Jarosław Wróblewski Matematyka Elementarna, zima 2014/15

Wielkość: px
Rozpocząć pokaz od strony:

Download "Jarosław Wróblewski Matematyka Elementarna, zima 2014/15"

Transkrypt

1 Ćwiczenia Powtórka przed sprawdzianem nr 1. Wzory skróconego mnożenia dwumian Newtona procenty. Postęp arytmetyczny i geometryczny. Ćwiczenia Sprawdzian nr 1: godz. 8:15-8:40 (materiał zad Zadania ze sprawdzianu zostaną omówione na ćwiczeniach bezpośrednio po sprawdzianie. Poniższe zadania należy spróbować rozwiązać przed ćwiczeniami. Na ćwiczeniach wyjaśnimy sobie trudności związane z tymi zadaniami. 71. Dowieść że iloczyn dowolnych czterech kolejnych liczb naturalnych powiększony o jeden jest kwadratem liczby całkowitej. 7. Uporządkować podane liczby w kolejności rosnącej. Nie używać kalkulatora!!! a = 3 b = c = 5+ 6 d = 10 e = + 3 f = Uprościć wyrażenia 1 a b c d (1 6 ( ( ( ( e Uzupełnić wzory skróconego mnożenia. Kropki występujące po lewej stronie równości zastąpić pojedynczym znakiem. a (x+ = x +... b a 3 +b 3 = (a+b... c a 3 b 3 = (a b... d a 3...b 3 = (a +ab+b... e a 4...b 4 = (a+b... f a 4...b 4 = (a b... g a 5...b 5 = (a+b... h a 5...b 5 = (a b... i (a+b 3 = a j (a b 4 = a 4... k (a b 5 = a 5... l a n b n = (a b... m a n +b n = (a+b... - dla których n? n a n b n = (a+b... - dla których n? o a n +b n = (a +b... - dla których n? p a n b n = (a +b... - dla których n? Lista Strony 10-16

2 75. Dla podanej liczby wskazać jej nieparzysty dzielnik pierwszy mniejszy od 100. a ; b ; c ; d Dla podanej liczby wskazać jej dwucyfrowy dzielnik pierwszy. a ; b ; c ; d Uwaga: Przyjmujemy że w postępie geometrycznym wszystkie wyrazy są różne od zera. 77. Drugi piąty i dziesiąty wyraz pewnego postępu arytmetycznego tworzą postęp geometryczny trójwyrazowy. Jaki jest iloraz tego postępu geometrycznego? 78. Obliczyć gdzie w mianownikach znajdują się potęgi dwójki i trójki ustawione rosnąco. 79. Dla których liczb naturalnych n 3 prawdziwe jest następujące twierdzenie? W dowolnym postępie arytmetycznym n-wyrazowym o sumie 0 co najmniej jeden z wyrazów jest równy Suma wyrazów dowolnego postępu arytmetycznego n-wyrazowego a 1 a... a n jest równa n (a 7 +a k. Dla podanej liczby k wskazać takie n aby powyższe zdanie było prawdziwe. a k = 3 n =... ; b k = 5 n =... ; c k = 7 n =... ; d k = 10 n = Podać liczbę całkowitą dodatnią n dla której prawdziwe jest następujące twierdzenie: W dowolnym postępie arytmetycznym n wyrazowym a 1 a a 3... a n suma wyrazów jest równa a n a 5 dla n =... ; b n a4 +a 7 dla n =... ; c n (a 1 a 11 dla n =... ; d n a10 +a 1 dla n =.... Lista Strony 10-16

3 8. Dla podanej liczby n podaj największą liczbę naturalną d o następującej własności: Dowolny postęp arytmetyczny n-wyrazowy o wyrazach całkowitych ma sumę wyrazów podzielną przez d. a n = 013 d =... ; b n = 014 d =... ; c n = 015 d =... ; d n = 016 d = Suma wyrazów dowolnego postępu arytmetycznego n-wyrazowego a 1 a... a n jest równa n a k. Dla podanej liczby k wskazać takie n aby powyższe zdanie było prawdziwe. a k = 3 n =... ; b k = 5 n =... ; c k = 7 n =... ; d k = 10 n = Suma wyrazów dowolnego postępu arytmetycznego n-wyrazowego a 1 a... a n jest równa n (a k +a k. Dla podanej liczby k wskazać takie n aby powyższe zdanie było prawdziwe. a k = 3 n =... ; b k = 5 n =... ; c k = 7 n =... ; d k = 10 n = W dowolnym rosnącym postępie arytmetycznym 013-wyrazowym o wyrazach dodatnich w którym wyrazy drugi czwarty i siódmy tworzą rosnący postęp geometryczny także wyrazy m-ty n-ty i k-ty tworzą (w tej właśnie kolejności rosnący postęp geometryczny. Uzupełnij podane liczby tak aby powyższe zdanie było prawdziwe. Wpisz NIE jeżeli uważasz że takie liczby nie istnieją. a m = 3 n =... k =... ; b m =... n = 5 k =... ; c m =... n =... k = 8 ; d m =... n = 8 k = W dowolnym rosnącym postępie arytmetycznym 013-wyrazowym o wyrazach dodatnich w którym wyrazy drugi czwarty i siódmy tworzą rosnący postęp geometryczny także wyrazy m-ty n-ty i k-ty tworzą (w tej właśnie kolejności rosnący postęp geometryczny. Uzupełnij podane liczby tak aby powyższe zdanie było prawdziwe. Wpisz NIE jeżeli uważasz że takie liczby nie istnieją. a m = n = 14 k =... ; b m = n = 6 k =... ; c m = n =... k = 14 ; d m = 3 n = 98 k =.... Lista Strony 10-16

4 87. W dowolnym rosnącym postępie geometrycznym 10-wyrazowym w którym wyrazy pierwszy trzeci i czwarty tworzą (w tej właśnie kolejności rosnący postęp arytmetyczny także wyrazy m-ty n-ty i k-ty tworzą (w tej właśnie kolejności rosnący postęp arytmetyczny. Dla podanej jednej z liczb podać dwie pozostałe tak aby powyższe zdanie było prawdziwe. a m = 3 n =... k =... ; b m =... n = 5 k =... ; c m = 7 n =... k =... ; d m =... n =... k = W dowolnym postępie arytmetycznym n-wyrazowym a 1 a a 3... a n o sumie 90 co najmniej jeden z wyrazów jest równy w. Dla podanej liczby n podać liczbę w dla której powyższe zdanie jest prawdziwe. Wpisz NIE jeśli liczba w o żądanej własności nie istnieje. a n = 5 w =... ; b n = 9 w =... ; c n = 10 w =... ; d n = 15 w =.... Ćwiczenia Osoby które uzyskały na teście mniej niż 60 punktów powinny przyjść na ćwiczenia. Pozostali mogą ograniczyć się do rozwiązania zadań we własnym zakresie. Definicja 1. (trójkąt Pascala Tworzymy poniższy nieskończony trójkąt liczbowy w którym na bokach występują liczby 1 a każda liczba wewnątrz trójkąta jest sumą dwóch stojących bezpośrednio nad nią Wiersze numerujemy liczbami całkowitymi zaczynając od zera a w każdym wierszu elementy są również numerowane kolejnymi liczbami całkowitymi nieujemnymi. Lista Strony 10-16

5 Na przykład liczba 1001 jest liczbą numer 4 w wierszu numer 14. Liczbę stojącą zgodnie z taką numeracją w n-tym wierszu na k-tej pozycji oznaczymy przez ( n k Definicja. (kombinatoryczna Przez ( n k podzbiorów zbioru n-elementowego. Definicja 3. (wzór z silniami Przyjmiemy ( n n! = k k! (n k!. W K T P. oznaczymy liczbę k-elementowych 89. Wykaż że podane wyżej trzy definicje są równoważne to znaczy ( ( ( n n n = =. k k k T P 90. Udowodnij że dla dowolnej liczby całkowitej dodatniej n liczba (n! jest podzielna przez (n!. 91. Uporządkuj w kolejności niemalejącej liczby ( ( ( K ( W ( ( Znajdź w wydrukowanym fragmencie trójkąta Pascala trzy liczby występujące kolejno w jednym wierszu i tworzące rosnący postęp arytmetyczny. Ile takich trójek liczb występuje w całym trójkącie Pascala? 93. A ile jest trójek liczb występujących kolejno w jednym wierszu trójkąta Pascala i tworzących postęp geometryczny? 94. Niech p będzie liczbą pierwszą oraz niech 0 < k < p. Udowodnij że liczba ( p k jest podzielna przez p. 95. Udowodnij że dla dowolnej liczby całkowitej dodatniej n zachodzi nierówność ( ( n+ n < 4. n+1 n 96. Udowodnij że dla dowolnej liczby całkowitej dodatniej n zachodzi nierówność ( ( 3n+3 3n < 7. n+1 n 97. Znajdź w wydrukowanym fragmencie trójkąta Pascala takich pięć liczb występujących kolejno na początku jednego wiersza że każda (oprócz pierwszej jest wielokrotnością poprzedniej. Jak długie ciągi takich liczb występują w całym trójkącie Pascala? 98. Jeżeli liczba całkowita dodatnia m jest większa od liczby całkowitej dodatniej n o p% to liczba n jest mniejsza od m o q%. Dla podanej liczby p podać taką liczbę q aby powyższe zdanie było prawdziwe a p = 150 q =... ; b p = 300 q =... ; c p = 400 q =... ; d p = 900 q =.... Lista Strony 10-16

6 99. Dla podanej liczby k podać taką liczbę naturalną n k że ( ( n n = k k +1 k a k = n =... ; b k = 3 n =... ; c k = 4 n =... ; d k = 5 n = Dla podanej liczby wskazać jej dwucyfrowy dzielnik pierwszy. a ; b ; c ; d Dla podanej liczby wskazać jej dwucyfrowy dzielnik pierwszy. a ; b ; c ; d Wiedząc że ( ( ( 14 4 = = = 3003 podać wartość współczynnika dwumianowego ( 15 a =... ; 5 ( 15 b =... ; 6 ( 16 c =... ; 6 ( 15 d = Dla podanych n k wskazać takie m > k aby prawdziwa była równość ( ( ( n n n+1 + = k 1 k m Jeśli uważasz że takiego m nie ma napisz: nie istnieje. a n = 1000 k = 00 m =... ; b n = 1500 k = 300 m =... ; c n = 000 k = 400 m =... ; d n = 013 k = 500 m = Dla podanych liczb a oraz k wskazać taką liczbę naturalną n aby zachodziła równość ( a a k a ak = a an. Lista Strony 10-16

7 a a = 5 k = n =... ; b a = 3 k = 3 n =... ; c a = k = 5 n =... ; d a = 3 k = 4 n = Jeżeli liczba m jest większa od liczby n o p% to największy wspólny dzielnik liczb m n stanowi q% liczby n. Dla podanej liczby p podać liczbę q. a p = 10 q =... ; b p = 0 q =... ; c p = 30 q =... ; d p = 40 q = Jeżeli liczba m jest większa od liczby n o p% to najmniejsza wspólna wielokrotność liczb m n jest większa o q% od liczby n. Dla podanej liczby p podać liczbę q. a p = 10 q =... ; b p = 0 q =... ; c p = 30 q =... ; d p = 40 q = W dowolnym postępie arytmetycznym n-wyrazowym a 1 a a 3... a n o sumie 10 i jednym z wyrazów równym 15 co najmniej jeden z wyrazów jest równy w. Dla podanej liczby n podać wszystkie liczby w 15 dla których powyższe zdanie jest prawdziwe. Wpisz NIE jeśli uważasz że liczba w o żądanej własności nie istnieje. a n = 6 w =... ; b n = 8 w =... ; c n = 1 w =... ; d n = 15 w = Dla podanej liczby n podać przykład rosnącego postępu arytmetycznego n-wyrazowego o sumie wyrazów równej n w którym występuje wyraz równy 1. a n = 3... ; b n = 4... ; c n = 5... ; d n = Suma wyrazów dowolnego postępu arytmetycznego 15-wyrazowego a 1 a...a 15 jest równa 5(a m +a n +a k. Dla podanych m n wskazać taką liczbę naturalną k aby powyższe zdanie było prawdziwe. a m = 1 n = 10 k =... ; b m = 3 n = 9 k =... ; c m = 6 n = 8 k =... ; d m = 7 n = 10 k =.... Ćwiczenia Powtórka przed kolokwium nr 1. Kolokwium nr 1: godz. 8:15-10:00 (materiał zad Lista Strony 10-16

Jarosław Wróblewski Matematyka Elementarna, lato 2014/15

Jarosław Wróblewski Matematyka Elementarna, lato 2014/15 Ćwiczenia 5/6, 10, 17.03.2015 (obie grupy) 33. Połączyć podane warunki w grupy warunków równoważnych dla dowolnej liczby naturalnej n. a) liczba n jest nieparzysta b) liczba n jest względnie pierwsza z

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2015/16

Jarosław Wróblewski Matematyka Elementarna, zima 2015/16 Na ćwiczeniach 6.0.205 omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie.. Sformułować uogólnione cechy podzielności

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. W dniu 21 lutego 2013 r. omawiamy test kwalifikacyjny.

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. W dniu 21 lutego 2013 r. omawiamy test kwalifikacyjny. W dniu 21 lutego 2013 r. omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie. 1. Dane są liczby naturalne m, n. Wówczas

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2013/14

Jarosław Wróblewski Matematyka Elementarna, zima 2013/14 Wzory skróconego mnożenia, procenty, postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie - rozwiązywanie równań i nierówności. Szacowanie wyrażeń. W dniu 23/24 października

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, lato 2010/11

Jarosław Wróblewski Matematyka Elementarna, lato 2010/11 Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie.. Dane są liczby naturalne m, n. Wówczas dla dowolnej liczby naturalnej k, liczba k jest podzielna

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2013/14. Czwartek 21 listopada zaczynamy od omówienia zadań z kolokwium nr 2.

Jarosław Wróblewski Matematyka Elementarna, zima 2013/14. Czwartek 21 listopada zaczynamy od omówienia zadań z kolokwium nr 2. Czwartek 21 listopada 2013 - zaczynamy od omówienia zadań z kolokwium nr 2. Uprościć wyrażenia 129. 4 2+log 27 130. log 3 2 log 59 131. log 6 2+log 36 9 log 132. m (mn) log n (mn) dla liczb naturalnych

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1.

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1. Czwartek 28 marca 2013 - zaczynamy od omówienia zadań z kolokwium nr 1. 122. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 123. Dla ilu trójek liczb rzeczywistych dodatnich a,

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2012/13

Jarosław Wróblewski Matematyka Elementarna, zima 2012/13 Poniedziałek 12 listopada 2012 - zaczynamy od omówienia zadań z kolokwium nr 1. Wtorek 13 listopada 2012 - odbywają się zajęcia czwartkowe. 79. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 9 Zadania ciągi

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 9 Zadania ciągi 1 TEST WSTĘPNY 1. (1p) Dany jest ciąg (a n) określony wzorem a n = (-1) n dla n 1. Wówczas wyraz a3 tego ciągu jest równy: A. B. C. - D. - 2. (2p) Ile wyrazów ujemnych ma ciąg określony wzorem a n = n

Bardziej szczegółowo

Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność.

Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. W dniu 25 lutego 2014 r. omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest

Bardziej szczegółowo

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,

Bardziej szczegółowo

Wersja testu A 25 września 2011

Wersja testu A 25 września 2011 1. Czy istnieje liczba całkowita dodatnia o sumie cyfr równej 399, podzielna przez a) 3 ; b) 5 ; c) 6 ; d) 9? 2. Czy równość (a+b) 5 = a 3 +3a 2 b+3ab 2 +b 3 jest prawdziwa dla a) a = 8/7, b = 1/7 ; b)

Bardziej szczegółowo

7. CIĄGI. WYKŁAD 5. Przykłady :

7. CIĄGI. WYKŁAD 5. Przykłady : WYKŁAD 5 1 7. CIĄGI. CIĄGIEM NIESKOŃCZONYM nazywamy funkcję określoną na zbiorze liczb naturalnych, dodatnich, a wyrazami ciągu są wartości tej funkcji. CIĄGIEM SKOŃCZONYM nazywamy funkcję określoną na

Bardziej szczegółowo

KURS MATURA ROZSZERZONA część 1

KURS MATURA ROZSZERZONA część 1 KURS MATURA ROZSZERZONA część 1 LEKCJA Wyrażenia algebraiczne ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Wyrażenie 3 a 8 a +

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

KURS MATURA ROZSZERZONA część 1

KURS MATURA ROZSZERZONA część 1 KURS MATURA ROZSZERZONA część 1 LEKCJA 1 Liczby rzeczywiste ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 10 2 2019 684 168 2 Dane

Bardziej szczegółowo

Dany jest ciąg określony wzorem dla. Oblicz i. Piąty wyraz ciągu określonego wzorem, gdzie jest równy A) 1 B) 5 C) 10 D) 0,5.

Dany jest ciąg określony wzorem dla. Oblicz i. Piąty wyraz ciągu określonego wzorem, gdzie jest równy A) 1 B) 5 C) 10 D) 0,5. Zadanie 1 Dany jest ciąg określony wzorem dla. Oblicz i. Zadanie 2 Piąty wyraz ciągu określonego wzorem, gdzie jest równy A) 1 B) 5 C) 10 D) 0,5. Zadanie 3 Dany jest ciąg o wzorze ogólnym, gdzie. Piąty

Bardziej szczegółowo

Suma dziewięciu poczatkowych wyrazów ciagu arytmetycznego wynosi 18, a suma siedmiu poczatkowych

Suma dziewięciu poczatkowych wyrazów ciagu arytmetycznego wynosi 18, a suma siedmiu poczatkowych www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI CIAGI ARYTMETYCZNE ZADANIE 1 Suma drugiego, czwartego i szóstego wyrazu ciagu arytmetycznego jest równa 42, zaś suma kwadratów wyrazów drugiego

Bardziej szczegółowo

W każdym zadaniu za 0, 1, 2, 3, 4 poprawne odpowiedzi otrzymuje się odpowiednio 0, 1, 3, 6, 10 punktów.

W każdym zadaniu za 0, 1, 2, 3, 4 poprawne odpowiedzi otrzymuje się odpowiednio 0, 1, 3, 6, 10 punktów. Kolokwium 5 Wersja testu E 9 maja 205 r. W każdym zadaniu za 0,, 2, 3, 4 poprawne odpowiedzi otrzymuje się odpowiednio 0,, 3, 6, 0 punktów.. Liczbę naturalną q nazwiemy fajniutką, jeżeli istnieje taka

Bardziej szczegółowo

LICZBY POWTÓRKA I (0, 2) 10 II (2, 5) 5 III 25 IV Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E) III i IV

LICZBY POWTÓRKA I (0, 2) 10 II (2, 5) 5 III 25 IV Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E) III i IV LICZBY POWTÓRKA ZADANIE (3 PKT) W tabeli zapisano cztery liczby. I (0, 2) 0 II (2, 5) 5 ( III 25 ) 2 ( 25 ) 3 IV 2 5 5 Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E)

Bardziej szczegółowo

d) a n = e) a n = n 3 - n 2-16n + 16 f) a n = n 3-2n 2-50n +100

d) a n = e) a n = n 3 - n 2-16n + 16 f) a n = n 3-2n 2-50n +100 Ciągi - zadania Zad. 1 Oblicz sześć początkowych wyrazów ciągu (a n ) określonego wzorem a) a n = 3n + 2 b) a n = (n - 2)n c) a n = n 2-4 d) a n =n e) a n = f) a n = g) a n =(-1) n 2 n+3 h) a n = n - 2

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13 35. O zdaniu 1 T (n) udowodniono, że prawdziwe jest T (1), oraz że dla dowolnego n 6 zachodzi implikacja T (n) T (n+2). Czy można stąd wnioskować, że a) prawdziwe jest T (10), b) prawdziwe jest T (11),

Bardziej szczegółowo

Tematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych

Tematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych Tematyka do egzaminu ustnego z matematyki 3 semestr LO dla dorosłych I. Sumy algebraiczne 1. Dodawanie i odejmowanie sum algebraicznych 2. Mnożenie sum algebraicznych 3. Wzory skróconego mnożenia - zastosowanie

Bardziej szczegółowo

1. Powtórka ze szkoły. Wykład: 4.10.2004 (4 godziny), ćwiczenia: 7.10.2004, kolokwium nr 1: 11.10.2004

1. Powtórka ze szkoły. Wykład: 4.10.2004 (4 godziny), ćwiczenia: 7.10.2004, kolokwium nr 1: 11.10.2004 ANALIZA MATEMATYCZNA A dla I roku, 2004/2005 1. Powtórka ze szkoły. Wykład: 4.10.2004 (4 godziny), ćwiczenia: 7.10.2004, kolokwium nr 1: 11.10.2004 Obliczyć sumy (postępów arytmetycznych i goemetrycznych):

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

ZADANIE 1 Ciag (a n ), gdzie n 1, jest rosnacym ciagiem geometrycznym. Wyznacz wartość największa 2xa 6 a 2 a 4 a 3 x 2 a 3 a 6. ZADANIE 2 ZADANIE 3

ZADANIE 1 Ciag (a n ), gdzie n 1, jest rosnacym ciagiem geometrycznym. Wyznacz wartość największa 2xa 6 a 2 a 4 a 3 x 2 a 3 a 6. ZADANIE 2 ZADANIE 3 ZADANIE Ciag (a n ), gdzie n, jest rosnacym ciagiem geometrycznym. Wyznacz wartość największa funkcji f (x) = 2xa 6 a 2 a 4 a 3 x 2 a 3 a 6. ZADANIE 2 Długości boków trójkata tworza ciag geometryczny.

Bardziej szczegółowo

5. Logarytmy: definicja oraz podstawowe własności algebraiczne.

5. Logarytmy: definicja oraz podstawowe własności algebraiczne. 5. Logarytmy: definicja oraz podstawowe własności algebraiczne. 78. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 a) 4 2+log 27 = (2 2 ) log 27 4 = 28 2 = 784 29 listopada 2008

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom rozszerzony

Próbny egzamin maturalny z matematyki Poziom rozszerzony Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Zadanie 1 (4 pkt) Rozwiąż równanie: w przedziale 1 pkt Przekształcenie równania do postaci: 2 pkt Przekształcenie równania

Bardziej szczegółowo

Klasa 6. Liczby dodatnie i liczby ujemne

Klasa 6. Liczby dodatnie i liczby ujemne Klasa 6 Liczby dodatnie i liczby ujemne gr A str 1/3 imię i nazwisko klasa data 1 Wyobraź sobie, że na osi liczbowej zaznaczono liczby: 6, 7, 1, 3, 2, 1, 0, 3, 4 Ile z nich znajduje się po lewej stronie

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2011/12

Jarosław Wróblewski Matematyka Elementarna, zima 2011/12 168. Uporządkować podane liczby w kolejności niemalejącej. sin50, cos80, sin170, cos200, sin250, cos280. 169. Naszkicować wykres funkcji f zdefiniowanej wzorem a) f(x) = sin2x b) f(x) = cos3x c) f(x) =

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.).

6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.). 6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.). 0 grudnia 008 r. 88. Obliczyć podając wynik w postaci ułamka zwykłego a) 0,(4)+ 3 3,374(9) b) (0,(9)+1,(09)) 1,() c) (0,(037))

Bardziej szczegółowo

Zadania do samodzielnego rozwiązania

Zadania do samodzielnego rozwiązania Zadania do samodzielnego rozwiązania I. Podzielność liczb całkowitych 1. Pewna liczba sześciocyfrowa a kończy się cyfrą 5. Jeśli tę cyfrę przestawimy na miejsce pierwsze ze strony lewej, to otrzymamy nową

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

Jarosław Wróblewski Matematyka dla Myślących, 2009/10. Test (nr 3) do samodzielnego treningu

Jarosław Wróblewski Matematyka dla Myślących, 2009/10. Test (nr 3) do samodzielnego treningu Test (nr 3) do samodzielnego treningu W każdym z 30 zadań udziel czterech niezależnych odpowiedzi TAK/NIE. Za każde zadanie, w którym podasz 4 poprawne odpowiedzi, dostaniesz 1 punkt. Za pozostałe zadania

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d. 2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.) 10 października 2009 r. 20. Która liczba jest większa,

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 EGZAMIN MATURALNY W ROKU SZKOLNYM 0/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 0 Egzamin maturalny z matematyki nowa formuła Klucz

Bardziej szczegółowo

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania. 10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych

Bardziej szczegółowo

2. Wyrażenia algebraiczne

2. Wyrażenia algebraiczne 2. Wyrażenia algebraiczne Jeśli liczby r, s są liczbami całkowitymi, to równości od 1) do 5) są prawdziwe dla wszystkich liczb rzeczywistych a, b różnych od zera. Logarytm Logarytmem 10gab liczby dodatniej

Bardziej szczegółowo

MATURA 2012. Przygotowanie do matury z matematyki

MATURA 2012. Przygotowanie do matury z matematyki MATURA 01 Przygotowanie do matury z matematyki Część V: Ciągi liczbowe ROZWIĄZANIA Powtórka jest organizowana przez redaktorów portalu MatmaNa6.pl we współpracy z dziennikarzami Gazety Lubuskiej. Witaj,

Bardziej szczegółowo

BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA

BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA 1. Podaj zbiór wartości i monotoniczność funkcji: b) c) j) k) l) wskazówka: - oblicz wierzchołek (bez miejsc zerowych!) i naszkicuj wykres (zwróć uwagę na

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A01 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba log 1 3 3 27 jest równa:

Bardziej szczegółowo

WYRAŻENIA ALGEBRAICZNE

WYRAŻENIA ALGEBRAICZNE WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.

Bardziej szczegółowo

1. Równania i nierówności liniowe

1. Równania i nierówności liniowe Równania i nierówności liniowe Wykonać działanie: Rozwiązać równanie: ( +x + ) x a) 5x 5x+ 5 = 50 x 0 b) 6(x + x + ) = (x + ) (x ) c) x 0x (0 x) 56 = 6x 5 5 ( x) Rozwiązać równanie: a) x + x = 4 b) x x

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

Bukiety matematyczne dla gimnazjum

Bukiety matematyczne dla gimnazjum Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 1 X 2002 Bukiet I Dany jest prostokąt o bokach wymiernych a, b, którego obwód O i pole P są całkowite. 1. Sprawdź, że zachodzi równość

Bardziej szczegółowo

Uwaga. 1. Jeśli uczeń poda tylko rozwiązania ogólne, to otrzymuje 4 punkty.

Uwaga. 1. Jeśli uczeń poda tylko rozwiązania ogólne, to otrzymuje 4 punkty. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KRYTERIA OCENIANIA-POZIOM ROZSZERZONY Zadanie 1. (4 pkt) Rozwiąż równanie: w przedziale. 1 pkt Przekształcenie równania

Bardziej szczegółowo

czyli tuzin zadań Wojciech Guzicki Sielpia, 22 października 2016 r.

czyli tuzin zadań Wojciech Guzicki Sielpia, 22 października 2016 r. 1 O OBLICZENIACH, czyli tuzin zadań Wojciech Guzicki W. Guzicki: O obliczeniach 2 Zadanie 1.(XVI OM) Znajdź wszystkie takie liczby pierwsze p, że 4p 2 +1i6p 2 +1sąrównieżliczbamipierwszymi. p 4p 2 +1 6p

Bardziej szczegółowo

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom podstawowy

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom podstawowy KRYTERIA OCENIANIA ODPOWIEDZI Matematyka Poziom podstawowy Marzec 09 Zadania zamknięte Za każdą poprawną odpowiedź zdający otrzymuje punkt. Poprawna odpowiedź. D 8 9 8 7. D. C 9 8 9 8 8 9 8 9 8 ( 89 )

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba)

1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) 1. Liczby wymierne. - wartość bezwzględna liczby. dla 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) - dla < 0 ( wartością bezwzględną liczby ujemnej jest liczba do niej przeciwna) W interpretacji

Bardziej szczegółowo

Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność.

Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. W dniu 3 października 2013 r. omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie

Bardziej szczegółowo

WSTĘP DO ANALIZY I ALGEBRY, MAT1460

WSTĘP DO ANALIZY I ALGEBRY, MAT1460 WSTĘP DO ANALIZY I ALGEBRY, MAT460 Listy zadań Literatura polecana. M.Gewert, Z.Skoczylas Wstęp do analizy i algebry. Teoria,przykłady,zadania.,Oficyna Wydawnicza GiS, Wrocław 04.. D.Zakrzewska, M.Zakrzewski,

Bardziej szczegółowo

Matematyka podstawowa V. Ciągi

Matematyka podstawowa V. Ciągi Matematyka podstawowa V Ciągi Teoria ciąg arytmetyczny - pierwszy wyraz ciągu - różnica Kolejny wyraz ciągu arytmetycznego powstaje przez dodanie do poprzedniego różnicy. = + Np. =2,=3 :2,5,8,11 = 4,=2

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Zadanie PP-CL-1. Trzy liczby: a, b, c, których suma jest równa 93 tworzą ciąg geometryczny. Te same liczby, w podanej kolejności są pierwszym, drugim i siódmym wyrazem ciągu arytmetycznego. Znajdź te liczby.

Bardziej szczegółowo

I) Reszta z dzielenia

I) Reszta z dzielenia Michał Kremzer tekst zawiera 9 stron na moim komputerze Tajemnice liczb I) Reszta z dzielenia 1) Liczby naturalne dodatnie a, b, c dają tę samą resztę przy dzieleniu przez 3. Czy liczba A) a + b + c B)

Bardziej szczegółowo

Wartość bezwzględna, potęgowanie i pierwiastkowanie - rozwiązywanie równań i nierówności.

Wartość bezwzględna, potęgowanie i pierwiastkowanie - rozwiązywanie równań i nierówności. Wartość bezwzględna, potęgowanie i pierwiastkowanie - rozwiązywanie równań i nierówności. Ćwiczenia 5..204 (środa) Osoby, które uzyskały łacznie mniej niż 80 punktów (50%) na sprawdzianie nr i kolokwium

Bardziej szczegółowo

Tematy: zadania tematyczne

Tematy: zadania tematyczne Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.

Bardziej szczegółowo

Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n

Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n V. Napisz 4 początkowe wyrazy ciągu: Blok V: Ciągi. Różniczkowanie i całkowanie a) a n = n b) a n = n + 3 n! c) a n = n! n(n + ) V. Oblicz (lub zapisz) c, c 3, c k, c n k dla: a) c n = 3 n b) c n = 3n

Bardziej szczegółowo

Klasa 6. Liczby dodatnie i liczby ujemne

Klasa 6. Liczby dodatnie i liczby ujemne Klasa 6 Liczby dodatnie i liczby ujemne gr A str 1/3 imię i nazwisko klasa data 1 Wyobraź sobie, że na osi liczbowej zaznaczono liczby: 6, 7, 1, 3, 2, 1, 0, 3, 4 Ile z nich znajduje się po lewej stronie

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZNI OTWRTE KRÓTKIEJ OPOWIEZI Zadanie 54. ( pkt)

Bardziej szczegółowo

Zestaw zadań dotyczących liczb całkowitych

Zestaw zadań dotyczących liczb całkowitych V Zestaw zadań dotyczących liczb całkowitych Opracowanie Monika Fabijańczyk ROZDZIAŁ 1 Cechy podzielności Poniższe zadania zostały wybrane z różnych zbiorów zadań, opracowań, konkursów matematycznych.

Bardziej szczegółowo

Przykładowe rozwiązania

Przykładowe rozwiązania Przykładowe rozwiązania (E. Ludwikowska, M. Zygora, M. Walkowiak) Zadanie 1. Rozwiąż równanie: w przedziale. ( ) ( ) ( )( ) ( ) ( ) ( ) Uwzględniając, że x otrzymujemy lub lub lub. Zadanie. Dany jest czworokąt

Bardziej szczegółowo

Potęgi str. 1/6. 1. Oblicz. d) Potęgę 3 6 można zapisać jako: A. 36 B C D. 3 6

Potęgi str. 1/6. 1. Oblicz. d) Potęgę 3 6 można zapisać jako: A. 36 B C D. 3 6 Potęgi str. 1/6 1. Oblicz. a) 8 2 8 b) ( 2)7 2 c) 9 ( 9) 2 d) 34 27 2. Potęgę 3 6 można zapisać jako: A. 36 B. 3 3 3 3 3 3 C. 6 6 6 D. 3 6 3. Po obliczeniu wartości 3 2 3 otrzymamy liczbę: A. 3 8 B. 9

Bardziej szczegółowo

(x 1), 3 log 8. b) Oblicz, ile boków ma wielokat wypukły, w którym liczba przekatnych jest pięć razy większa od liczby boków.

(x 1), 3 log 8. b) Oblicz, ile boków ma wielokat wypukły, w którym liczba przekatnych jest pięć razy większa od liczby boków. ZADANIE 1 Długości boków trójkata tworza trzy kolejne wyrazy ciagu arytmetycznego o różnicy 1. Oblicz długości boków tego trójkata, jeśli jego pole wynosi 0, 75 15. ZADANIE 2 Pierwszy, trzeci i jedenasty

Bardziej szczegółowo

S n = a 1 1 qn,gdyq 1

S n = a 1 1 qn,gdyq 1 Spis treści Powtórzenie wiadomości... 9 Zadania i zbiory... 10 Obliczenia... 18 Ciągi... 27 Własności funkcji... 31 Funkcje liniowe i kwadratowe... 39 Wielomiany i wyrażenia wymierne... 45 Funkcje wykładnicze

Bardziej szczegółowo

Dydaktyka matematyki, IV etap edukacyjny (ćwiczenia) Ćwiczenia nr 7 Semestr zimowy 2018/2019

Dydaktyka matematyki, IV etap edukacyjny (ćwiczenia) Ćwiczenia nr 7 Semestr zimowy 2018/2019 Dydaktyka matematyki, IV etap edukacyjny (ćwiczenia) Ćwiczenia nr 7 Semestr zimowy 2018/2019 Zadanie z wykładu i ćwiczeń Dany jest ciąg rekurencyjny: x 1 = 1, x n+1 = x n 2 + 1 x n dla n 1. Ograniczoność.

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I GEOMETRIA ANALITYCZNA 1. Równanie prostej w postaci ogólnej i kierunkowej powtórzenie 2. Wzajemne położenie dwóch prostych powtórzenie

Bardziej szczegółowo

Indukcja matematyczna. Zasada minimum. Zastosowania.

Indukcja matematyczna. Zasada minimum. Zastosowania. Indukcja matematyczna. Zasada minimum. Zastosowania. Arkadiusz Męcel Uwagi początkowe W trakcie zajęć przyjęte zostaną następujące oznaczenia: 1. Zbiory liczb: R - zbiór liczb rzeczywistych; Q - zbiór

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATUR pola do tego przeznaczone. Błędne

LUBELSKA PRÓBA PRZED MATUR pola do tego przeznaczone. Błędne 1 MATEMATYKA - poziom podstawowy klasa 2 CZERWIEC 2015 Instrukcja dla zdaj cego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to

Bardziej szczegółowo

1. ZBIORY PORÓWNYWANIE ZBIORÓW. WYKŁAD 1

1. ZBIORY PORÓWNYWANIE ZBIORÓW. WYKŁAD 1 WYKŁAD 1 1 1. ZBIORY. Pojęcie ZBIORU i NALEŻENIA do niego są pojęciami pierwotnymi(niedefiniowalnymi) w matematyce, reszta matematyki jest zdefiniowana lub opisana za pomocą tych pojęć. Można by, opierając

Bardziej szczegółowo

Ciąg arytmetyczny i jego własności

Ciąg arytmetyczny i jego własności Ciąg arytmetyczny i jego własności Ćw.1. Ciąg (a ) określony jest wzorem an =3n-2. a) Oblicz wyrazy: a1; a2, a3, a5, a6. b) Oblicz różnice: a2-a1, a3-a2, a6-a5, a20-al9. c) Wyznacz różnicę an+l - an. d)

Bardziej szczegółowo

LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów)

LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) Zadanie 1. Dana jest liczba całkowita n 2. Wyznaczyć liczbę rozwiązań (x 1,x

Bardziej szczegółowo

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH B D C A B B A B A C D A

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH B D C A B B A B A C D A Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH Nr zad Odp. 1 2 3 4 5 6 7 8 9 10 11 12 B D C A B B A B A C D A Nr zad Odp. 13 14 15

Bardziej szczegółowo

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność.

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. 2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. 11 października 2008 r. 19. Wskazać takie liczby naturalne m,

Bardziej szczegółowo

Matematyka z kluczem. Szkoła podstawowa nr 18 w Sosnowcu. Przedmiotowe zasady oceniania klasa 7

Matematyka z kluczem. Szkoła podstawowa nr 18 w Sosnowcu. Przedmiotowe zasady oceniania klasa 7 Matematyka z kluczem Szkoła podstawowa nr 18 w Sosnowcu Przedmiotowe zasady oceniania klasa 7 KlasaVII wymagania programowe- wymagania na poszczególne oceny ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane

Bardziej szczegółowo

Powtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową *

Powtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową * Powtórzenie podstawowych zagadnień związanych ze sprawnością rachunkową * (Materiały dydaktyczne do laboratorium fizyki) Politechnika Koszalińska październik 2010 Spis treści 1. Zbiory liczb..................................................

Bardziej szczegółowo

CIĄGI wiadomości podstawowe

CIĄGI wiadomości podstawowe 1 CIĄGI wiadomości podstawowe Jak głosi definicja ciąg liczbowy to funkcja, której dziedziną są liczby naturalne dodatnie (w zadaniach oznacza się to najczęściej n 1) a wartościami tej funkcji są wszystkie

Bardziej szczegółowo

Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d

Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d C. Bagiński Materiały dydaktyczne 1 Matematyka Dyskretna /008 rozwiązania 1. W każdym z następujących przypadków podać jawny wzór na s n i udowodnić indukcyjnie jego poprawność: (a) s 0 3, s 1 6, oraz

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A03 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Dany jest ciąg arytmetyczny (a

Bardziej szczegółowo

Skrypt 16. Ciągi: Opracowanie L6

Skrypt 16. Ciągi: Opracowanie L6 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 16 Ciągi: 1. Ciągi liczbowe.

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 2. odczytuje liczby naturalne dodatnie zapisane w

Bardziej szczegółowo

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1 Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia

Bardziej szczegółowo

Liczby. Wymagania programowe kl. VII. Dział

Liczby. Wymagania programowe kl. VII. Dział Wymagania programowe kl. VII Dział Liczby rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane w systemie rzymskim w zakresie do

Bardziej szczegółowo

ZBIÓR ZADAŃ. Matematyczne ABC maturzysty na poziomie podstawowym

ZBIÓR ZADAŃ. Matematyczne ABC maturzysty na poziomie podstawowym S t r o n a ZBIÓR ZADAŃ Matematyczne ABC maturzysty na poziomie podstawowym Każdy uczeń, który kończy szkołę ponadgimnazjalną i chce przystąpić do matury, zobowiązany jest do zdawania egzaminu z matematyki

Bardziej szczegółowo

I Liceum Ogólnokształcące w Warszawie

I Liceum Ogólnokształcące w Warszawie I Liceum Ogólnokształcące w Warszawie Imię i Nazwisko Klasa Nauczyciel PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Liczba punktów Wynik procentowy Informacje dla ucznia 1 Sprawdź, czy zestaw

Bardziej szczegółowo

Arytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm

Arytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm Arytmetyka Działania na liczbach, potęga, pierwiastek, logarytm Zbiory liczbowe Zbiór liczb naturalnych N = {1,2,3,4, }. Zbiór liczb całkowitych Z = {, 3, 2, 1,0,1,2,3, }. Zbiory liczbowe Zbiór liczb wymiernych

Bardziej szczegółowo

KONKURS MATEMATYCZNY

KONKURS MATEMATYCZNY PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W CHEŁMIE INSTYTUT MATEMATYKI i INFORMATYKI 22-100 Chełm, ul. Pocztowa 54 tel./fax. (082) 562 11 24 KONKURS MATEMATYCZNY im. Samuela Chróścikowskiego 30 marzec 2017r. godz.

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej

Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej ROZDZIAŁ I LICZBY Uczeń otrzymuje ocenę dopuszczającą jeśli: 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 3 KWIETNIA 016 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 3 7 48 jest równa

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2017 klasa 2 (pp)

LUBELSKA PRÓBA PRZED MATURĄ 2017 klasa 2 (pp) Kod ucznia Nazwisko i imię ucznia M A T E M A T Y K A klasa -(pp) MAJ 07 Czas pracy: 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron (zadania -4). Ewentualny brak zgłoś przewodniczącemu

Bardziej szczegółowo

Skrypt 31. Powtórzenie do matury Liczby rzeczywiste

Skrypt 31. Powtórzenie do matury Liczby rzeczywiste Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 31 Powtórzenie do matury

Bardziej szczegółowo

Konkurs dla szkół ponadgimnazjalnych Etap szkolny 9 stycznia 2013 roku

Konkurs dla szkół ponadgimnazjalnych Etap szkolny 9 stycznia 2013 roku Konkurs dla szkół ponadgimnazjalnych Etap szkolny 9 stycznia roku Instrukcja dla ucznia W zadaniach o numerach od do są podane cztery warianty odpowiedzi: A, B, C, D Dokładnie jeden z nich jest poprawny

Bardziej szczegółowo

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM Zad.1. (0-1) Liczba 3 8 3 3 9 2 A. 3 3 Zad.2. (0-1) jest równa: Liczba log24 jest równa: B. 3 32 9 C. 3 4 D. 3 5 A. 2log2 + log20 B. log6 + 2log2

Bardziej szczegółowo

Średnie. Średnie. Kinga Kolczyńska - Przybycień

Średnie. Średnie. Kinga Kolczyńska - Przybycień Czym jest średnia? W wielu zagadnieniach praktycznych, kiedy mamy do czynienia z jakimiś danymi, poszukujemy liczb, które w pewnym sensie charakteryzują te dane. Na przykład kiedy chcielibyśmy sklasyfikować,

Bardziej szczegółowo

Matematyka rozszerzona matura 2017

Matematyka rozszerzona matura 2017 Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) + + 3 = A. 3 4 3 + + 3 = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem

Bardziej szczegółowo