,]. auważy, że f est slote g - g -, czyl: 44

7 W. Horzels 45 dy y x g y g x f x Stąd dostaey: x q x f g q Rozłady zeych losowych Y zbaday orzystaąc ze scheatu Beroullego z rawdoodobeństwe oraż q.5: q Y. Korzystaąc teraz ze wzoru a rawdoodobeństwo całowte dostaey: q Y q Korzystaąc z własośc waruowe wartośc oczewae rowadz to do erówośc: Y 3 A to ozwala a uż oszacować wartość oczewaą rezultatu algorytu S : S 4 aalogcze od góry Y S 5 oeważ wartośc q szybo zbegaą do : q.5, q.667, q 3.43, q , q ,

8 Aalza robablstycza... q , q , węc róweż wartośc szybo aleą. ate w owyższych wzorach stote zaczee aą edye erwsze sład suy. oże rzedstawoo oszacowae oczewaego rezultatu algorytu S orzystaące z erwszych trzech sładów odowedch su. Dae to ograczee od góry: 3 S > 6 oraz z dołu: 3 S < 7 ozostae eszcze oszacowae wartośc,, 3. oreślea wcześeszych zależośc ay: Ostatecze otrzyuey astęuące oszacowae badae wartośc oczewae: S e względu a oreślee algorytu S ay log, węc: log 5 < S < log Dae to bardzo dołade oszacowae asytotyczego zachowaa sę wartośc oczewae wyu algorytu, czyl lczby zaełoych oeów. Na oec oday eszcze oszacowae dla oczewae srawośc algorytu S. Korzystaąc z oszacowaa dla wartośc oczewae algorytu otyalego uzysaego rzez J. Cra, J. Frea, G. Galabosa A. Roy Kaa [4]:

9 W. Horzels OT / Dostaey: auważy, że: > RS, U, > / / l / 3 Dostaey zate ograczee dole dla asytotycze srawośc algorytu S : R teratura S, U, > [] ee C., ee D.: A sle acg algorth, Joural of the ACM 3, 985, [] Hoffa.G., euer G.S.: robablstc Aalyss of acg ad arttog Algorths, Joh Wley &Sos, New Yor 99 [3] Horzels W.: Algoryty sewecye dla zadaa aowaa, Rozrawa dotorsa obrooa a Wydzale Mateaty UŁ [4] Cr J., Fre J., Galabos G. Roy Ka A.: robablstc Aalyss of Algorths for B acg robles, Joural of Algorths 99, 89-3 ROBABIISTIC ANAYSIS OF SOM SQUNTIA AGORITHMS FOR BIN- ACKING ROBM Suary The b-acg roble the classcal aroach s to arrage the lst of tass {a,a,,a} of a sze ot exceedg the u uber of bs of sze, however, that oe of the bs was overloaded. Aog the ways to do such a tas s a class of sequetal algorths. Fro sequetal algorth s requred addto to ac the 47

10 Aalza robablstycza... tass such a way that tass laced each cotaer b cossted of a sequece: J,, l A s l A s < < l A s, dla s J D A I ths aer s a exale of sequetal algorth called S ad carred out a full aalyss of ts behavor. It deostrate the value of lower boud for effcecy factor of the algorth R S. 5. robablty aalyss was carred out for the fte sequece of deedet rado varables of equal dstrbuto { ξ, ξ,...}. Ths aer also show a boud of asytotc waste rato of S R S, U, > 48

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac

Bardziej szczegółowo

i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3

i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3 35 Iterpoaca Herte a 3 f ( x f ( x,,, 3, 4 f ( x,,, 3 f ( x,, 3 f ( x, 4 f ( x 33,5,698,87,5!, 34,83,785,9,3 36,598,877,95 38,475,97 4,447 Na podstawe wzoru (38 ay zate 87,, 5, L4 ( t 335, +, 698t+ t(

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

Równania rekurencyjne

Równania rekurencyjne Rówaa reurecyje Ja stosować do przelczaa obetów obatoryczych? zaleźć zwąze reurecyjy, oblczyć la początowych wartośc, odgadąć ogóly wzór, tóry astępe udowaday stosując ducję ateatyczą. W etórych przypadach,

Bardziej szczegółowo

ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ

ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ Podstawowe pojęca rachuu prawdopodobeństwa: zdarzee losowe, zdarzee elemetare, prawdopodobeństwo, zbór zdarzeń elemetarych. Def. Nech E będze zborem

Bardziej szczegółowo

11/22/2014 STRATEGIE MIESZANE - MOTYWACJA. ROZWAśMY PRZYKŁAD:

11/22/2014 STRATEGIE MIESZANE - MOTYWACJA. ROZWAśMY PRZYKŁAD: //4 Gry o sue zero - gry rozgrywae w strategach eszaych STRATEGIE IESZANE - OTYWACJA. ROZWAśY PRZYKŁAD: 5 DEFINICJA..6 Strategą eszaą π gracza P azyway kaŝdy rozkład prawdopodobeństwa określoy a zborze

Bardziej szczegółowo

Portfel złożony z wielu papierów wartościowych

Portfel złożony z wielu papierów wartościowych Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe

Bardziej szczegółowo

JEDNOWYMIAROWA ZMIENNA LOSOWA

JEDNOWYMIAROWA ZMIENNA LOSOWA JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya

Bardziej szczegółowo

Lista 6. Kamil Matuszewski 26 listopada 2015

Lista 6. Kamil Matuszewski 26 listopada 2015 Lsta 6 Kaml Matuszews 6 lstopada 5 4 5 6 7 8 9 4 5 X X X X X X X X X X X D X X N Gdze X-spsae, D-Delarowae, N-edelarowae. Zadae Zadae jest westą odpowedego pomalowaa. Weźmy sobe szachowcę x, poumerujmy

Bardziej szczegółowo

Laboratorium Metod Statystycznych ĆWICZENIE 2 WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI

Laboratorium Metod Statystycznych ĆWICZENIE 2 WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI Laboatoum Metod tatystyczych ĆWICZENIE WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI Oacowała: Katazya tąo Weyfkaca hotez Hoteza statystycza to dowole zyuszczee dotyczące ozkładu oulac. Wyóżamy hotezy: aametycze

Bardziej szczegółowo

1. Relacja preferencji

1. Relacja preferencji dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia. J. de Lucas

Analiza Matematyczna Ćwiczenia. J. de Lucas Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y

Bardziej szczegółowo

EKSTREMA FUNKCJI EKSTREMA FUNKCJI JEDNEJ ZMIENNEJ. Tw. Weierstrassa Każda funkcja ciągła na przedziale domkniętym ma wartość najmniejszą i największą.

EKSTREMA FUNKCJI EKSTREMA FUNKCJI JEDNEJ ZMIENNEJ. Tw. Weierstrassa Każda funkcja ciągła na przedziale domkniętym ma wartość najmniejszą i największą. Joaa Ceślak, aula Bawej ESTREA FUNCJI ESTREA FUNCJI JEDNEJ ZIENNEJ Otoczeem puktu R jest każdy przedzał postac,+, gdze >. Sąsedztwem puktu jest każdy zbór postac,,+, gdze >. Nech R, : R oraz ech. De. ówmy,

Bardziej szczegółowo

WIELOWYMIAROWE REGUŁY ASOCJACJI W MODELOWANIU TENDENCJI ROZWOJOWYCH MSP

WIELOWYMIAROWE REGUŁY ASOCJACJI W MODELOWANIU TENDENCJI ROZWOJOWYCH MSP KATARZYNA BŁASZCZYK BOGDAN RUSZCZAK Poltecha Opolsa WIELOWYMIAROWE REGUŁY ASOCJACJI W MODELOWANIU TENDENCJI ROZWOJOWYCH MSP Wstęp Esploraca daych (ag. data g) zaue sę efetywy zadowae ezaych dotychczas

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzee macerzowe werdzee: Dla dwóch macerzy A B o tych samych wymarach zachodz: ( ) ( ) wersz a) R A R B A ~ B Dowód: wersz a) A ~ B stee P taka że PA B 3 0 A 4 3 0 0 E A B 0 0 0 E B 3 6 4 0 0 0

Bardziej szczegółowo

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ,,, ~ B, β ( β β ( ( Γ( β Γ + f ( Γ ( + ( + β + ( + β Γ + β Γ + Γ + β Γ + + β E Γ Γ β Γ Γ + + β Γ + Γ β + β β β Γ + β Γ + Γ + β Γ + + β E ( Γ Γ β Γ Γ + + β Γ + Γ β β + β Metoda mometów polega a przyrówau

Bardziej szczegółowo

Regresja REGRESJA

Regresja REGRESJA Regresja 39. REGRESJA.. Regresja perwszego rodzaju Nech (, będze dwuwyarową zeą losową, dla które steje kowaracja. Nech E( y ozacza warukową wartość oczekwaą zdefowaą dla przypadku zeych losowych typu

Bardziej szczegółowo

Typ może być dowolny. //realizacja funkcji zamiana //przestawiajacej dwa elementy //dowolnego typu void zamiana(int &A, int &B) { int t=a; A=B; B=t; }

Typ może być dowolny. //realizacja funkcji zamiana //przestawiajacej dwa elementy //dowolnego typu void zamiana(int &A, int &B) { int t=a; A=B; B=t; } Idea: Wyzaczamy ameszy elemet w cągu tablcy zameamy go mescam z elemetem perwszym, astępe z pozostałego cągu wyberamy elemet ameszy ustawamy go a druge mesce tablcy zmeamy, td. Realzaca w C++ vod seleca

Bardziej szczegółowo

Kody Huffmana oraz entropia przestrzeni produktowej Kod Shannona-Fano oraz Entopia względna i warunkowa

Kody Huffmana oraz entropia przestrzeni produktowej Kod Shannona-Fano oraz Entopia względna i warunkowa ody uffaa oraz etroa rzestrze roduktowe od haoa-fao oraz Etoa względa warukowa Zuzaa alcńska Potr Góra 27 aa 2004 Otyaly kod bezrefksowy Defca. od ad alfabete { 0, }, w który rerezetaca żadego zaku e est

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w

Bardziej szczegółowo

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1 POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.

Bardziej szczegółowo

4. ZASTOSOWANIE METODY ELEMENTÓW SKOŃCZONYCH (MES) W AKUSTYCE

4. ZASTOSOWANIE METODY ELEMENTÓW SKOŃCZONYCH (MES) W AKUSTYCE 4. ZAOOWAIE E W AUYCE Astya w bdowtwe. 4. ZAOOWAIE EODY ELEEÓW OŃCZOYCH (E) W AUYCE ożej zostae rzedstawoe sorłowae ateatyze słżąe do aalzy staów staloyh ja estaloyh, rzebeg al astyzej, zastosowayh w rograe

Bardziej szczegółowo

ZAJĘCIA NR 3. loga. i nosi nazwę entropii informacyjnej źródła informacji. p. oznacza, Ŝe to co po im występuje naleŝy sumować biorąc za i

ZAJĘCIA NR 3. loga. i nosi nazwę entropii informacyjnej źródła informacji. p. oznacza, Ŝe to co po im występuje naleŝy sumować biorąc za i ZAJĘCIA NR Dzsaj omówmy o etro, redudacj, średej długośc słowa odowego o algorytme Huffmaa zajdowaa odu otymalego (od ewym względam; aby dowedzeć sę jam doczeaj do ońca). etro JeŜel źródło moŝe adawać

Bardziej szczegółowo

k k M. Przybycień Rachunek Prawdopodobieństwa i Statystyka Wykład 13-2

k k M. Przybycień Rachunek Prawdopodobieństwa i Statystyka Wykład 13-2 Pojęce przedzału ufośc Przyład: Rozważmy pewe rzad proces (tz. ta tórego lczba zajść podlega rozładow Possoa). W cągu pewego czasu zaobserwowao =3 tae zdarzea. Oceć możlwy przedzał lczby zdarzeń tego typu

Bardziej szczegółowo

Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej. Literatura. W. Rudin: Podstawy analizy matematycznej, PWN, Warszawa, 1982.

Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej. Literatura. W. Rudin: Podstawy analizy matematycznej, PWN, Warszawa, 1982. Wyłady z Aalzy rzeczywstej zespoloej w Matematyce stosowaej Lteratura W Rud: Podstawy aalzy matematyczej, PWN, Warszawa, 1982 W Rud: Aalza rzeczywsta zespoloa, PZWS, Warszawa, 1986 W Szabat: Wstęp do aalzy

Bardziej szczegółowo

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów.

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów. Pradopodobeństo statystya 6..3r. Zadae. Rzucamy symetryczą moetą ta długo aż dóch olejych rzutach pojaą sę resz. Oblcz artość oczeaą lczby yoaych rzutó. (A) 7 (B) 8 (C) 9 (D) (E) 6 Wsazóa: jeśl rzuce umer

Bardziej szczegółowo

Zmiana bazy i macierz przejścia

Zmiana bazy i macierz przejścia Auomaya Roboya Algebra -Wyład - dr Adam Ćmel cmel@agh.edu.pl Zmaa bazy macerz prześca Nech V będze wymarową przesrzeą lową ad całem K. Nech Be e będze bazą przesrze V. Rozważmy ową bazę B e... e. Oczywśce

Bardziej szczegółowo

WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LABORATORIUM II PROGRAMOWANIE CELOWE, ILORAZOWE I MIN-MAX. min. min

WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LABORATORIUM II PROGRAMOWANIE CELOWE, ILORAZOWE I MIN-MAX. min. min WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LABORAORIUM II PROGRAMOWANIE CELOWE, ILORAZOWE I MIN-MAX Probley prograowae celowego lorazowego to probley prograowae ateatyczego elowego, który oża sktecze zlearyzować

Bardziej szczegółowo

PODSTAWY I ZASTOSOWANIA RACHUNKU TENSOROWEGO

PODSTAWY I ZASTOSOWANIA RACHUNKU TENSOROWEGO PRACE PP FR REPOR /007 Jaa Ostrowsa - Maceewsa PODAWY ZAOOWANA RACHUNKU ENOROWEGO (Wyład a tudach Dotoracch w PP PAN) NYU PODAWOWYCH PROBLEMÓW ECHNK POLKEJ AKADEM NAUK WARZAWA 007 BN 978-8-89687-0-9 N

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

Dokonajmy zestawienia wszystkich równań teorii sprężystości. 1. Różniczkowe równania równowagi (warunki Naviera)

Dokonajmy zestawienia wszystkich równań teorii sprężystości. 1. Różniczkowe równania równowagi (warunki Naviera) Wyład 4 Blas rówań teor srężystośc Dooamy zestawea wszystch rówań teor srężystośc Gra rówań. Różczowe rówaa rówowag (war Navera Lczba rówań Lczba ewadomych X 6 (. Zwąz geometrycze (rówaa Cachy ego ( 6

Bardziej szczegółowo

Definicja 3.9. Zadanie interpolacji wymiernej polega na znalezieniu dla danej funkcji f funkcji wymiernej W mn postaci

Definicja 3.9. Zadanie interpolacji wymiernej polega na znalezieniu dla danej funkcji f funkcji wymiernej W mn postaci 8 Iy wose z twerdzea. est Wose.. Jeśl ua a ągłą poodą rzędu a odu [a, b] zaweraąy węzły rzezywste x (,,..., ) put x, to stee wartość > [a, b], przy zy > >(x), że p ( x) rx ( ) ( )! ( ) W dowodze tego wosu

Bardziej szczegółowo

ĆWICZENIE 5 TESTY STATYSTYCZNE

ĆWICZENIE 5 TESTY STATYSTYCZNE ĆWICZENIE 5 TESTY STATYSTYCZNE Cel Przedstawee wybraych testów statystyczych zasad wyboru właścwego testu przeprowadzea go oraz terpretac wyów. Wprowadzee teoretycze Testem statystyczym azywamy metodę

Bardziej szczegółowo

Teoria i metody optymalizacji

Teoria i metody optymalizacji Sforułowae owae zaaa otyalzacj elowej bez ograczeń: Fukcja celu f( : Zaae otyalzacj olega a zalezeu wektora zeych ecyzyjych aleŝącego o zboru rozwązań ouszczalych R takego Ŝe la R Co jest rówozacze zasow:

Bardziej szczegółowo

n R ZałóŜmy, Ŝe istnieje d, dla którego: Metody optymalizacji Dr inŝ. Ewa Szlachcic otwarte otoczenie R n punktu x, Ŝe

n R ZałóŜmy, Ŝe istnieje d, dla którego: Metody optymalizacji Dr inŝ. Ewa Szlachcic otwarte otoczenie R n punktu x, Ŝe Sforułowae owae zaaa otyalzacj elowej bez ograczeń: Fukcja celu f() : Zaae otyalzacj olega a zalezeu wektora zeych ecyzyjych aleŝącego o zboru rozwązań ouszczalych R takego Ŝe la R Co jest rówozacze zasow:

Bardziej szczegółowo

. Wtedy E V U jest równa

. Wtedy E V U jest równa Prawdopodobeństwo statystyka 7.0.0r. Zadae Dwuwymarowa zmea losowa Y ma rozkład cągły o gęstośc gdy ( ) 0 y f ( y) 0 w przecwym przypadku. Nech U Y V Y. Wtedy E V U jest rówa 8 7 5 7 8 8 5 Prawdopodobeństwo

Bardziej szczegółowo

Agenda. Politechnika Poznańska WMRiT ZST. Piotr Sawicki Optymalizacja w transporcie 1. Kluczowe elementy wykładu

Agenda. Politechnika Poznańska WMRiT ZST. Piotr Sawicki Optymalizacja w transporcie 1. Kluczowe elementy wykładu Poltechka Pozańska WMRT ZST Tytuł: 05 Lokalzaca obektów. Model PoPr Zastosowae prograowaa lowego Autor: Potr SAWICKI Zakład Systeów Trasportowych WMRT PP potr.sawck@put.poza.pl www.put.poza.pl/~potr.sawck

Bardziej szczegółowo

Lista 6. Kamil Matuszewski X X X X X X X X X X X X

Lista 6. Kamil Matuszewski X X X X X X X X X X X X Lsta 6 Kaml Matuszewsk 9..205 2 3 4 5 6 7 9 0 2 3 4 5 6 7 X X X X X X X X X X X X Zadae Lewa stroa: W delegacj możemy meć od do osób. Wyberamy ( k) osób a k sposobów wyberamy przewodczącego. k =.. węc

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

08 Model planowania sieci dostaw 1Po_2Pr_KT+KM

08 Model planowania sieci dostaw 1Po_2Pr_KT+KM Nr Tytuł: Autor: 08 Model plaowaa sec dostaw 1Po_2Pr_KT+KM Potr SAWICKI Zakład Systeów Trasportowych WIT PP potr.sawck@put.poza.pl potr.sawck.pracowk.put.poza.pl www.facebook.co/potr.sawck.put Przedot:

Bardziej szczegółowo

m) (2.2) p) (2.3) r) (2.4)

m) (2.2) p) (2.3) r) (2.4) Ekooetra dr ż. Zbgew Tarapata Wkład r : Postace zadań prograowaa lowego grafcza etoda rozwązwaa zadań PL POSTACIE ZADAŃ PROGRAMOWANIA LINIOWEGO Zadae decze w któr wszstke relace są lowe oraz wszstke zee

Bardziej szczegółowo

Współczynnik korelacji rangowej badanie zależności między preferencjami

Współczynnik korelacji rangowej badanie zależności między preferencjami Współczyk korelacj ragowej badae zależośc mędzy preferecjam Przemysław Grzegorzewsk Istytut Badań Systymowych PAN ul. Newelska 6 01-447 Warszawa E-mal: pgrzeg@bspa.waw.pl Pla referatu: Klasycze metody

Bardziej szczegółowo

[ ] WSPÓŁCZYNNIK EKSCESU WEKTORA LOSOWEGO. Wprowadzenie. Katarzyna Budny =, (1)

[ ] WSPÓŁCZYNNIK EKSCESU WEKTORA LOSOWEGO. Wprowadzenie. Katarzyna Budny =, (1) Katarzya Budy Uwersytet Ekoomczy w Krakowe WSPÓŁCZYNNIK EKSCESU WEKTORA LOSOWEGO Wprowadzee Jedą z podstawowych mar spłaszczea czy też kocetrac rozkładu zmee losowe edowymarowe wokół średe est kurtoza

Bardziej szczegółowo

T. Hofman, Wykłady z Termodynamiki technicznej i chemicznej, Wydział Chemiczny PW, kierunek: Technologia chemiczna, sem.

T. Hofman, Wykłady z Termodynamiki technicznej i chemicznej, Wydział Chemiczny PW, kierunek: Technologia chemiczna, sem. . Hofma Wyłady z ermodyam techczej chemczej Wydzał Chemczy PW erue: echologa chemcza sem.3 215/216 WYKŁAD 3-4. D. Blase reatorów chemczych E. II zasada termodyam F. Kosewecje zasad termodyam D. BILANE

Bardziej szczegółowo

Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych

Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych Sprawdzee stateczośc skarpy wykopu pod składowsko odpadów koualych Ustalee wartośc współczyka stateczośc wykoae zostae uproszczoą etodą Bshopa, w oparcu o poższą forułę: [ W s( α )] ( φ ) ( φ ) W ta F

Bardziej szczegółowo

BADANIE STATYSTYCZNEJ CZYSTOŚCI POMIARÓW

BADANIE STATYSTYCZNEJ CZYSTOŚCI POMIARÓW INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII RODUKCJI I TECHNOLOGII MATERIAŁÓW OLITECHNIKA CZĘSTOCHOWSKA RACOWNIA DETEKCJI ROMIENIOWANIA JĄDROWEGO Ć W I C Z E N I E N R J-6 BADANIE STATYSTYCZNEJ CZYSTOŚCI OMIARÓW

Bardziej szczegółowo

Zasady wyznaczania minimalnej wartości środków pobieranych przez uczestników od osób zlecających zawarcie transakcji na rynku terminowym

Zasady wyznaczania minimalnej wartości środków pobieranych przez uczestników od osób zlecających zawarcie transakcji na rynku terminowym Załązn nr 3 Do zzegółowyh Zasad rowadzena Rozlzeń Transa rzez KDW_CC Zasady wyznazana mnmalne wartoś środów oberanyh rzez uzestnów od osób zleaąyh zaware transa na rynu termnowym 1. Metodologa wyznazana

Bardziej szczegółowo

Spis treści ZŁOŻONOŚĆ OBLICZEŃ 5 ELEMENTY TEORII ZŁOŻONOŚCI OBLICZENIOWEJ I PROBLEM DZIELNIKÓW 5

Spis treści ZŁOŻONOŚĆ OBLICZEŃ 5 ELEMENTY TEORII ZŁOŻONOŚCI OBLICZENIOWEJ I PROBLEM DZIELNIKÓW 5 Ss treśc SPIS TREŚCI WYKŁAD 5 ZŁOŻONOŚĆ OBLICZEŃ 5 ELEMENTY TEORII ZŁOŻONOŚCI OBLICZENIOWEJ I PROBLEM DZIELNIKÓW 5 WYKŁAD 9 TESTY PIERWSZOŚCI I LICZBY PSEUDOPIERWSZE 9 LICZBY PSEUDOPIERWSZE EULERA WYKŁAD

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 4 Nieparametryczne testy istotności ZADANIE DOMOWE. Strona 1

KURS STATYSTYKA. Lekcja 4 Nieparametryczne testy istotności ZADANIE DOMOWE.  Strona 1 KURS STATYSTYKA Lecja 4 Nearametrycze testy stotośc ZADANIE DOMOWE www.etraez.l Stroa 1 Część 1: TEST Zazacz orawą odowedź (tylo jeda jest rawdzwa). Pytae 1 W testach earametryczych a) Oblczamy statystyę

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Iżyerska dr hab. ż. Jacek Tarasuk AGH, WFIS 013 Wykład 3 DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE, PODSTAWY ESTYMACJI Dwuwymarowa, dyskreta fukcja rozkładu rawdoodobeństwa, Rozkłady brzegowe

Bardziej szczegółowo

MODELE OBIEKTÓW W 3-D3 część

MODELE OBIEKTÓW W 3-D3 część WYKŁAD 5 MODELE OBIEKTÓW W -D część la wykładu: Kocepcja krzywej sklejaej Jedorode krzywe B-sklejae ejedorode krzywe B-sklejae owerzche Bezera, B-sklejae URBS 1. Kocepcja krzywej sklejaej Istotą z praktyczego

Bardziej szczegółowo

Analiza spektralna stóp zwrotu z inwestycji w akcje

Analiza spektralna stóp zwrotu z inwestycji w akcje Nasz rye aptałowy, 003 r3, str. 38-43 Joaa Góra, Magdalea Osńsa Katedra Eoometr Statysty Uwersytet Mołaja Kopera w Toruu Aalza spetrala stóp zwrotu z westycj w acje. Wstęp Agregacja w eoom eoometr bywa

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Zaawasowae metod umercze Programowae lowe (problem dual, program low w lczbach całkowtch) Dualość est kluczowm poęcem programowaa lowego. Pozwala a udowodee że otrzmwae rozwązaa są optmale. Zagadee duale

Bardziej szczegółowo

Materiały do ćwiczeń 2 Zmienna losowa dyskretna Rozkład zmiennej losowej dyskretnej Powtarzanie doświadczeń

Materiały do ćwiczeń 2 Zmienna losowa dyskretna Rozkład zmiennej losowej dyskretnej Powtarzanie doświadczeń Materały do ćwczeń Zmea losowa dysreta Rozład zmeej losowej dysretej Powtarzae dośwadczeń Przygotował: Dr ż Wojcech Artchowcz Katedra Hydrotech PG Zma 4/5 ZMIEA LOSOWA DYSKRETA I JEJ ROZKŁAD PRAWDOPODOBIEŃSTWA

Bardziej szczegółowo

ZMIENNE LOSOWE WIELOWYMIAROWE

ZMIENNE LOSOWE WIELOWYMIAROWE L.Kowals Zmee losowe welowmarowe ( ΩS P ZMIENNE LOSOWE WIELOWMIAROWE - ustaloa przestrzeń probablstcza. (... - zmea losowa - wmarowa (wetor losow cąg losow. : Ω R (fuca borelowsa P : Β R [0 - rozład zmee

Bardziej szczegółowo

STATYKA. Cel statyki. Prof. Edmund Wittbrodt

STATYKA. Cel statyki. Prof. Edmund Wittbrodt STATYKA Cel statyk Celem statyk jest zastąpee dowolego układu sł ym, rówoważym układem sł, w tym układem złożoym z jedej tylko sły jedej pary sł (redukcja do sły mometu główego) lub zbadae waruków, jake

Bardziej szczegółowo

IV. ZMIENNE LOSOWE DWUWYMIAROWE

IV. ZMIENNE LOSOWE DWUWYMIAROWE IV. ZMIENNE LOSOWE DWUWYMIAROWE 4.. Rozkład zmeej losowej dwuwymarowej Defcja 4.. Uporządkowaą parę (X, Y) azywamy zmeą losową dwuwymarową, jeśl każda ze zmeych X Y jest zmeą losową. Defcja 4.. Fukcję

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/ n 333))

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/ n 333)) 46. Wskazać liczbę rzeczywistą k, dla której graica k 666 + 333)) istieje i jest liczbą rzeczywistą dodatią. Obliczyć wartość graicy przy tak wybraej liczbie k. Rozwiązaie: Korzystając ze wzoru a różicę

Bardziej szczegółowo

ROZKŁADY ZMIENNYCH LOSOWYCH

ROZKŁADY ZMIENNYCH LOSOWYCH ROZKŁADY ZMIENNYCH LOSOWYCH ZMIENNA LOSOWA Defcja. Zmeą losową jest fukcja: X: E -> R która każdemu zdarzeu elemetaremu E przypsuje lczbę rzeczywstą e X ( e) R DYSTRYBUANTA Dystrybuatą zmeej losowej X

Bardziej szczegółowo

E. KONSEKWENCJE ZASAD TERMODYNAMIKI

E. KONSEKWENCJE ZASAD TERMODYNAMIKI WYKŁAD 7-1. E. Kosewece zasad terodya F. Odzaływaa ędzycząsteczowe rówaa stau G. Os rówowag fazowych dla substac czystych H. Foralstya osu uładów welosładowych E. KONEKWENCJE ZAAD EMODYNAMIKI 44. Zarówo

Bardziej szczegółowo

VI. TWIERDZENIA GRANICZNE

VI. TWIERDZENIA GRANICZNE VI. TWIERDZENIA GRANICZNE 6.. Wprowadzee Twerdzea gracze dotyczą własośc graczych cągów zmeych losowych dzelą sę a:! twerdzea lokale opsują zbeżośc cągu fukcj prawdopodobeństwa w przypadku cągu {X } zmeych

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY SKOKOWE

PODSTAWOWE ROZKŁADY SKOKOWE ODSTAWOWE ROZKŁADY SKOKOWE Rozatruy dowyarow rozłady soow. rzyo. Za losowa a rozład soowy dysrty gdy a sończoy lub rzlczaly zbór wartośc. Rozłady soow aczęśc orślay rzz oda fuc rawdoodobństwa. arostsza

Bardziej szczegółowo

- ---Ą

- ---Ą Ą ż ą ą ą Ą ó ą ł ą ł Ąą ż ś Ę ÓŁ Ę Ó ŁĄ ŁŚĆ ł ż ł ż ó ł Ó Ć Ą Ł ŁÓ ŁŚ Ą ż Ó ŁÓ Ę ś ś ł ż ł Ą ęś Ą ń ź ć ą ą ę ń ż ąń ę ę ć óź ŁĄ ą ł ę ę ł ę ń Ą Ęł ą Ł ł ł ż ó ą ł ęę ĘĘ ęć ó ą ń ł ą Ą ęś ł ś ÓŁ Ą ę ę

Bardziej szczegółowo

Matematyczny opis ryzyka

Matematyczny opis ryzyka Aalza ryzyka kosztowego robót remotowo-budowlaych w warukach epełe formac Mgr ż Mchał Bętkowsk dr ż Adrze Powuk Wydzał Budowctwa Poltechka Śląska w Glwcach MchalBetkowsk@polslpl AdrzePowuk@polslpl Streszczee

Bardziej szczegółowo

Reprezentacje grup symetrii. g s

Reprezentacje grup symetrii. g s erezentace ru ymetr Teora rerezentac dea: oeracom ymetr rzyać oeratory dzałaące w rzetrzen func zwązać z nm funce, tóre oeratory te rzerowadzaą w ebe odobne a zb. untów odcza oerac ymetr rozważmy rzeztałcene

Bardziej szczegółowo

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min Fukca warogodośc Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x;. Fukcą warogodośc dla próby x azywamy welkość: ( x; f ( x ; L Twerdzee (Cramera-Rao: Mmala wartość warac m dowolego eobcążoego

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

Funkcja wiarogodności

Funkcja wiarogodności Fukca warogodośc Defca: Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x; θ. Fukcą warogodośc dla próby x azywamy welkość: ( x; θ f ( x ; θ L Uwaga: Fukca warogodośc to e to samo co łącza

Bardziej szczegółowo

Ę ę ę Łó-ź ----

Ę ę ę Łó-ź ---- -Ę- - - - - - -ę- ę- - Łó-ź -ś - - ó -ą-ę- - -ł - -ą-ę - Ń - - -Ł - - - - - -óż - - - - - - - - - - -ż - - - - - -ś - - - - ł - - - -ą-ę- - - - - - - - - - -ę - - - - - - - - - - - - - ł - - Ł -ń ł - -

Bardziej szczegółowo

Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu

Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu DYNAMICZNE MODELE EKONOMERYCZNE X Ogólopolske Semarum Naukowe, 4 6 wrześa 2007 w oruu Katedra Ekoometr Statystyk, Uwersytet Mkołaja Koperka w oruu Moka Jezorska - Pąpka Uwersytet Mkołaja Koperka w oruu

Bardziej szczegółowo

Parametry zmiennej losowej

Parametry zmiennej losowej Eonometra Ćwczena Powtórzene wadomośc ze statysty SS EK Defncja Zmenną losową X nazywamy funcję odwzorowującą przestrzeń zdarzeń elementarnych w zbór lczb rzeczywstych, taą że przecwobraz dowolnego zboru

Bardziej szczegółowo

Badanie energetyczne płaskiego kolektora słonecznego

Badanie energetyczne płaskiego kolektora słonecznego Katedra Slnów Salnowych Pojazdów ATH ZAKŁAD TERMODYNAMIKI Badane energetyczne łasego oletora słonecznego - 1 - rowadzene yorzystane energ celnej romenowana słonecznego do celów ogrzewana, chłodzena oraz

Bardziej szczegółowo

1.3. STAN NAPRĘŻENIA STRONA STATYCZNA

1.3. STAN NAPRĘŻENIA STRONA STATYCZNA J. Wyrwał, Wykłady z echak aterałów.. STAN NAPRĘŻENA STRONA STATYCZNA... Klasyfkaca sł Sły wyrażaą wzaee oddzaływaa ędzy obekta ateraly lub ch częśca. Są oe rezultate dzałaa ól słowych a asy ładuk krocząstek

Bardziej szczegółowo

Bajki kombinatoryczne

Bajki kombinatoryczne Artyuł powstał a podstawe odczytu pod tym samym tytułem, wygłoszoego podczas XXXVI Szoły Matematy Poglądowej Pomysł czy rachue? w Grzegorzewcach, styczeń 006. Baj ombatorycze Joaa JASZUŃSKA, Warszawa Ja

Bardziej szczegółowo

ď ź ź Ä Ď É Ě Ź Ą Ü Á Ą Ń Đ ő ý ý ő ý Ú Ä Á Ą ô Ó Ó ŕ đ ý Á Ą Đ í ő É ä Ä Ä Ď ď ŕ Ń ř ý ő Ú Á Ĺ Ą Ď Ó í úł ő Ł Ä Á Ą Ď Ó ŕ Ď ý ý ő ý ĄÁ Á Ą Ď Ń ŕ Ü ä ý ő ý ý Đ ý ő Ú ď Ä Ą Ą É Ó Ł ő ý ő ý ý ŕ ŕ Á Ą Ń É

Bardziej szczegółowo

teorii optymalizacji

teorii optymalizacji Poltechka Gdańska Wydzał Oceaotechk Okrętowctwa St. II stop. se. I Podstawy teor optyalzac wykład 7 M. H. Ghae Ma 5 Podstawy teor optyalzac Oceaotechka II stop. se. I 5 Podstawy teor optyalzac Oceaotechka

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale

Bardziej szczegółowo

Miary statystyczne. Katowice 2014

Miary statystyczne. Katowice 2014 Mary statystycze Katowce 04 Podstawowe pojęca Statystyka Populacja próba Cechy zmee Szereg statystycze Wykresy Statystyka Statystyka to auka zajmująca sę loścowym metodam aalzy zjawsk masowych (występujących

Bardziej szczegółowo

Szeregi czasowe, modele DL i ADL, przyczynowość, integracja

Szeregi czasowe, modele DL i ADL, przyczynowość, integracja Szereg czasowe, modele DL ADL, rzyczyowość, egracja Szereg czasowy, o cąg realzacj zmeej losowej, owedzmy y, w kolejych okresach czasu: { y } T, co rówoważe możemy zasać: = 1 y = { y1, y,..., y T }. Najogólej

Bardziej szczegółowo

Pojęcie statystyki. Definicja. Wektorową funkcję mierzalną T: X T(X)=(T 1 (X),...,T k (X)) R k wymiarową statystyką. próby X nazywamy k

Pojęcie statystyki. Definicja. Wektorową funkcję mierzalną T: X T(X)=(T 1 (X),...,T k (X)) R k wymiarową statystyką. próby X nazywamy k Statystya Wyład Adam Ćmel A4 5 cmel@agh.edu.pl Pojęce statysty Pojęce statysty w statystyce matematyczej jest odpowedem pojęca zmeej losowej w rachuu prawdopodobeństwa. Nech X(X,...,X ) będze próbą z pewej

Bardziej szczegółowo

i i i = (ii) TAK sprawdzamy (i) (i) NIE

i i i = (ii) TAK sprawdzamy (i) (i) NIE Egzam uaruszy z aźdzera 009 r. Maemaya Fasowa Zadae ( ) a a& a ( Da) a&& ( Ia) a a&& D I a a&& a a ( ) && ( ) 0 a a a 0 ( ) a 4 0 ( ) a () K srawdzamy () ( ) a& a ( ) a ( ) a&& a&& ( ) a&& ( ) a&& () NIE

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby

Bardziej szczegółowo

Badania Operacyjne (dualnośc w programowaniu liniowym)

Badania Operacyjne (dualnośc w programowaniu liniowym) Badaa Operacye (dualośc w programowau lowym) Zadae programowaa lowego (PL) w postac stadardowe a maksmum () c x = max, podczas gdy spełoe są erówośc () ax = b ( m ), x 0 ( ) Zadae programowaa lowego (PL)

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8 Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja

Bardziej szczegółowo

05 Klasyfikacja modeli planowania sieci dostaw Model: 1Po_1Pr_KT

05 Klasyfikacja modeli planowania sieci dostaw Model: 1Po_1Pr_KT Nr Tytuł: Autor: 05 Klasyfkacja odel plaowaa sec dostaw Model: 1Po_1Pr_KT Potr SAWICKI Zakład Systeów Trasportowych WIT PP potr.sawck@put.poza.pl potr.sawck.pracowk.put.poza.pl www.facebook.co/potr.sawck.put

Bardziej szczegółowo

Matematyka dyskretna. 10. Funkcja Möbiusa

Matematyka dyskretna. 10. Funkcja Möbiusa Matematyka dyskreta 10. Fukcja Möbusa Defcja 10.1 Nech (P, ) będze zborem uporządkowaym. Mówmy, że zbór uporządkoway P jest lokale skończoy, jeśl każdy podzał [a, b] P jest skończoy, a, b P Uwaga 10.1

Bardziej szczegółowo

Niezawodność i diagnostyka Kierunek AiR, sem. V, rok. ak. 2010/11 STRUKTURY I MIARY PROBABILISTYCZNE SYSTEMÓW METODA DRZEWA (STANÓW) NIEZDATNOŚCI

Niezawodność i diagnostyka Kierunek AiR, sem. V, rok. ak. 2010/11 STRUKTURY I MIARY PROBABILISTYCZNE SYSTEMÓW METODA DRZEWA (STANÓW) NIEZDATNOŚCI Nezawodość dagosyka Keruek, sem. V, rok. ak. 00/ STUKTUY I MIY POILISTYCZNE SYSTEMÓW METOD DZEW STNÓW NIEZDTNOŚCI. Srukury obeków złożoych ch rerezeace Wsółczese obeky sysemy echcze, a szczególe wększe

Bardziej szczegółowo

ć Ó ć Ź ć ć ć ć ć ć Ś Ą ć ź Ź ć Ź Ź ć ć ć Ą Ź ĄĄ ć ź ć ć ć ć ć ć Ą ź Ó ć ć ć ć ć ć ć Ą ć ź ć ć ć Ś Ą ź ć Ó ć ć ć Ł ć ć Ą ć ć Ą Ó ć ć ć ć ź ć ć ć ć ć ć Ść ć ć Ó ć Ę ć ć ÓĄ Ś ć ć ć Ą ć ć Ź ź Ś ć Ź ć ć ć

Bardziej szczegółowo

06 Model planowania sieci dostaw 1Po_1Pr_KT+KM

06 Model planowania sieci dostaw 1Po_1Pr_KT+KM Nr Tytuł: Autor: 06 Model plaowaa sec dostaw 1Po_1Pr_KT+KM Potr SAWICKI Zakład Systeów Trasportowych WIT PP potr.sawck@put.poza.pl potr.sawck.pracowk.put.poza.pl www.facebook.co/potr.sawck.put Przedot:

Bardziej szczegółowo

FINANSE II. Model jednowskaźnikowy Sharpe a.

FINANSE II. Model jednowskaźnikowy Sharpe a. ODELE RYNKU KAPITAŁOWEGO odel jedowskaźkowy Sharpe a. odel ryku kaptałowego - CAP (Captal Asset Prcg odel odel wycey aktywów kaptałowych). odel APT (Arbtrage Prcg Theory Teora artrażu ceowego). odel jedowskaźkowy

Bardziej szczegółowo

PROJEKT I WALIDACJA URZĄDZEŃ POMIAROWYCH

PROJEKT I WALIDACJA URZĄDZEŃ POMIAROWYCH M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X P R O J E K T I W A L I D A C J A U R Z Ą D Z E P O M I A R O W Y C H a S I Y W L I N I E I K Ą T A W Y C H Y L E N I A L I

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne

XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne XXX OLIPIADA FIZYCZNA TAP I Zadana teoretczne Nazwa zadana ZADANI T1 Na odstawe wsółczesnch badań wadomo że jądro atomowe może znajdować sę tlo w stanach o oreślonch energach odobne ja dobrze znan atom

Bardziej szczegółowo

Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Różczkowae fukcj rzeczywstych welu zmeych rzeczywstych Matematyka Studum doktoracke KAE SGH Semestr let 8/9 R. Łochowsk Pochoda fukcj jedej zmeej e spojrzee Nech f : ( α, β ) R, α, β R, α < β Fukcja f

Bardziej szczegółowo

ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA

ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA L. Kowals - styacja TYMACJA UNKTOWA I RZDZIAŁOWA ROZKŁADY ODTAWOWYCH TATYTYK zea losowa odpowed badaej cechy,,,..., próba losowa zea losowa wyarowa, ezależe zee losowe o ta say rozładze ja. Jeśl x jest

Bardziej szczegółowo