Lista zagadnień omawianych na wykładzie w dn r. :

Wielkość: px
Rozpocząć pokaz od strony:

Download "Lista zagadnień omawianych na wykładzie w dn r. :"

Transkrypt

1 Lista zagadnień omawianych na wykładzie w dn r. : Granica funkcji Definicja sąsiedztwa punktu. Sąsiedztwo 0 R o promieniu r > 0: S 0, r = 0 r, 0 + r\{ 0 } 2. Sąsiedztwo lewostronne 0 R o promieniu r > 0: S 0, r = 0 r, 0 3. Sąsiedztwo prawostronne 0 R o promieniu r > 0: S + 0, r = 0, 0 + r Uwaga. Jeżeli w rozważaniach wartość r > 0 nie jest istotna, piszemy krótko: S 0, S 0, lub S Sąsiedztwo : każdy zbiór postaci S =, b, b R 5. Sąsiedztwo : każdy zbiór postaci S = a,, a R Niech a i A oznaczają symbole a A g Definicja. granicy funkcji w punkcie w sensie Heinego Niech funkcja f będzie określona przynajmniej na pewnym sąsiedztwie Sa. Mówimy, że f ma granicę A, gdy a, co symbolicznie zapisujemy w postaci równości f = A, wtedy i tylko wtedy, gdy a { n} { n} Sa W przypadku [ n = a f n = A. a = 0, A = g mówimy o granicy właściwej funkcji w punkcie a 2. a = 0, A = g mówimy o granicy właściwej lewostronnej funkcji w punkcie a, piszemy w skrócie f 0 3. a = + 0, A = g mówimy o granicy właściwej prawostronnej funkcji w punkcie a, piszemy w skrócie f + 0 ]

2 4. A = lub mówimy odpowiednio o granicy niewłaściwej 5. a = lub, A = g mówimy o granicy funkcji w Przykład. Niech { sin f = dla 0 0 dla = 0, 0 = 0. Wtedy f = 0. Uzasadnienie. Niech n 0. Ponieważ f n = n sin / n, wystarczy zauważyć, że ciąg sin / n jest ograniczony. W takim przypadku f n = 0, co należało udowodnić. rys.. y = sin / Twierdzenie o nieistnieniu granicy funkcji w punkcie 0 Niech funkcja f będzie określona przynajmniej na sąsiedztwie S 0. Jeżeli istnieją ciągi { n}, { n} spełniające warunki:. n = 0, przy czym n 0 dla każdego n N, 2. n = 0, przy czym n 0 dla każdego n N, 3. f n f n, to granica f właściwa ani niewłasciwa nie istnieje. Przykład 2.

3 Niech f = { sin dla 0 0 dla = 0, 0 = 0. Wtedy funkcja f nie ma granicy, 0. Uzasadnienie. Rozpatrzmy dwa ciągi. n = nπ ; 2. n = 2nπ+π/2 W przypadku. f n = 0, n N, więc ciąg f n jest zbieżny do 0. W przypadku 2. f n =, n N, więc ciąg f n jest zbieżny do. Te spostrzeżenia oznaczają, że f nie ma granicy, gdy 0. rys. 2. y = sin / Twierdzenie 2 o nieistnieniu granicy funkcji w nieskończoności Niech funkcja f będzie określona przynajmniej na sąsiedztwie S. Jeżeli istnieją ciągi { n}, { n} spełniające warunki:. n =, 2. n =, 3. f n f n, to granica f właściwa ani niewłasciwa nie istnieje.

4 Twierdzenie 3 warunek konieczny i wystarczający istnienia granicy Funkcja f ma w punkcie 0 granicę włściwą lub niewłaściwą wtedy i tylko wtedy, gdy 0 f = f. + 0 wspólna wartość granic jednostronnych jest wtedy granicą funkcji. Twierdzenie 4 o arytmetyce granic Jeżeli funkcje f i g mają granice właściwe w punkcie 0, to. f + g = f + g, 2. f g = f g, 3. f g = f g, f 4. = f 0 g g 0, o ile 0 g 0, 5. f g = f g 0, Twierdzenie 5 o granicy funkcji złożonej Jeżeli funkcje f i g spełniają warunki:. f = y 0, 2. f y 0 dla każdego S 0, 3. y y0 gy = q, to gf = q. Twierdzenie 6 o trzech funkcjach Jeżeli funkcje f, g, h spełniają warunki:. f g h dla każdego S 0, 2. f = h = p, to g = p. Twierdzenie 7 o dwóch funkcjach Jeżeli funkcje f, g spełniają warunki:

5 . f g dla każdego S 0, 2. f =, to g =. Uwaga. Twierdzenie o dwóch funkcjach jest prawdziwe także dla granic jednostronnych oraz dla granic w nieskończonności. Ponadto prawdziwe sa analogiczne twierdzenia dla granicy niewłaściwej funkcji równej. Przykład 3. Ważne granice ciągów a a =, gdzie a >, k N n k b n! =, gdzie a > 0 a n c sin = 0 n d n sin = n e n ln + n = f n log a + n =, gdzie a > 0, a Uzasadnienie a Niech a = + y, y > 0. Wtedy ze wzoru Newtona dla n > k otrzymujemy n n n n a n = + y n = + y + y y k+ + + y n > 2 k + n n y k+ = k + k +! yk+ nn n 2... n k Stąd a n n > k k +! nn n 2... n k yk+ n k Zauważamy, że k +! nn n 2... n k yk+ = n k 2... n n k +! yk+ k n n =,

6 stąd wynika żądana granica. b Wybieramy n 0 takie, że a 2 < n 2 dla n > n 0. Wtedy zachodzi a 2 < n 2, a2 < n 2 +, a2 < n 2 + 2,..., a2 < n; n n n; a n = a 2 n 2 < n 2 n! n a > n 2!, gdy n. c z nierówności 0 sin dla 0 < < π 2 mamy 0 sin n n. Istnienie i wartość granicy wynikają teraz z twierdzenia o trzech ciągach. d z nierówności cos sin dla 0 < < π 2 mamy cos n = sin 2 n n sin n. Istnienie i wartość granicy wynikają teraz z twierdzenia o trzech ciągach. e Pamiętamy, że ciąg e n = + n n ma następujące własności. e n jest niemalejący 2. < e n < e, n N 3. e n = e Zastosujemy metodę nie wprost a contrario. Zakładamy, że istnieje ɛ > 0 takie, że dla nieskończenie wielu n, wyrazy n ln + n = ln en leżą poza przedziałem ɛ,, tzn. n ln + < ɛ, dla nieskończenie wielu n N n Stąd e n = + n n < e ɛ, dla nieskończenie wielu n N

7 Ostatnie stwierdzenie nie może być prawdziwe, bo ciąg e n e = e. Uzyskana sprzeczność dowodzi prawdziwości naszego twierdzenia. Przykład 4. Granice podstawowych funkcji a a = a 0, gdzie a, 0 > 0 b sin = sin 0 ; cos = cos 0 c a = a 0, gdzie a, 0 > 0 d log a = log a 0, gdzie a, 0 > 0, a e + = e; Uzasadnienie. a Przypadek 0 +. Metoda dowodu nie wprost a contrario. Załóżmy, przeciwnie, że a a 0. Wtedy istnieje ciąg n taki, że n 0 + i a n a 0, gdy n. Z ostatniego warunku wynika, że istnieje taki ɛ > 0, że nieskończenie wiele wyrazów ciągu a n jest poza przedziałem a 0, a 0 + ɛ, inaczej dla nieskończenie wielu n zachodzi nierówność a 0 < a 0 + ɛ < a n lub równoważnie 0 < a 0 + ɛ a < n. Ostatnia nierówność jest sprzeczna z założeniem, że n 0 +. Uzyskana sprzeczność dowodzi prawdziwości naszego twierdzenia. Przypadek 0, sprowadzamy do rozpatrzonego wyżej zauważając, że wtedy 0 + i stąd a = czyli a a 0 również w tym przypadku. a a =, 0 a 0 b Przypadek 0+. Zachodzi nierówność 0 sin dla 0 < < π. Z twierdzenia o trzech funkcjach wynika 2 sin = 0 +

8 Przypadek 0 sprowadzamy do wcześniejszego przyjmując y =. Wtedy sin = sin y i y 0+, więc sin = sin y = 0. y 0+ Dla cos otrzymujemy cos = sin 2 = = cos Ogólny przypadek dla sin sprowadzimy do już rozpatrzonego korzystając ze wzoru trygonometrycznago sin = sin[ ] = sin 0 cos 0 + sin 0 cos 0 Przyjmując y = 0, otrzymujemy 0 sin = cos 0 y 0 sin y + sin 0 y 0 cos y = sin 0, co należało udowodnić. W przypadku funkcji cos skorzystamy ze wzoru cos = sin 2. c Przypadek a >, 0+. Pamiętamy, że a n = n a = Niech ɛ > 0 i n 0+, tzn. 2 n = 0, n > 0 Wtedy z wynika, że istnieje n > 0 takie, że 3 < a n < + ɛ, dla n n, Podobnie z 2 wynika, że istnieje n 0 > 0 takie, że 4 0 < n < n, dla n > n 0 Z nierówności 3 i 4 wynika, że < a n < a n < + ɛ, inaczej a n < ɛ dla n > ma{n 0, n }, co dowodzi prawdziwości naszego twierdzenia.

9 W przypadku ogólnym, gdy 0, zauważamy na wstępie, że a = a 0 a 0 = a 0 a y, gdzie y = 0 0. Teraz możemy skorzystać z rozpatrzonego już przypadku. d Przypadek ln + = 0. Udowodnimy najpierw nierówność + ln + 5 n n, dla n N Uzasadnienie. Pamiętamy, że ciąg e n = + n 6 n jest niemalejący stąd < e n = + n n e i po zlogarytmowaniu funkcja ln jest rosnąca! otrzymujemy 0 < ln e n < n ln + n <, Stąd już wynika 5. Niech n 0+ i niech ɛ > 0. Wtedy istnieją n 0, n N takie, że 0 < n 0 < ɛ 0 < n < n 0, dla n > n Stąd otrzymujemy 0 < ln + n < ln + n0 < < ɛ, dla n > ma{n 0, n }, n 0 co oznacza, że ln + = 0. + Przechodzimy do uzasadnienia granic 7 8 ln = ln log a = log a 0 0 +

10 Granicę 7 otrzymamy zauważając, że ln = ln 0 = ln 0 + ln + y, gdzie y = 0 0 ln = ln 0 + ln + y = ln 0 0 y 0+ Granicę 8 otrzymamy zuważając, że log a = ln ln a e Na początku rozpatrzymy przypadek 0+. Zaczniemy od udowodnienia nastęującego faktu Fakt 8. Niech m n będzie ciągiem liczb naturalnych takim, że m n =. Wtedy + mn = e m n Uwaga. Podane stwierdzenie nabiera podstawowego znaczenia w sytuacji, gdy ciąg m n nie jest podciągiem ciągu liczb naturalnych {n}. W tym drugim przypadku wystarczy powołać się na twierdzenie, że każdy podciąg ciągu zbieżnego jest zbieżny do granicy ciągu. Np. w przypadku ciągu m n = n 2 wystarczy powołać się na twierdzenie o granicy podciągu, natomiast w przypadku ciągu {m n } = {, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5,... }, który nie jest podciągiem ciągu liczb naturalnych {, 2, 3, 4, 5,... } nie możemy się powołać na to twierdzenie. Mamy wykazać, że zdanie + mn e m n < ɛ ɛ>0 n 0 n>n 0 jest prawdziwe. Wcześniej był badany ciąg e n = + n n, dla którego otrzymaliśmy. ciąg e n jest ograniczony, + n n 3, n N 2. ciąg e n jest niemalejący, e n e m, n m, n, m N 3. e n = e

11 Niech ɛ > 0. Wtedy istnieje n takie, że dla n > n zachodzi + n n e < ɛ, n n Ponieważ m n, istnieje n 0 takie, że m n > n dla n > n 0. Wtedy dla n > n 0 otrzymujemy + n + mn e n m n stąd + mn e m n + n e n < ɛ, n > ma{n0, n }, co dowodzi prawdziwości naszego faktu. Przechodzimy do dowodu właściwej granicy. Niech n. Zachodzą nierówności n n n + dla przypomnienia, n jest częścią całkowitą. Stąd otrzymujemy oszacowania + n + n + n + n + n n Dla ciągów skrajnych w tych nierównosciach mamy a n = b n = + n = + n + n + n + + n + = + n + n n n + n + Do obliczenia granic ciągów a n i b n zastosujemy Fakt 8 otrzymując a n = b n = e Teraz z twierdzenia o trzech ciagach wynika, że + n = e n co kończy tę część dowodu.

12 Przypadek 0 sprowadzimy do już rozpatrzonego. Niech y =. Wtedy + = y y y = = + y y y y Przyjmujemy z = y y, y = + = [ + z z z, stąd z+ ] z+ Teraz wystarczy zauwazyć, że jeśli 0, to z 0+ i skorzystać z granicy funkcji fz gz, gdzie fz = + z z, gz = z + fz = e, z 0+ gz = z 0+ Twierdzenie 9 o granicach niewłaściwych funkcji. p + = dla < p 2. p = dla 0 < p p 3. = 0 dla < p < 4. p = dla 0 < p p = 0 dla 0+ p < 6. p = dla < p 7. q = 0 dla q < 0 8. q = dla 0 < q Uwaga. Równości podane w tabelce są symboliczną formą zapisu twierdzeń o granicy funkcji. Np. równość p = 0, gdzie 0 + p <, jest skróconą postacią twierdzenia f > 0 dla każdego S 0, f <, g = Wyrażenia nieoznaczone 0 f g = Przykład 5. Granice podstawowych wyrażeń nieoznaczonych

13 sin tg a = b = c arc sin = d arctg = sh e = f tgh = ln+ log g = h a + =, gdzie 0 < a ln a i = j = ln a, gdzie a > 0 e k ± + m a a + = e l ± = a, gdzie a R + a = e a, gdzie a R Uzasadnienie. Wskazówki : Przypadek g. Zauważamy, że y = + e, gdy 0 ln + = ln y ln + = ln y = ln e =. y e Przypadek h. Zauważamy, że + = a log a +, ln + = ln a log a + log a + = ln + ln a Przypadek i. Przyjmujemy y = e, = ln + y i zauważamy, że jeśli 0, to y 0 e y = y 0 ln + y = Przypadek j. Zauważamy, że a = e ln a a = ey = ey y ln a, gdzie y = ln a

14 Przypadek k. Przyjmujemy y = i zauważamy, że jeśli ±, to y 0. W końcu + = + y y = e. y 0 ± Przypadek l. Przyjmujemy y = a. Zauważamy, że + a [ ] = + y a y = e a. y 0 Przypadek m. Przyjmujemy y = + a i zauważamy, że ln + = ln + y oraz jeśli 0, to y 0. a Dalej + a = y ln + ln + = ln + y ln + y a Przykład 6. Korzystając z granic wyrażeń nieoznaczonych obliczyć podane granice: sin 7 e a b c sin 5 sin 2 d e g ln 2 3 h j sin 3ctg 5 i k sin π l m ln+ e n π f tg π π ln+cos ln cos o ln+cos 3 2 Przypadek k Za pomocą kolejnych podstawień y = 3 i y = + z doprowadzamy do postaci, gdzie łatwo wyliczymy granicę 7 3 sin π 7 y sin πy = 7 y sin π3 y = + z 7 = z z sin πz + z 7 πz = z sin πz π Przypadek o Zauważamy, że cos = 2 cos 2 2 = 2 cos2 2. Za pomocą kolejnych podstawień y = 2 cos 2 2 = 2 sin2 2 i z = y

15 doprowadzamy do postaci, gdzie łatwo wyliczymy granicę ln cos 2 = 2 ln + z z ln y 2 sin2 2 = y 2 sin 2 2 /2 Przypadek n Za pomocą kolejnych podstawienia = π 2 + y doprowadzamy do postaci, gdzie łatwo wyliczymy granicę ln + cos ln + cos 3 ln sin y sin y ln sin y sin y = ln sin y ln + sin 3y = sin y sin 3y sin y y sin 3y ln + sin 3y = 3y sin 3y 3 sin 3y ln + sin 3y

1. Definicja granicy właściwej i niewłaściwej funkcji.

1. Definicja granicy właściwej i niewłaściwej funkcji. V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,

Bardziej szczegółowo

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Granice funkcji, asymptoty i ciągłość

Zadania z analizy matematycznej - sem. I Granice funkcji, asymptoty i ciągłość Zadania z analizy matematycznej - sem. I Granice funkcji asymptoty i ciągłość Definicja sąsiedztwo punktu. Niech 0 a b R r > 0. Sąsiedztwem o promieniu r punktu 0 nazywamy zbiór S 0 r = 0 r 0 0 0 + r;

Bardziej szczegółowo

Granice funkcji. XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21

Granice funkcji. XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21 Granice funkcji XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21 Granica funkcji Definicje Granica właściwa funkcji w punkcie wg Heinego Liczbę g nazywamy granicą właściwą funkcji f w punkcie

Bardziej szczegółowo

Wykład 8. Informatyka Stosowana. 26 listopada 2018 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 31

Wykład 8. Informatyka Stosowana. 26 listopada 2018 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 31 Wykład 8 Informatyka Stosowana 26 listopada 208 Magdalena Alama-Bućko Informatyka Stosowana Wykład 8 26..208, M.A-B / 3 Definicja Ciagiem liczbowym {a n }, n N nazywamy funkcję odwzorowujac a zbiór liczb

Bardziej szczegółowo

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Rozdział 6. Ciągłość. 6.1 Granica funkcji Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz

Bardziej szczegółowo

Analiza matematyczna. 1. Ciągi

Analiza matematyczna. 1. Ciągi Analiza matematyczna 1. Ciągi Definicja 1.1 Funkcję a: N R odwzorowującą zbiór liczb naturalnych w zbiór liczb rzeczywistych nazywamy ciągiem liczbowym. Wartość tego odwzorowania w punkcie n nazywamy n

Bardziej szczegółowo

Funkcja wykładnicza kilka dopowiedzeń

Funkcja wykładnicza kilka dopowiedzeń Funkcje i ich granice Było: Zbiór argumentów; zbiór wartości; monotoniczność; funkcja odwrotna; funkcja liniowa; kwadratowa; wielomiany; funkcje wymierne; funkcje trygonometryczne i ich odwrotności; funkcja

Bardziej szczegółowo

Ciągi. Granica ciągu i granica funkcji.

Ciągi. Granica ciągu i granica funkcji. Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Ciągi. Granica ciągu i granica funkcji.. Ciągi Ciąg jest to funkcja określona na zbiorze N lub jego podzbiorze. Z tego względu ciągi dziey na

Bardziej szczegółowo

jest ciągiem elementów z przestrzeni B(R, R)

jest ciągiem elementów z przestrzeni B(R, R) Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)

Bardziej szczegółowo

1. Pochodna funkcji. 1.1 Pierwsza pochodna - definicja i własności Definicja pochodnej

1. Pochodna funkcji. 1.1 Pierwsza pochodna - definicja i własności Definicja pochodnej . Pierwsza pochodna - definicja i własności.. Definicja pochodnej Definicja Niech f : a, b) R oraz niech 0 a, b). Mówimy, że funkcja f ma pochodna w punkcie 0, którą oznaczamy f 0 ), jeśli istnieje granica

Bardziej szczegółowo

6. FUNKCJE. f: X Y, y = f(x).

6. FUNKCJE. f: X Y, y = f(x). 6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco

Bardziej szczegółowo

Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska. Wykład 3. ANALIZA FUNKCJI JEDNEJ ZMIENNEJ

Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska. Wykład 3. ANALIZA FUNKCJI JEDNEJ ZMIENNEJ Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 3 ANALIZA FUNKCJI JEDNEJ ZMIENNEJ Deinicja (unkcja) Niech zbiory XY, będą niepuste Funkcją określoną na zbiorze X o wartościach w

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )

Bardziej szczegółowo

Zapisujemy to symbolicznie jako równość:. Mówimy też, że ciąg posiada granicę niewłaściwą (równą nieskończoności).

Zapisujemy to symbolicznie jako równość:. Mówimy też, że ciąg posiada granicę niewłaściwą (równą nieskończoności). Ciągi rozbieżne do Def. Mówimy, że ciąg jest rozbieżny do, jeśli Zapisujemy to symbolicznie jako równość:. Mówimy też, że ciąg posiada granicę niewłaściwą (równą nieskończoności). Można obrazowo powiedzieć,

Bardziej szczegółowo

WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1

WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1 WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA, lista zadań. Dla podanych ciągów napisać wzory określające wskazane wyrazy tych ciągów: a) a n = n 3n +, a n+, b) b n = 3

Bardziej szczegółowo

Granica funkcji. 27 grudnia Granica funkcji

Granica funkcji. 27 grudnia Granica funkcji 27 grudnia 2011 Punkty skupienia Definicja Niech D R będzie dowolnym zbiorem. Punkt x 0 R nazywamy punktem skupienia zbioru D jeżeli δ>0 x D\{x0 } : x x 0 < 0. Zbiór punktów skupienia zbioru D oznaczamy

Bardziej szczegółowo

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie

Bardziej szczegółowo

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Analiza Matematyczna MAEW101

Analiza Matematyczna MAEW101 Analiza Matematyczna MAEW0 Wydział Elektroniki Listy zadań nr -7 (część I) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 005 M.Gewert, Z Skoczylas,

Bardziej szczegółowo

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy

Bardziej szczegółowo

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi M. Beśka, Wstęp do teorii miary, Dodatek 158 10 Dodatek 10.1 Przestrzenie metryczne Niech X będzie niepustym zbiorem. Funkcję d : X X [0, ) spełniającą dla x, y, z X warunki (i) d(x, y) = 0 x = y, (ii)

Bardziej szczegółowo

Analiza Matematyczna F1 dla Fizyków na WPPT Lista zadań 3, 2018/19z (zadania na ćwiczenia)

Analiza Matematyczna F1 dla Fizyków na WPPT Lista zadań 3, 2018/19z (zadania na ćwiczenia) Analiza Matematyczna F dla Fizyków na WPPT Lista zadań 3 08/9z (zadania na ćwiczenia) (Na podstawie podręcznika M. Gewert Z. Skoczylas Analiza Matematyczna. Przykłady i zadania GiS 008) 3 Granica funkcji

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia

Analiza Matematyczna Ćwiczenia Analiza Matematyczna Ćwiczenia Spis treści Ciągi i ich własności Granica ciągu Granica funkcji 4 4 Ciągłość funkcji 6 Szeregi 8 6 Pochodna funkcji 7 Zastosowania pochodnej funkcji 8 Badanie przebiegu zmienności

Bardziej szczegółowo

Granice funkcji-pojęcie pochodnej

Granice funkcji-pojęcie pochodnej Granice funkcji-pojęcie pochodnej Oznaczenie S(x 0 ) = S(x 0, r) dla pewnego r > 0 Definicja 1 Niech x 0 R oraz niech funkcja f będzie funkcja określona przynajmniej na sasiedztwie S(x 0, r) dla pewnego

Bardziej szczegółowo

Granica funkcji. 16 grudnia Wykład 5

Granica funkcji. 16 grudnia Wykład 5 Granica funkcji 16 grudnia 2010 Tw. o trzech funkcjach Twierdzenie Niech f, g, h : R D R będa funkcjami takimi, że lim f (x) = lim h(x), x x 0 x x0 gdzie x 0 D. Jeżeli istnieje otoczenie punktu x 0 w którym

Bardziej szczegółowo

Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014)

Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014) dr inż. Ryszard Rębowski DEFINICJA CIĄGU LICZBOWEGO Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z grudnia 04) Definicja ciągu liczbowego Spośród

Bardziej szczegółowo

Roksana Gałecka Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych

Roksana Gałecka Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych Temat. Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych.twierdzenia o wartosci sredniej w rachunku różniczkowalnym i ich zastosowania. Roksana Gałecka 20..204 Spis treści Okreslenie

Bardziej szczegółowo

Egzamin z Analizy Matematycznej I dla Informatyków, 28 I 2017 Część I

Egzamin z Analizy Matematycznej I dla Informatyków, 28 I 2017 Część I Egzamin z Analizy Matematycznej I dla Informatyków, 28 I 2017 Część I Czas na rozwiązanie zadań cz. I: 2 godz. Do zdobycia: 60 pkt. Nie wolno korzystać z notatek, kalkulatorów, telefonów, pomocy sąsiadów,

Bardziej szczegółowo

Granica funkcji. 8 listopada Wykład 4

Granica funkcji. 8 listopada Wykład 4 Granica funkcji 8 listopada 2011 Definicja Niech D R będzie dowolnym zbiorem. Punkt x 0 R nazywamy punktem skupienia zbioru D jeżeli δ>0 x D\{x0 } : x x 0 < δ. Zbiór punktów skupienia zbioru D oznaczamy

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

Ciągi liczbowe wykład 3

Ciągi liczbowe wykład 3 Ciągi liczbowe wykład 3 dr Mariusz Grządziel 3 kwietnia 203 Definicja (ciągu liczbowego). Ciagiem liczbowym nazywamy funkcję odwzorowuja- ca zbiór liczb naturalnych w zbiór liczb rzeczywistych. Wartość

Bardziej szczegółowo

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy Rachunek Różniczkowy Ciąg liczbowy Link Ciągiem liczbowym nieskończonym nazywamy każdą funkcję a która odwzorowuje zbiór liczb naturalnych N w zbiór liczb rzeczywistych R a : N R. Tradycyjnie wartość a(n)

Bardziej szczegółowo

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji

Bardziej szczegółowo

Matematyka ZLic - 2. Granica ciągu, granica funkcji. Ciągłość funkcji, własności funkcji ciągłych.

Matematyka ZLic - 2. Granica ciągu, granica funkcji. Ciągłość funkcji, własności funkcji ciągłych. Matematyka ZLic -. Granica ciągu, granica funkcji. Ciągłość funkcji, własności funkcji ciągłych. Granica ciągu Ciąg a n ma granicę właściwą g R i piszemy jeśli lim n a n g lub a n g gdy n NN n N a n g

Bardziej szczegółowo

1 Funkcje i ich granice

1 Funkcje i ich granice Funkcje i ich granice Było: Zbiór argumentów; zbiór wartości; monotoniczność; funkcja odwrotna; funkcja liniowa; kwadratowa; wielomiany; funkcje wymierne; funkcje trygonometryczne i ich odwrotności; funkcja

Bardziej szczegółowo

Ciągłość funkcji jednej zmiennej rzeczywistej. Autorzy: Anna Barbaszewska-Wiśniowska

Ciągłość funkcji jednej zmiennej rzeczywistej. Autorzy: Anna Barbaszewska-Wiśniowska Ciągłość funkcji jednej zmiennej rzeczywistej Autorzy: Anna Barbaszewska-Wiśniowska 2018 Spis treści Definicja ciągłości funkcji. Przykłady Funkcja nieciągła. Typy nieciągłości funkcji Własności funkcji

Bardziej szczegółowo

Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji

Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji . Własności funkcji () Wyznaczyć dziedzinę funkcji danej wzorem: y = 2 2 + 5 y = +4 y = 2 + (2) Podać zbiór wartości funkcji: y = 2 3, [2, 5) y = 2 +, [, 4] y =, [3, 6] (3) Stwierdzić, czy dana funkcja

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

CAŁKI NIEOZNACZONE C R}.

CAŁKI NIEOZNACZONE C R}. CAŁKI NIEOZNACZONE Definicja 1 Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) = f(x) dla każdego x I. Np. funkcjami pierwotnymi funkcji f(x) = sin x na R są cos x, cos x+1, cos

Bardziej szczegółowo

F t+ := s>t. F s = F t.

F t+ := s>t. F s = F t. M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory. Autorzy: Konrad Nosek

Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory. Autorzy: Konrad Nosek Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory Autorzy: Konrad Nosek 09 Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory Autor: Konrad Nosek DEFINICJA Definicja : Funkcja pierwotna Rozważmy

Bardziej szczegółowo

Ciągłość funkcji f : R R

Ciągłość funkcji f : R R Ciągłość funkcji f : R R Definicja 1. Otoczeniem o promieniu δ > 0 punktu x 0 R nazywamy zbiór O(x 0, δ) := (x 0 δ, x 0 + δ). Otoczeniem prawostronnym o promieniu δ > 0 punktu x 0 R nazywamy zbiór O +

Bardziej szczegółowo

Wykład 13. Informatyka Stosowana. 14 stycznia 2019 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 34

Wykład 13. Informatyka Stosowana. 14 stycznia 2019 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 34 Wykład 13 Informatyka Stosowana 14 stycznia 2019 Magdalena Alama-Bućko Informatyka Stosowana Wykład 13 14.01.2019, M.A-B 1 / 34 Pochodne z funkcji elementarnych c = 0 (x n ) = nx n 1 (a x ) = a x ln a,

Bardziej szczegółowo

Wykłady z matematyki - Granica funkcji

Wykłady z matematyki - Granica funkcji Rok akademicki 2016/17 UTP Bydgoszcz Granica funkcji Otoczenie punktu 0 to przedział ( 0 ɛ, 0 + ɛ) dla każdego ɛ > 0 Sąsiedztwo punktu 0 to jego otoczenie bez punktu 0. Jeżeli funkcja jest określona w

Bardziej szczegółowo

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na

Bardziej szczegółowo

4. Granica i ciągłość funkcji

4. Granica i ciągłość funkcji 4. Granica i ciągłość funkcji W niniejszym rozdziale wprowadzamy pojęcie granicy funkcji, definiujemy funkcje ciągłe i omawiamy ich podstawowe własności. Niech f będzie funkcją określoną na przedziale

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Definicja ciągu liczbowego. Definicja 1.1. Ciągiem liczbowym nazywamy funkcję a : N R odwzorowującą zbiór liczb naturalnych N w zbiór liczb rzeczywistych R i oznaczamy przez {a

Bardziej szczegółowo

Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n

Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n V. Napisz 4 początkowe wyrazy ciągu: Blok V: Ciągi. Różniczkowanie i całkowanie a) a n = n b) a n = n + 3 n! c) a n = n! n(n + ) V. Oblicz (lub zapisz) c, c 3, c k, c n k dla: a) c n = 3 n b) c n = 3n

Bardziej szczegółowo

Ci agło s c funkcji 2 grudnia 2014 Ci agło s c funkcji

Ci agło s c funkcji 2 grudnia 2014 Ci agło s c funkcji 2 grudnia 2014 ciagłość - zaufanie 1 Dlaczego zbliżajac się do łuku drogi nie hamujemy wiedzac, że nie zdołamy się zatrzymać na widocznym kawałku drogi? Ponieważ wierzymy, że dalej ciagnie się droga. 2

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

Granica funkcji wykład 4

Granica funkcji wykład 4 Granica funkcji wykład 4 dr Mariusz Grządziel 27 października 2008 Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona z wysokiej wieży po czasie t: s = gt2 2, gdzie

Bardziej szczegółowo

Zajęcia nr. 3 notatki

Zajęcia nr. 3 notatki Zajęcia nr. 3 notatki 22 kwietnia 2005 1 Funkcje liczbowe wprowadzenie Istnieje nieskończenie wiele funkcji w matematyce. W dodaktu nie wszystkie są liczbowe. Rozpatruje się funkcje które pobierają argumenty

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Całki nieoznaczone 1. Definicja całki nieoznaczonej Definicja 1. Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) =

Bardziej szczegółowo

Funkcje dwóch zmiennych, pochodne cząstkowe

Funkcje dwóch zmiennych, pochodne cząstkowe Wykłady z matematyki inżynierskiej Funkcje dwóch zmiennych, pochodne cząstkowe JJ, IMiF UTP 17 f (x, y) DEFINICJA. Funkcja dwóch zmiennych określona w zbiorze D R 2, to przyporządkowanie każdemu punktowi

Bardziej szczegółowo

Wykład 11. Informatyka Stosowana. Magdalena Alama-Bućko. 18 grudnia Magdalena Alama-Bućko Wykład grudnia / 22

Wykład 11. Informatyka Stosowana. Magdalena Alama-Bućko. 18 grudnia Magdalena Alama-Bućko Wykład grudnia / 22 Wykład 11 Informatyka Stosowana Magdalena Alama-Bućko 18 grudnia 2017 Magdalena Alama-Bućko Wykład 11 18 grudnia 2017 1 / 22 Twierdzenie Granica lim f (x) x x 0 istnieje i wynosi a wtedy i tylko wtedy,

Bardziej szczegółowo

6. Granica funkcji. Funkcje ciągłe.

6. Granica funkcji. Funkcje ciągłe. 6. Granica funkcji. Funkcje ciągłe. 6.1. Sformułować definicję w sensie Heinego granicy (właściwej) funkcji w punkcie (właściwym). Podać ilustrację graficzną w różnych sytuacjach. Definicja Heinego granicy

Bardziej szczegółowo

AM1.2 zadania 14. Zadania z numerami opatrzonymi gwiazdka

AM1.2 zadania 14. Zadania z numerami opatrzonymi gwiazdka AM.2 zadania 4 Tekst poprawiony 24 kwietnia 206 r. Zadania 26, 28, 29, 3, 33, 34, 35, 36, 40, 42, 62 i inne z wykrzyknikiem obok numeru sa obowiazkowe! Zadania z numerami opatrzonymi gwiazdka można napisać

Bardziej szczegółowo

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C,

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C, Całki nieoznaczone Adam Gregosiewicz 7 maja 00 Własności a) Jeżeli F () = f(), to f()d = F () + C, dla dowolnej stałej C R. b) Jeżeli a R, to af()d = a f()d. c) Jeżeli f i g są funkcjami całkowalnymi,

Bardziej szczegółowo

Matematyka. Justyna Winnicka. Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego.

Matematyka. Justyna Winnicka. Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. Matematyka Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 2017/2018 kontakt, konsultacje, koordynator mail: justa kowalska@yahoo.com,

Bardziej szczegółowo

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11 M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X

Bardziej szczegółowo

Definicja odwzorowania ciągłego i niektóre przykłady

Definicja odwzorowania ciągłego i niektóre przykłady Odwzorowania Pojęcie odwzorowania pomiędzy dwoma zbiorami było już definiowane, ale dawno, więc nie od rzeczy będzie przypomnieć, że odwzorowaniem nazywamy sposób przyporządkowania (niekoniecznie każdemu)

Bardziej szczegółowo

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny:

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny: Podstawowe definicje Definicja ciągu Ciągiem nazywamy funkcję na zbiorze liczb naturalnych, tzn. przyporządkowanie każdej liczbie naturalnej jakiejś liczby rzeczywistej. (Mówimy wtedy o ciągu o wyrazach

Bardziej szczegółowo

Równania i nierówności wykładnicze i logarytmiczne

Równania i nierówności wykładnicze i logarytmiczne Równania i nierówności wykładnicze i logarytmiczne Paweł Foralewski Teoria Ponieważ funkcje wykładnicza i logarytmiczna zostały wprowadzone wcześniej, tutaj przypomnimy tylko definicję logarytmu i jego

Bardziej szczegółowo

Wykład 11 i 12. Informatyka Stosowana. 9 stycznia Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39

Wykład 11 i 12. Informatyka Stosowana. 9 stycznia Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39 Wykład 11 i 12 Informatyka Stosowana 9 stycznia 2017 Informatyka Stosowana Wykład 11 i 12 9 stycznia 2017 1 / 39 Twierdzenie Lagrange a Jeżeli funkcja f spełnia warunki: 1 jest ciagła na [a, b] 2 f istnieje

Bardziej szczegółowo

7 Twierdzenie Fubiniego

7 Twierdzenie Fubiniego M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz

Bardziej szczegółowo

Granica funkcji wykład 4

Granica funkcji wykład 4 Granica funkcji wykład 4 dr Mariusz Grządziel rok akademicki 03/04, semestr zimowy Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona z wysokiej wieży po czasie t:

Bardziej szczegółowo

Egzamin z matematyki dla I roku Biochemii i Biotechnologii

Egzamin z matematyki dla I roku Biochemii i Biotechnologii Egzamin z matematyki dla I roku Biochemii i Biotechnologii 9..04 Zadanie (0 punktów). Rozwiązać układ + 3y z = 3 5y + z = a 5 ay + 3z = 3 dla a = oraz dla a = 4. Zadanie (0 punktów). Wyznaczyć dziedzinę,

Bardziej szczegółowo

Ciągi komplementarne. Autor: Krzysztof Zamarski. Opiekun pracy: dr Jacek Dymel

Ciągi komplementarne. Autor: Krzysztof Zamarski. Opiekun pracy: dr Jacek Dymel Ciągi komplementarne Autor: Krzysztof Zamarski Opiekun pracy: dr Jacek Dymel Spis treści 1 Wprowadzenie 2 2 Pojęcia podstawowe 3 2.1 Oznaczenia........................... 3 2.2 "Ciąg odwrotny"........................

Bardziej szczegółowo

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a

Bardziej szczegółowo

Rozdział 3. Granica i ciągłość funkcji jednej zmiennej

Rozdział 3. Granica i ciągłość funkcji jednej zmiennej Rozdział Granica i ciągłość funkcji jednej zmiennej Definicja i własności granicy funkcji W rozdziale omówiono granicę ciągu liczbowego przy n, natomiast w rozdziale opisano funkcje elementarne i ich własności

Bardziej szczegółowo

n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa

n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa Równanie Bessela Będziemy rozważać następujące równanie Bessela x y xy x ν )y 0 ) gdzie ν 0 jest pewnym parametrem Rozwiązania równania ) nazywamy funkcjami Bessela rzędu ν Sprawdzamy, że x 0 jest regularnym

Bardziej szczegółowo

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym

Bardziej szczegółowo

Pochodne funkcji wraz z zastosowaniami - teoria

Pochodne funkcji wraz z zastosowaniami - teoria Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie

Bardziej szczegółowo

RACHUNEK RÓŻNICZKOWY- sprawdziany i kartkówki. klasa II 2018/19. Adam Stachura

RACHUNEK RÓŻNICZKOWY- sprawdziany i kartkówki. klasa II 2018/19. Adam Stachura RACHUNEK RÓŻNICZKOWY- sprawdziany i kartkówki klasa II 08/9 Adam Stachura Sprawdzian. Granice funkcji- przykładowe zadania ) 8 ZADANIE. Obliczyć granicę. 4 +6 4 Rozwiazanie. Dziedzina funkcji, której granice

Bardziej szczegółowo

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 3 Jacek M. Jędrzejewski ROZDZIAŁ 6 Różniczkowanie funkcji rzeczywistej 1. Pocodna funkcji W tym rozdziale rozważać będziemy funkcje rzeczywiste określone w pewnym przedziale

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Marcin Michalski 14.11.014 1 Wprowadzenie Jedną z intuicji na temat liczb rzeczywistych jest myślenie o nich jako liczbach,

Bardziej szczegółowo

Analiza Matematyczna I

Analiza Matematyczna I Analiza Matematyczna I Informatyka, WPPT, Politechnika Wrocławska Wprowadzenie (2 godziny ćwiczeń) Pokaż, że dla dowolnych liczb rzeczywistych a i b zachodzą nierówności:. a b = a b, 2. a + b a + b, 3.

Bardziej szczegółowo

Czym jest ciąg? a 1, a 2, lub. (a n ), n = 1,2,

Czym jest ciąg? a 1, a 2, lub. (a n ), n = 1,2, Ciągi liczbowe Czym jest ciąg? Ciąg liczbowy, to funkcja o argumentach naturalnych, której wartościami są liczby rzeczywiste. Wartość ciągu dla liczby naturalnej n oznaczamy symbolem a n i nazywamy n-tym

Bardziej szczegółowo

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Inżynierskie, WDAM, grupy I i II

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Inżynierskie, WDAM, grupy I i II Rozwiązania zadań z kolokwium w dniu 10.1.010r. Zarządzanie Inżynierskie, WDAM, grupy I i II Zadanie 1. Wyznacz dziedzinę naturalną funkcji f (x) = x 4x + 3 x + x + log arc sin 1 x. Rozwiązanie. Wymagane

Bardziej szczegółowo

14a. Analiza zmiennych dyskretnych: ciągi liczbowe

14a. Analiza zmiennych dyskretnych: ciągi liczbowe 14a. Analiza zmiennych dyskretnych: ciągi liczbowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 14a. wanaliza Krakowie) zmiennych dyskretnych: ciągi

Bardziej szczegółowo

III. Funkcje rzeczywiste

III. Funkcje rzeczywiste . Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja

Bardziej szczegółowo

x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) =

x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) = Zadanie.. Obliczyć granice 2 + 2 (a) lim (d) lim 0 2 + 2 + 25 5 = 5,. Granica i ciągłość funkcji odpowiedzi = 4, (b) lim 2 5 + 6 2 6 =, 4 (e) lim 0sin 2 = 2, cos (g) lim 0 2 =, (h) lim 2 8 Zadanie.2. Obliczyć

Bardziej szczegółowo

Granica funkcji wykład 5

Granica funkcji wykład 5 Granica funkcji wykład 5 dr Mariusz Grządziel 4 listopada 200 Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona z wysokiej wieży po czasie t: s = gt2 2, gdzie g

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13 35. O zdaniu 1 T (n) udowodniono, że prawdziwe jest T (1), oraz że dla dowolnego n 6 zachodzi implikacja T (n) T (n+2). Czy można stąd wnioskować, że a) prawdziwe jest T (10), b) prawdziwe jest T (11),

Bardziej szczegółowo

(5) f(x) = ln x + x 3, (6) f(x) = 1 x. (19) f(x) = x3 +2x

(5) f(x) = ln x + x 3, (6) f(x) = 1 x. (19) f(x) = x3 +2x . Zadania do samodzielnego rozwiązania Zadanie. Na podstawie definicji pochodnej funkcji w punkcie obliczyć pochodną funkcji f zdefiniowanej równością () cos (2) (3) ln (4) sin 2 (5) ln + 3 (6) cos(3 )

Bardziej szczegółowo

Wykład VI. Badanie przebiegu funkcji. 2. A - przedział otwarty, f D 2 (A) 3. Ekstrema lokalne: 4. Punkty przegięcia. Uwaga!

Wykład VI. Badanie przebiegu funkcji. 2. A - przedział otwarty, f D 2 (A) 3. Ekstrema lokalne: 4. Punkty przegięcia. Uwaga! Wykład VI Badanie przebiegu funkcji 1. A - przedział otwarty, f D A x A f x > 0 f na A x A f x < 0 f na A 2. A - przedział otwarty, f D 2 (A) x A f x > 0 fwypukła ku górze na A x A f x < 0 fwypukła ku

Bardziej szczegółowo

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości. Własności Odległości i normy w Będziemy się teraz zajmować funkcjami od zmiennych, tzn. określonymi na (iloczyn kartezja/nski egzemplarzy ). Punkt należący do będziemy oznaczać jako Przykł. Wysokość terenu

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Leszek Skrzypczak 1. Niech E = {x [0, 1] : x = k 2 n k = 1, 2,... 2 n, n = 1, 2, 3,...} Wówczas: (a) Dla dowolnych liczb wymiernych p, q [0,

Bardziej szczegółowo

Matematyka A kolokwium: godz. 18:05 20:00, 24 maja 2017 r. rozwiązania. ) zachodzi równość: x (t) ( 1 + x(t) 2)

Matematyka A kolokwium: godz. 18:05 20:00, 24 maja 2017 r. rozwiązania. ) zachodzi równość: x (t) ( 1 + x(t) 2) Matematyka A kolokwium: godz. 18:05 0:00, 4 maja 017 r. rozwiązania 1. 7 p. Znaleźć wszystkie takie funkcje t xt, że dla każdego t π, π zachodzi równość: x t 1 + xt 1+4t 0. p. Wśród znalezionych w poprzedniej

Bardziej szczegółowo

Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład 1

Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład 1 Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład dr Mariusz Grządziel 5 lutego 04 Paradoks Zenona z Elei wersja uwspółcześniona Zenek goni Andrzeja; prędkość Andrzeja:

Bardziej szczegółowo

Zasada indukcji matematycznej

Zasada indukcji matematycznej Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.

Bardziej szczegółowo