Matematyka. Justyna Winnicka. Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Matematyka. Justyna Winnicka. Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego."

Transkrypt

1 Matematyka Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 2017/2018

2 kontakt, konsultacje, koordynator mail: justa termin konsultacji będzie podany później strona na Niezbędniku: koordynator przedmiotu: dr Maria Ekes,

3 Warunki zaliczenia(dokładniej na Niezbędniku) 2 kolokwia na ćwiczeniach, w każdym 5 zadań po 6 punktów, punkty za aktywność na ćwiczeniach - od 0 do 5, według uznania prowadzącego ćwiczenia, egzamin: 5 zadań po 6 punktów każde.

4 Warunki zaliczenia(dokładniej na Niezbędniku) 2 kolokwia na ćwiczeniach, w każdym 5 zadań po 6 punktów, punkty za aktywność na ćwiczeniach - od 0 do 5, według uznania prowadzącego ćwiczenia, egzamin: 5 zadań po 6 punktów każde. liczba punktów z przedmiotu= = 1/2 kolokwia + aktywność + egzamin.

5 Warunki zaliczenia(dokładniej na Niezbędniku) liczba punktów ocena końcowa 0 30 niedostateczna (2) dostateczna (3) dostateczna plus (3,5) dobra (4) dobra plus (4,5) bardzo dobra (5)

6 Warunki zaliczenia(dokładniej na Niezbędniku) Osoby, które w trakcie zajęć nie napisały któregoś z kolokwiów z usprawiedliwionych powodów (zwolnienie lekarskie), mogą napisać to kolokwium w dodatkowym terminie, wyznaczonym przez prowadzącego zajęcia przed pierwszym terminem egzaminu.

7 Literatura Sprawy organizacyjne Podręczniki obowiązkowe J. Kłopotowski, W. Marcinkowska-Lewandowska, M. Nykowska, I. Nykowski, Matematyka dla ekonomicznych studiów zaocznych i wieczorowych, Szkoła Główna Handlowa w Warszawie M. Dędys, S. Dorosiewicz, M. Ekes, J. Kłopotowski Matematyka. e-book, Szkoła Główna Handlowa, platforma e-learningowa

8 Literatura Sprawy organizacyjne Podręczniki uzupełniające W. Dubnicki Matematyka. Definicje. Twierdzenia. Zadania, Wydawnictwo DRUKPOL S. Dorosiewicz, J. Kłopotowski, D. Kołatkowski Matematyka. Tom I, pod redakcją naukową S. Dorosiewicza, Szkoła Główna Handlowa w Warszawie J. Laszuk Matematyka. Studium podstawowe, Oficyna Wydawnicza Szkoły Głównej Handlowej

9 Definicja ciągu liczbowego Definicja em liczbowym nazywamy dowolną funkcję a : N R, gdzie N = {1, 2, 3,...} jest zbiorem liczb naturalnych, a R zbiorem liczb rzeczywistych. Wartość a n = a(n) nazywamy n-tym wyrazem ciągu. Ciąg oznaczamy symbolem {a n : n N}, lub krócej (a n ).

10 Przykład Ciąg naturalnych liczb nieparzystych możemy opisać:

11 Przykład Ciąg naturalnych liczb nieparzystych możemy opisać: wymieniając kilka początkowych wyrazów:

12 Przykład Ciąg naturalnych liczb nieparzystych możemy opisać: wymieniając kilka początkowych wyrazów: 1, 3, 5, 7,...

13 Przykład Ciąg naturalnych liczb nieparzystych możemy opisać: wymieniając kilka początkowych wyrazów: 1, 3, 5, 7,... podając wzór na n-ty wyraz ciągu:

14 Przykład Ciąg naturalnych liczb nieparzystych możemy opisać: wymieniając kilka początkowych wyrazów: 1, 3, 5, 7,... podając wzór na n-ty wyraz ciągu: a n = 2n 1, n N,

15 Przykład Ciąg naturalnych liczb nieparzystych możemy opisać: wymieniając kilka początkowych wyrazów: 1, 3, 5, 7,... podając wzór na n-ty wyraz ciągu: a n = 2n 1, n N, podając zależność rekurencyjną (tzn. odpowiednią liczbę początkowych wyrazów oraz ogólną zależność między wyrazem tego ciągu, a wyrazami go poprzedzającymi):

16 Przykład Ciąg naturalnych liczb nieparzystych możemy opisać: wymieniając kilka początkowych wyrazów: 1, 3, 5, 7,... podając wzór na n-ty wyraz ciągu: a n = 2n 1, n N, podając zależność rekurencyjną (tzn. odpowiednią liczbę początkowych wyrazów oraz ogólną zależność między wyrazem tego ciągu, a wyrazami go poprzedzającymi): a 1 = 1, a n+1 = a n + 2 dla n 1.

17 Przykład Jeżeli kapitał początkowy K złożymy na n lat w banku, w którym oprocentowanie lokat wynosi p% w skali rocznej, to kapitał końcowy K n wyraża się wzorem:

18 Przykład Jeżeli kapitał początkowy K złożymy na n lat w banku, w którym oprocentowanie lokat wynosi p% w skali rocznej, to kapitał końcowy K n wyraża się wzorem: K n = K(1 + p 100 )n

19 Definicja Mówimy, że (a n ) jest ciągiem rosnącym

20 Definicja Mówimy, że (a n ) jest ciągiem rosnącym a n+1 > a n n N

21 Definicja Mówimy, że (a n ) jest ciągiem rosnącym a n+1 > a n (a n+1 a n > 0), n N

22 Definicja Mówimy, że (a n ) jest ciągiem rosnącym a n+1 > a n (a n+1 a n > 0), n N niemalejącym n N a n+1 a n, malejącym n N a n+1 < a n, nierosnącym n N a n+1 a n, stałym n N a n+1 = a n, Ciąg mający jedną z wymienionych własności nazywamy ciągiem monotonicznym.

23 Przykład Sprawdzimy, czy ciąg o wyrazie ogólnym a n = 2n n! jest ciągiem monotonicznym. W tym celu zbadamy znak wyrażenia dla n N. a n+1 a n

24 Definicja Mówimy, że ciąg (a n ) jest ograniczony z góry

25 Definicja Mówimy, że ciąg (a n ) jest ograniczony z góry M R n N a n M,

26 Definicja Mówimy, że ciąg (a n ) jest ograniczony z góry a n M, M R n N ograniczony z dołu a n m, m R n N ograniczony m a n M. m,m R n N

27 Przykład Zbadamy, czy ciąg a n = 2n n! jest ograniczony.

28 Definicja Mówimy, że liczba g R jest granicą (właściwą) ciągu (a n ), jeśli a n g < ε ε>0 N ε N n>n ε i piszemy lim n a n = g lub a n n g lub a n g.

29 Definicja Mówimy, że liczba g R jest granicą (właściwą) ciągu (a n ), jeśli a n g < ε ε>0 N ε N n>n ε i piszemy lim a n = g lub a n g lub a n g. n n Jeśli (a n ) ma granicę g R, to mówimy, że jest zbieżny do g. Jeśli nie ma granicy (właściwej), mówimy, że jest rozbieżny.

30 Przykład Pokażemy z definicji, że lim n n 2 n = 1.

31 Przykład Pokażemy, że ciąg a n = ( 1) n nie ma granicy.

32 Twierdzenie Ciąg zbieżny ma dokładnie jedną granicę.

33 Twierdzenie Ciąg zbieżny ma dokładnie jedną granicę. Twierdzenie Każdy ciąg zbieżny jest ograniczony.

34 Twierdzenie Ciąg zbieżny ma dokładnie jedną granicę. Twierdzenie Każdy ciąg zbieżny jest ograniczony. Twierdzenie Ciąg monotoniczny i ograniczony jest zbieżny.

35 Twierdzenie (własności granic właściwych) Jeśli lim a n = a oraz lim b n = b, gdzie a, b R, n n to lim (a n ± b n ) = a ± b, n lim a nb n = ab, n a n lim = a n b n b, gdy b 0 i b n 0, lim a n = a. n

36 Twierdzenie (granice wybranych ciągów) a > 0 = lim n a = 1, n n n = 1, lim n lim n an = 0 a < 1, lim a n = a b > 0 = lim n b a n = b a n a n > 0 lim a n = a a > 0 = n n N lim (a n) α = a α n

37 Definicja Mówimy, że ciąg (a n ) ma granicę niewłaściwą + (odp. ), jeśli a n > M (odp. a n < M) M R N M N n>n M i piszemy lim a n = + (odp. ) n lub a n + (odp. ) n lub a n + (odp. ). Jeśli (a n ) ma granicę niewłaściwą + (odp. ) to mówimy, że jest rozbieżny do + (odp. ).

38 Przykład Wykażemy, że ciąg o wyrazie ogólnym a n = 3n 4 jest rozbieżny do.

39 Przykład Wykażemy, że ciąg o wyrazie ogólnym a n = 3n 4 jest rozbieżny do. Przykład Dany jest ciąg arytmetyczny (a n ) o różnicy r R.

40 Przykład Wykażemy, że ciąg o wyrazie ogólnym a n = 3n 4 jest rozbieżny do. Przykład Dany jest ciąg arytmetyczny (a n ) o różnicy r R. Jeśli r > 0, to a n. Jeśli r < 0, to a n.

41 Twierdzenie (własności granic niewłaściwych) Niech (a n ) i (b n ) będą ciągami liczbowymi. Jeśli a n i b n, to a n + b n, a n b n ; jeśli a n i b n, to a n + b n, a n b n ; jeśli a n i b n, to a n b n, b n a n, a n b n ; jeśli a n a, gdzie a R i b n ±, to a a n + b n ±, n b n 0; jeśli a n a, gdzie a > 0 i b n ±, to a n b n ± ; jeśli a n a, gdzie a < 0 i b n ±, to

42 Skrótowy zapis + =, =, + ( ) =, ( ) ( ) =, ( ) =, ( ) =, ( ) =, a a + (± ) = ±, ± = 0, 5 (± ) = ±, 1 2 (± ) =.

43 Przykład (y) n n lim n 2n 1 =

44 Przykład (y) n n [ lim n 2n 1 = 1 ] = 2 1

45 Przykład (y) n n [ lim n 2n 1 = 1 ] [ 1 = = 2 1 ]

46 Przykład (y) n n [ lim n 2n 1 = 1 ] [ 1 = = ]

47 Przykład (y) n n [ lim n 2n 1 = 1 ] [ 1 = = ] Przykład )(3 lim n 17) = n 2(3 17n

48 Przykład (y) n n [ lim n 2n 1 = 1 ] [ 1 = = ] Przykład )(3 lim n 17) = [2 (3 )( 17) ] = n 2(3 17n

49 Przykład (y) n n [ lim n 2n 1 = 1 ] [ 1 = = ] Przykład )(3 lim n 17) = [2 (3 )( 17) ] = [2 ( ) ] = n 2(3 17n

50 Przykład (y) n n [ lim n 2n 1 = 1 ] [ 1 = = ] Przykład lim n 2(3 17n )(3 n 17) = [2 (3 )( 17) ] = [2 ( ) ] = [2 ] = 0.

51 Twierdzenie (o trzech ciągach) Jeśli zachodzą warunki c n a n b n, n>n 0 lim c n = lim b n = g, n n to lim a n = g. n

52 Przykład Obliczymy granice i cos( nπ) lim n n lim n n 2n + 3 n + 5 n.

53 Symbole (wyrażenia) nieoznaczone Przykład (symbol [ 0 0] ) a [ n 0 a n 0, b n 0, =? b n 0]

54 Symbole (wyrażenia) nieoznaczone Przykład (symbol [ 0 0] ) a [ n 0 a n 0, b n 0, =? b n 0] a n = 1 n 0, b n = 1 n 0, a n b n =

55 Symbole (wyrażenia) nieoznaczone Przykład (symbol [ 0 0] ) a [ n 0 a n 0, b n 0, =? b n 0] a n = 1 n 0, b n = 1 n 0, a n b n = 1 1,

56 Symbole (wyrażenia) nieoznaczone Przykład (symbol [ 0 0] ) a [ n 0 a n 0, b n 0, =? b n 0] a n = 1 n 0, b n = 1 n 0, a n b n = 1 1, a n = 1 n 0, b n = 1 n 0, 2 a n b n =

57 Symbole (wyrażenia) nieoznaczone Przykład (symbol [ 0 0] ) a [ n 0 a n 0, b n 0, =? b n 0] a n = 1 n 0, b n = 1 n 0, a n b n = 1 1, a n = 1 n 0, b n = 1 n 0, 2 = n +, a n b n

58 Symbole (wyrażenia) nieoznaczone Przykład (symbol [ 0 0] ) a [ n 0 a n 0, b n 0, =? b n 0] a n = 1 n 0, b n = 1 n 0, a n b n = 1 1, a n = 1 n 0, b n = 1 n 0, 2 = n +, a n b n a n = ( 1)n n 0, b n = 1 n 0, a n b n =

59 Symbole (wyrażenia) nieoznaczone Przykład (symbol [ 0 0] ) a [ n 0 a n 0, b n 0, =? b n 0] a n = 1 n 0, b n = 1 n 0, a n b n = 1 1, a n = 1 n 0, b n = 1 n 0, 2 = n +, [ 0 0 a n = ( 1)n n 0, b n = 1 n 0, a n b n = ( 1) n - granica nie istnieje. ] nazywamy symbolem nieoznaczonym. a n b n

60 Symbole (wyrażenia) nieoznaczone [ ] [ + ] [ 0 0] [ ± ] ± [0 (± )] [1 ± ] [ 0 ] [0 0 ]

61 Przykład (y) Sprawy organizacyjne

62 Przykład (ważny!) Rozważmy ciąg o wyrazie ogólnym a n = ( n) n.

63 Przykład (ważny!) Rozważmy ciąg o wyrazie ogólnym a n = ( n) n. Pokażemy, że (a n ) jest monotoniczny i ograniczony (a więc zbieżny).

64 Przykład (c.d.) monotoniczność a n = ( n) n =

65 Przykład (c.d.) monotoniczność a n = ( n) n = = ( n 0)( 1 n) 0 + ( n 1)( 1 n) 1 + ( n 2)( 1 n) ( n n)( 1 n) n =

66 Przykład (c.d.) monotoniczność a n = ( n) n = = ( n 1 0 ( 0)( n) + n 1 1 ( 1)( n) + n 1 2 ( 2)( n) n 1 n n)( n) = = 1 + n 1 n + n(n 1) 1 1 2! n n! 2 n! 1 n = n

67 Przykład (c.d.) monotoniczność a n = ( n) n = = ( n 1 0 ( 0)( n) + n 1 1 ( 1)( n) + n 1 2 ( 2)( n) n 1 n n)( n) = = 1 + n 1 n + n(n 1) 1 1 2! n n! 2 n! 1 n = n = n 2! (1 1 n )...(1 n 1 n ) n!,

68 Przykład (c.d.) a n+1 = ( n+1) n+1 =

69 Przykład (c.d.) a n+1 = ( 1 + n+1) 1 n+1 = = ( )( n+1 1 ) 0 ( 0 n+1 + n+1 )( 1 1 ( n+1 )( 1 ) n ( n n+1 + n+1 )( 1 n+1 n+1 n+1 n+1) = ) 1 ( + n+1 )( n+1)

70 Przykład (c.d.) a n+1 = ( 1 + n+1) 1 n+1 = = ( )( n+1 1 ) 0 ( 0 n+1 + n+1 )( 1 1 ( n+1 )( 1 ) n ( n n+1 + n+1 )( 1 n+1 n+1 n+1 n+1) = ) 1 ( + n+1 )( n+1) (n +1) (n+1) + (n+1)n 1 1 2! (n+1)! (n+1) 2 (n+1)! 1 (n+1) = n+1

71 Przykład (c.d.) a n+1 = ( 1 + n+1) 1 n+1 = = ( )( n+1 1 ) 0 ( 0 n+1 + n+1 )( 1 1 ( n+1 )( 1 ) n ( n n+1 + n+1 )( 1 n+1 n+1 n+1 n+1) = ) 1 ( + n+1 )( n+1) (n +1) (n+1) + (n+1)n 1 1 2! (n+1)! (n+1) 2 (n+1)! 1 (n+1) = n n+1 2! (1 1 n+1 n 1 )...(1 n+1 ) n! + (1 1 n+1 )...(1 n n+1 ) (n+1)!.

72 Przykład (c.d.) a n = n 2! (1 1 n a n+1 = n+1 2! (1 1 n+1 )...(1 n 1 n ) n!, n 1 )...(1 n+1 ) n! + (1 1 n+1 )...(1 n n+1 ) (n+1)!.

73 Przykład (c.d.) a n = n 2! (1 1 n a n+1 = n+1 2! (1 1 n+1 )...(1 n 1 n ) n!, n 1 )...(1 n+1 ) n! + (1 1 Porównując kolejne wyrazy sum otrzymujemy a n a n+1. n+1 )...(1 n n+1 ) (n+1)!.

74 Przykład (c.d.) ograniczoność z dołu: Sprawy organizacyjne

75 Przykład (c.d.) ograniczoność z dołu: ciąg (a n ) jest niemalejący, a więc a n a 1 = 2 dla każdego n N,

76 Przykład (c.d.) ograniczoność z dołu: ciąg (a n ) jest niemalejący, a więc a n a 1 = 2 dla każdego n N, z góry:

77 Przykład (c.d.) ograniczoność z dołu: ciąg (a n ) jest niemalejący, a więc a n a 1 = 2 dla każdego n N, z góry: a n = n 2! (1 1 n )...(1 n 1 n ) n!

78 Przykład (c.d.) ograniczoność z dołu: ciąg (a n ) jest niemalejący, a więc a n a 1 = 2 dla każdego n N, z góry: a n = n 2! (1 1 n )...(1 n 1 n ) n! ! + 1 3! n!

79 Przykład (c.d.) ograniczoność z dołu: ciąg (a n ) jest niemalejący, a więc a n a 1 = 2 dla każdego n N, z góry: a n = n 2! (1 1 n )...(1 n 1 n ) n! ! + 1 3! n! n 1 =

80 Przykład (c.d.) ograniczoność z dołu: ciąg (a n ) jest niemalejący, a więc a n a 1 = 2 dla każdego n N, z góry: a n = n 2! (1 1 n )...(1 n 1 n ) n! ! + 1 3! n! n 1 = = ( 1 2 )n = 3.

81 Definicja Granicę ciągu ( n) n nazywamy liczbą Eulera i oznaczamy literą e lim n ( 1) n 1 + = e = n

82 Definicja Granicę ciągu ( n) n nazywamy liczbą Eulera i oznaczamy literą e lim n ( 1) n 1 + = e = n Liczba e jest podstawą logarytmu naturalnego: ln x log e x.

83 Twierdzenie Jeżeli lim n a n = lub lim n a n =, to ( 1 ) an lim 1 + = e. n a n

84 Przykład (y) Sprawy organizacyjne

Matematyka. Justyna Winnicka. rok akademicki 2016/2017. Szkoªa Gªówna Handlowa

Matematyka. Justyna Winnicka. rok akademicki 2016/2017. Szkoªa Gªówna Handlowa Matematyka Justyna Winnicka Szkoªa Gªówna Handlowa rok akademicki 2016/2017 kontakt, konsultacje, koordynator mail: justa_kowalska@yahoo.com, jkowal4@sgh.waw.pl, justyna.winnicka@sgh.waw.pl konsultacje:

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Definicja ciągu liczbowego. Definicja 1.1. Ciągiem liczbowym nazywamy funkcję a : N R odwzorowującą zbiór liczb naturalnych N w zbiór liczb rzeczywistych R i oznaczamy przez {a

Bardziej szczegółowo

Analiza matematyczna. 1. Ciągi

Analiza matematyczna. 1. Ciągi Analiza matematyczna 1. Ciągi Definicja 1.1 Funkcję a: N R odwzorowującą zbiór liczb naturalnych w zbiór liczb rzeczywistych nazywamy ciągiem liczbowym. Wartość tego odwzorowania w punkcie n nazywamy n

Bardziej szczegółowo

Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014)

Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014) dr inż. Ryszard Rębowski DEFINICJA CIĄGU LICZBOWEGO Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z grudnia 04) Definicja ciągu liczbowego Spośród

Bardziej szczegółowo

Matematyka ZLic - 2. Granica ciągu, granica funkcji. Ciągłość funkcji, własności funkcji ciągłych.

Matematyka ZLic - 2. Granica ciągu, granica funkcji. Ciągłość funkcji, własności funkcji ciągłych. Matematyka ZLic -. Granica ciągu, granica funkcji. Ciągłość funkcji, własności funkcji ciągłych. Granica ciągu Ciąg a n ma granicę właściwą g R i piszemy jeśli lim n a n g lub a n g gdy n NN n N a n g

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Wprowadzenie Ciągi liczbowe

Analiza matematyczna i algebra liniowa Wprowadzenie Ciągi liczbowe Analiza matematyczna i algebra liniowa Wprowadzenie Ciągi liczbowe Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:

Bardziej szczegółowo

Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy

Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 217/218

Bardziej szczegółowo

7. CIĄGI. WYKŁAD 5. Przykłady :

7. CIĄGI. WYKŁAD 5. Przykłady : WYKŁAD 5 1 7. CIĄGI. CIĄGIEM NIESKOŃCZONYM nazywamy funkcję określoną na zbiorze liczb naturalnych, dodatnich, a wyrazami ciągu są wartości tej funkcji. CIĄGIEM SKOŃCZONYM nazywamy funkcję określoną na

Bardziej szczegółowo

granicą ciągu funkcyjnego (f n ) n N W symbolicznym zapicie fakt, że f jest granicą ciągu funkcyjnego (f n ) n N możemy wyrazić następująco: ε>0 N N

granicą ciągu funkcyjnego (f n ) n N W symbolicznym zapicie fakt, że f jest granicą ciągu funkcyjnego (f n ) n N możemy wyrazić następująco: ε>0 N N 14. Określenie ciągu i szeregu funkcyjnego, zbieżność punktowa i jednostajna. Własności zbieżności jednostajnej. Kryterium zbieżności jednostajnej szeregu funkcyjnego. 1 Definicja Ciąg funkcyjny Niech

Bardziej szczegółowo

Ciągi. Granica ciągu i granica funkcji.

Ciągi. Granica ciągu i granica funkcji. Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Ciągi. Granica ciągu i granica funkcji.. Ciągi Ciąg jest to funkcja określona na zbiorze N lub jego podzbiorze. Z tego względu ciągi dziey na

Bardziej szczegółowo

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny:

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny: Podstawowe definicje Definicja ciągu Ciągiem nazywamy funkcję na zbiorze liczb naturalnych, tzn. przyporządkowanie każdej liczbie naturalnej jakiejś liczby rzeczywistej. (Mówimy wtedy o ciągu o wyrazach

Bardziej szczegółowo

1. Definicja granicy właściwej i niewłaściwej funkcji.

1. Definicja granicy właściwej i niewłaściwej funkcji. V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,

Bardziej szczegółowo

Ciąg monotoniczny. Autorzy: Katarzyna Korbel

Ciąg monotoniczny. Autorzy: Katarzyna Korbel Ciąg monotoniczny Autorzy: Katarzyna Korbel 07 Ciąg monotoniczny Autor: Katarzyna Korbel Ciągi, tak jak funkcje, mogą mieć różne własności, których znajomość może przyczynić się do dalszej analizy ich

Bardziej szczegółowo

Funkcja wykładnicza kilka dopowiedzeń

Funkcja wykładnicza kilka dopowiedzeń Funkcje i ich granice Było: Zbiór argumentów; zbiór wartości; monotoniczność; funkcja odwrotna; funkcja liniowa; kwadratowa; wielomiany; funkcje wymierne; funkcje trygonometryczne i ich odwrotności; funkcja

Bardziej szczegółowo

Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n

Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n V. Napisz 4 początkowe wyrazy ciągu: Blok V: Ciągi. Różniczkowanie i całkowanie a) a n = n b) a n = n + 3 n! c) a n = n! n(n + ) V. Oblicz (lub zapisz) c, c 3, c k, c n k dla: a) c n = 3 n b) c n = 3n

Bardziej szczegółowo

E-learning - matematyka - poziom rozszerzony. Funkcja wykładnicza. Materiały merytoryczne do kursu

E-learning - matematyka - poziom rozszerzony. Funkcja wykładnicza. Materiały merytoryczne do kursu E-learning - matematyka - poziom rozszerzony Funkcja wykładnicza Materiały merytoryczne do kursu Definicję i własności funkcji wykładniczej poprzedzimy definicją potęgi o wykładniku rzeczywistym. Poprawna

Bardziej szczegółowo

Zbiory ograniczone i kresy zbiorów

Zbiory ograniczone i kresy zbiorów Zbiory ograniczone i kresy zbiorów Def.. Liczb m nazywamy ograniczeniem dolnym a liczb M ograniczeniem górnym zbioru X R gdy (i) x m; (ii) x M. Mówimy,»e zbiór X jest ograniczony z doªu (odp. z góry) gdy

Bardziej szczegółowo

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie

Bardziej szczegółowo

Zapisujemy to symbolicznie jako równość:. Mówimy też, że ciąg posiada granicę niewłaściwą (równą nieskończoności).

Zapisujemy to symbolicznie jako równość:. Mówimy też, że ciąg posiada granicę niewłaściwą (równą nieskończoności). Ciągi rozbieżne do Def. Mówimy, że ciąg jest rozbieżny do, jeśli Zapisujemy to symbolicznie jako równość:. Mówimy też, że ciąg posiada granicę niewłaściwą (równą nieskończoności). Można obrazowo powiedzieć,

Bardziej szczegółowo

Ciągi liczbowe. - oznacza, że a(1) = a 1, a(2) = a 2, a(n) = a n a 1, a 2, a 3, a 4,... a n a(n) a n

Ciągi liczbowe. - oznacza, że a(1) = a 1, a(2) = a 2, a(n) = a n a 1, a 2, a 3, a 4,... a n a(n) a n Ciągi liczbowe Spis treści Ciąg liczbowy Ciąg liczbowy skończony Ciąg liczbowy nieskończony Przykłady i sposoby określania ciągu, suma n początkowych wyrazów ciągu Suma n początkowych, kolejnych wyrazów

Bardziej szczegółowo

Egzamin z Analizy Matematycznej I dla Informatyków, 28 I 2017 Część I

Egzamin z Analizy Matematycznej I dla Informatyków, 28 I 2017 Część I Egzamin z Analizy Matematycznej I dla Informatyków, 28 I 2017 Część I Czas na rozwiązanie zadań cz. I: 2 godz. Do zdobycia: 60 pkt. Nie wolno korzystać z notatek, kalkulatorów, telefonów, pomocy sąsiadów,

Bardziej szczegółowo

E-learning - matematyka - poziom rozszerzony. Granice ciągów. Materiały merytoryczne do kursu

E-learning - matematyka - poziom rozszerzony. Granice ciągów. Materiały merytoryczne do kursu E-learning - matematyka - poziom rozszerzony Granice ciągów Materiały merytoryczne do kursu N początku następnego: Przyjmiemy następujące oznaczenia: N - zbiór liczb naturalnych, N = {1, 2,..., }, Z -

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Funkcje, ich granice i ciągłość

Zadania z analizy matematycznej - sem. II Funkcje, ich granice i ciągłość Zadania z analizy matematycznej - sem II Funkcje ich granice i ciągłość Zadanie 1 Wyznaczyć i naszkicować dziedziny naturalne podanych funkcji: a f y = 2 y 3 25 2 +y 2 16 b g y = ln1 2 y 2 c h y = ln 2

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1.

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1. Rozdział 5 Szeregi liczbowe 5. Szeregi liczbowe Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy ( ). Ciąg (s n ) określony wzorem s n = n a j, n N, nazywamy ciągiem sum częściowych ciągu

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 201/15 (1) Nazwa Rachunek różniczkowy i całkowy I (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot (3)

Bardziej szczegółowo

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Leszek Skrzypczak 1. Niech E = {x [0, 1] : x = k 2 n k = 1, 2,... 2 n, n = 1, 2, 3,...} Wówczas: (a) Dla dowolnych liczb wymiernych p, q [0,

Bardziej szczegółowo

Granice funkcji. XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21

Granice funkcji. XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21 Granice funkcji XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21 Granica funkcji Definicje Granica właściwa funkcji w punkcie wg Heinego Liczbę g nazywamy granicą właściwą funkcji f w punkcie

Bardziej szczegółowo

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy

Bardziej szczegółowo

E-learning - matematyka - poziom rozszerzony. Ciągi liczbowe. Ciąg arytmetyczny i ciąg geometryczny. Materiały merytoryczne do kursu

E-learning - matematyka - poziom rozszerzony. Ciągi liczbowe. Ciąg arytmetyczny i ciąg geometryczny. Materiały merytoryczne do kursu E-learning - matematyka - poziom rozszerzony Ciągi liczbowe Ciąg arytmetyczny i ciąg geometryczny Materiały merytoryczne do kursu Ciągi arytmetyczne i ciągi geometryczne stanowią istotne klasy ciągów zarówno

Bardziej szczegółowo

Ciągi. Kurs matematyki w Oratorium (http://www.salezjanie.rumia.pl/math)

Ciągi. Kurs matematyki w Oratorium (http://www.salezjanie.rumia.pl/math) Ciągi Kurs matematyki w Oratorium (http://www.salezjanie.rumia.pl/math) Spis treści 1 Ciągi liczbowe 1 1.1 Podstawowe własności ciągów................... 2 1.2 Granica ciągu............................

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

jest ciągiem elementów z przestrzeni B(R, R)

jest ciągiem elementów z przestrzeni B(R, R) Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)

Bardziej szczegółowo

Krzysztof Rykaczewski. Szeregi

Krzysztof Rykaczewski. Szeregi Krzysztof Rykaczewski Spis treści 1 Definicja szeregu 2 Zbieżność szeregu 3 Kryteria zbieżności szeregów 4 Iloczyn Cauchy ego szeregów 5 Bibliografia 1 / 13 Definicja szeregu Niech dany będzie ciąg (a

Bardziej szczegółowo

Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd.

Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd. Modelowanie wybranych pojęć matematycznych semestr letni, 206/207 Wykład 0 Własności funkcji cd. Ciągłość funkcji zastosowania Przybliżone rozwiązywanie równań Znajdziemy przybliżone rozwiązanie równania

Bardziej szczegółowo

Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne.

Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne. Treści programowe Matematyka 1 Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Ciągłość funkcji i podstawowe własności funkcji ciągłych.

Ciągłość funkcji i podstawowe własności funkcji ciągłych. Ciągłość funkcji i podstawowe własności funkcji ciągłych. Definicja (otoczenie punktu) Otoczeniem punktu x 0 R, o promieniu nazywamy zbiór x R taki, że: inaczej x x 0 x x 0, x 0 Definicja (ciągłość w punkcie)

Bardziej szczegółowo

MATEMATYKA I SEMESTR WSPIZ (PwZ) 1. Ciągi liczbowe

MATEMATYKA I SEMESTR WSPIZ (PwZ) 1. Ciągi liczbowe MATEMATYKA I SEMESTR WSPIZ (PwZ). Ciągi liczbowe.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony) liczbom naturalnym.

Bardziej szczegółowo

Matematyka podstawowa V. Ciągi

Matematyka podstawowa V. Ciągi Matematyka podstawowa V Ciągi Teoria ciąg arytmetyczny - pierwszy wyraz ciągu - różnica Kolejny wyraz ciągu arytmetycznego powstaje przez dodanie do poprzedniego różnicy. = + Np. =2,=3 :2,5,8,11 = 4,=2

Bardziej szczegółowo

Notatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 1 Jacek M. Jędrzejewski Wstęp W naszym konspekcie będziemy stosowali następujące oznaczenia: N zbiór liczb naturalnych dodatnich, N 0 zbiór liczb naturalnych (z zerem),

Bardziej szczegółowo

020 Liczby rzeczywiste

020 Liczby rzeczywiste 020 Liczby rzeczywiste N = {1,2,3,...} Z = { 0,1, 1,2, 2,...} m Q = { : m, n Z, n 0} n Operacje liczbowe Zbiór Dodawanie Odejmowanie Mnożenie Dzielenie N Z Q Pytanie Dlaczego zbiór liczb wymiernych nie

Bardziej szczegółowo

II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty.

II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty. II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty. Definicja 1.1. Funkcją określoną na zbiorze X R o wartościach w zbiorze Y R nazywamy przyporządkowanie każdemu elementowi x X dokładnie

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Analiza matematyczna I Mathematical analysis I Kierunek: Kod przedmiotu: Matematyka Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Poziom kwalifikacji:

Bardziej szczegółowo

EGZAMIN, ANALIZA 1A, , ROZWIĄZANIA

EGZAMIN, ANALIZA 1A, , ROZWIĄZANIA Zadanie 1. Podać kresy następujących zbiorów. Przy każdym z kresów napisać, czy kres należy do zbioru (TAK = należy, NIE = nie należy). infa = 0 NIE A = infb = 1 TAK { 1 i + 2 j +1 + 3 } k +2 : i,j,k N

Bardziej szczegółowo

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Szeregi liczbowe. Szeregi liczbowe i ich kryteria zbieżności. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Szeregi liczbowe. Szeregi liczbowe i ich kryteria zbieżności. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi liczbowe Szeregi liczbowe i ich kryteria zbieżności Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi liczbowe str. 1/25 Szereg liczbowy Niech(a n ) będzie

Bardziej szczegółowo

Szeregi liczbowe. Analiza Matematyczna. Alexander Denisjuk

Szeregi liczbowe. Analiza Matematyczna. Alexander Denisjuk Analiza Matematyczna Szeregi liczbowe Alexander Denisjuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych zamiejscowy ośrodek dydaktyczny w Gdańsku ul. Brzegi 55 80-045 Gdańsk

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Liczby i funkcje

Zadania z analizy matematycznej - sem. I Liczby i funkcje Zadania z analizy matematycznej - sem. I Liczby i funkcje Definicja 1. Mówimy że: liczba m Z jest dzielnikiem liczby n Z gdy istnieje l Z takie że n = l m. Zapisujemy to symbolem m n; liczba m Z jest wspólnym

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: Obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL

Bardziej szczegółowo

Tematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych

Tematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych Tematyka do egzaminu ustnego z matematyki 3 semestr LO dla dorosłych I. Sumy algebraiczne 1. Dodawanie i odejmowanie sum algebraicznych 2. Mnożenie sum algebraicznych 3. Wzory skróconego mnożenia - zastosowanie

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

Zbiory, funkcje i ich własności. XX LO (wrzesień 2016) Matematyka elementarna Temat #1 1 / 16

Zbiory, funkcje i ich własności. XX LO (wrzesień 2016) Matematyka elementarna Temat #1 1 / 16 Zbiory, funkcje i ich własności XX LO (wrzesień 2016) Matematyka elementarna Temat #1 1 / 16 Zbiory Zbiory ograniczone, kresy Zbiory ograniczone, min, max, sup, inf Zbiory ograniczone 1 Zbiór X R jest

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2005/06, semestr 1. Tadeusz Rzeżuchowski

ANALIZA MATEMATYCZNA 2005/06, semestr 1. Tadeusz Rzeżuchowski ANALIZA MATEMATYCZNA 2005/06, semestr 1. Tadeusz Rzeżuchowski 1 Spis treści 1 Zbiory liczbowe 5 1.1 Krótka informacja o zbiorach liczb naturalnych, całkowitych i wymiernych 5 1.1.1 Liczby naturalne.........................

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

Dany jest ciąg określony wzorem dla. Oblicz i. Piąty wyraz ciągu określonego wzorem, gdzie jest równy A) 1 B) 5 C) 10 D) 0,5.

Dany jest ciąg określony wzorem dla. Oblicz i. Piąty wyraz ciągu określonego wzorem, gdzie jest równy A) 1 B) 5 C) 10 D) 0,5. Zadanie 1 Dany jest ciąg określony wzorem dla. Oblicz i. Zadanie 2 Piąty wyraz ciągu określonego wzorem, gdzie jest równy A) 1 B) 5 C) 10 D) 0,5. Zadanie 3 Dany jest ciąg o wzorze ogólnym, gdzie. Piąty

Bardziej szczegółowo

1 Liczby rzeczywiste. 1.1 Dlaczego nie wystarczają liczby wymierne

1 Liczby rzeczywiste. 1.1 Dlaczego nie wystarczają liczby wymierne Liczby rzeczywiste. Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być:.

Bardziej szczegółowo

Analiza Matematyczna I

Analiza Matematyczna I Analiza Matematyczna I Informatyka, WPPT, Politechnika Wrocławska Wprowadzenie (2 godziny ćwiczeń) Pokaż, że dla dowolnych liczb rzeczywistych a i b zachodzą nierówności:. a b = a b, 2. a + b a + b, 3.

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Matematyka I Mathematics I Kierunek: biotechnologia Rodzaj przedmiotu: Poziom przedmiotu: obowiązkowy dla wszystkich I stopnia specjalności Rodzaj zajęć: Liczba godzin/tydzień: wykład,

Bardziej szczegółowo

SZEREGI LICZBOWE I FUNKCYJNE

SZEREGI LICZBOWE I FUNKCYJNE Mając dowolny ciąg można z niego utworzyć nowy ciąg sum częściowych: Ten nowy rodzaj ciągu nazywamy szeregiem liczbowym, a jeśli to mamy do czynienia z nieskończonym szeregiem liczbowym, który oznaczany

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej

Bardziej szczegółowo

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania. 10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych

Bardziej szczegółowo

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.)

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a

Bardziej szczegółowo

SYLABUS. Studia Kierunek studiów Poziom kształcenia Forma studiów. stopnia

SYLABUS. Studia Kierunek studiów Poziom kształcenia Forma studiów. stopnia SYLABUS Nazwa przedmiotu Analiza matematyczna Nazwa jednostki prowadzącej Wydział Matematyczno-Przyrodniczy, przedmiot Instytut Fizyki Kod przedmiotu Studia Kierunek studiów Poziom kształcenia Forma studiów

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia I. Informacje ogólne Analiza matematyczna 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

2. FUNKCJE. jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy FUNKCJĄ, lub

2. FUNKCJE. jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy FUNKCJĄ, lub WYKŁAD 2 1 2. FUNKCJE. 2.1.PODSTAWOWE DEFINICJE. Niech będą dane zbiory i. Jeżeli każdemu elementowi x ze zbioru,, przyporządkujemy jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) Załącznik nr do Uchwały Senatu nr 30/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2019 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Rachunek różniczkowy i całkowy

Bardziej szczegółowo

Zastosowania matematyki w analityce medycznej

Zastosowania matematyki w analityce medycznej Zastosowania matematyki w analityce medycznej 1. Metryczka Nazwa Wydziału: Program kształcenia (kierunek studiów, poziom i profil kształcenia, forma studiów, np. Zdrowie publiczne I stopnia profil praktyczny,

Bardziej szczegółowo

FUNKCJA I JEJ WŁASNOŚCI

FUNKCJA I JEJ WŁASNOŚCI FUNKCJA I JEJ WŁASNOŚCI Niech i oznaczają dwa dowolne niepuste zbiory. DEFINICJA (odwzorowanie zbioru (funkcja)) Odwzorowaniem zbioru w zbiór nazywamy przyporządkowanie każdemu elementowi zbioru dokładnie

Bardziej szczegółowo

7. Funkcje elementarne i ich własności.

7. Funkcje elementarne i ich własności. Misztal Aleksandra, Herman Monika 7. Funkcje elementarne i ich własności. Definicja funkcji elementarnej Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe, np. wykładnicze logarytmiczne

Bardziej szczegółowo

Granice ciągów liczbowych

Granice ciągów liczbowych Granice ciągów liczbowych Obliczyć z definicji granicę ciągu o wyrazie, gdzie jest pewną stałą liczbą. Definicja: granicą ciągu jest liczba, jeśli Sprawdzamy, czy i kiedy granica rozpatrywanego ciągu wynosi

Bardziej szczegółowo

Liczba godzin. Uczeń: wykres ciągu. K P 1 wyraz ciągu. wyznacza kolejne wyrazy ciągu, gdy danych jest kilka jego. początkowych wyrazów K P

Liczba godzin. Uczeń: wykres ciągu. K P 1 wyraz ciągu. wyznacza kolejne wyrazy ciągu, gdy danych jest kilka jego. początkowych wyrazów K P MATeMAtyka 3 Plan wynikowy: Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; wymagania wykraczające - dopuszczający;

Bardziej szczegółowo

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Marcin Michalski 14.11.014 1 Wprowadzenie Jedną z intuicji na temat liczb rzeczywistych jest myślenie o nich jako liczbach,

Bardziej szczegółowo

Matematyka dla biologów Zajęcia nr 6.

Matematyka dla biologów Zajęcia nr 6. Matematyka dla biologów Zajęcia nr 6. Dariusz Wrzosek 13 listopad 2017 Matematyka dla biologów Zajęcia 6. 13 listopada 2017 1 / 33 Analiza matematyczna Przez kilka wykładów będziemy omawiać podstawowe

Bardziej szczegółowo

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI DEFINICJA (funkcji elementarnych) Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe wykładnicze logarytmiczne trygonometryczne Funkcje, które można

Bardziej szczegółowo

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Ekstrema i monotoniczność funkcji Oznaczmy przez D f dziedzinę funkcji f Mówimy, że funkcja f ma w punkcie 0 D f maksimum lokalne (minimum lokalne), gdy dla każdego

Bardziej szczegółowo

x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) =

x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) = Zadanie.. Obliczyć granice 2 + 2 (a) lim (d) lim 0 2 + 2 + 25 5 = 5,. Granica i ciągłość funkcji odpowiedzi = 4, (b) lim 2 5 + 6 2 6 =, 4 (e) lim 0sin 2 = 2, cos (g) lim 0 2 =, (h) lim 2 8 Zadanie.2. Obliczyć

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty) SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/17 2019/20 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Analiza matematyczna Kod przedmiotu/ modułu* Wydział (nazwa jednostki

Bardziej szczegółowo

22 Pochodna funkcji definicja

22 Pochodna funkcji definicja 22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica

Bardziej szczegółowo

Ciągi. Pojęcie granicy ciągu.

Ciągi. Pojęcie granicy ciągu. Rozdział 2 Ciągi. Pojęcie granicy ciągu. Definicja 2.. Ciąg jest to funkcja określona na zbiorze liczb naturalnych. Będziemy rozważać ciągi o wyrazach rzeczywistych, czyli zgodnie z powyższą definicją

Bardziej szczegółowo

Sylabus - Matematyka

Sylabus - Matematyka Sylabus - Matematyka 1. Metryczka Nazwa Wydziału: Program kształcenia: Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej Farmacja, jednolite studia magisterskie Forma studiów: stacjonarne i niestacjonarne

Bardziej szczegółowo

Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów

Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów Wymagania edukacyjne PRZEDMIOT: Matematyka KLASA: III Th ZAKRES: zakres podstawowy Poziom wymagań Lp. Dział programu Konieczny-K Podstawowy-P Rozszerzający-R Dopełniający-D Uczeń: 1. Ciągi liczbowe. -zna

Bardziej szczegółowo

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: Wiadomości i umiejętności z zakresu matematyki ze szkoły średniej.

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: Wiadomości i umiejętności z zakresu matematyki ze szkoły średniej. KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Analiza matematyczna I (ANA011) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/1 5. LICZBA PUNKTÓW ECTS: 11 6. LICZBA GODZIN: 60 /

Bardziej szczegółowo

Opis poszczególnych przedmiotów (Sylabus)

Opis poszczególnych przedmiotów (Sylabus) Opis poszczególnych przedmiotów (Sylabus) Nazwa Przedmiotu: Analiza matematyczna Kod przedmiotu: Typ przedmiotu: obowiązkowy Poziom przedmiotu: podstawowy Rok studiów, semestr: rok pierwszy, semestr I

Bardziej szczegółowo

MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO

MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO 2016-09-01 MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO SZKOŁY BENEDYKTA Ramowy rozkład materiału Klasa II I. Trójmian kwadratowy II. Wielomiany III. Funkcja wymierna IV. Funkcje dowolnego argumentu V.

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Literatura. Terminy wykładów i ćwiczeń. Warunki zaliczenia. tnij.org/ktrabka

Treści programowe. Matematyka. Efekty kształcenia. Literatura. Terminy wykładów i ćwiczeń. Warunki zaliczenia. tnij.org/ktrabka Treści programowe Matematyka Katarzyna Trąbka-Więcław Elementy algebry liniowej. Macierze i wyznaczniki. Ciągi liczbowe, granica ciągu i granica funkcji, rachunek granic, wyrażenia nieoznaczone, ciągłość

Bardziej szczegółowo

ANALIZA SYLABUS. A. Informacje ogólne

ANALIZA SYLABUS. A. Informacje ogólne ANALIZA SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok studiów

Bardziej szczegółowo

Informatyka, I stopień

Informatyka, I stopień Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Informatyka, I stopień Sylabus modułu: Podstawy logiki i teorii mnogości (LTM200.2) wariantu modułu (opcjonalnie): 1. Informacje ogólne

Bardziej szczegółowo

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA oprac. I. Gorgol Spis treści. Elementy logiki. Elementy rachunku zbiorów 4. Funkcje zdaniowe i kwantyfikatory. 4 4. Funkcja złożona i odwrotna 6 5. Granica ciągu liczbowego

Bardziej szczegółowo

Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne

Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu

Bardziej szczegółowo

Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d

Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d C. Bagiński Materiały dydaktyczne 1 Matematyka Dyskretna /008 rozwiązania 1. W każdym z następujących przypadków podać jawny wzór na s n i udowodnić indukcyjnie jego poprawność: (a) s 0 3, s 1 6, oraz

Bardziej szczegółowo

Literatura podstawowa

Literatura podstawowa 1 Wstęp Literatura podstawowa 1. Grażyna Kwiecińska: Matematyka : kurs akademicki dla studentów nauk stosowanych. Cz. 1, Wybrane zagadnienia algebry liniowej, Wydaw. Uniwersytetu Gdańskiego, Gdańsk, 2003.

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo