Kinematyka: opis ruchu

Podobne dokumenty
Kinematyka: opis ruchu

Kinematyka: opis ruchu

Kinematyka: opis ruchu

Kinematyka: opis ruchu

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Wektory, układ współrzędnych

Ruch. Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował.

MECHANIKA 2. Prowadzący: dr Krzysztof Polko

Wstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych

Wykład 2. Kinematyka. Podstawowe wielkości opisujące ruch. W tekście tym przedstawię podstawowe pojecia niezbędne do opiosu ruchu:

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Zasada zachowania energii

Mechanika. Wykład 2. Paweł Staszel

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

Ruch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

KINEMATYKA czyli opis ruchu. Marian Talar

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Powtórzenie wiadomości z klasy I. Temat: Ruchy prostoliniowe. Obliczenia

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni.

Dynamika: układy nieinercjalne

Fizyka 11. Janusz Andrzejewski

Tadeusz Lesiak. Podstawy mechaniki Newtona Kinematyka punktu materialnego

WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej

Elementy rachunku różniczkowego i całkowego

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

R o z d z i a ł 2 KINEMATYKA PUNKTU MATERIALNEGO

WYMAGANIA EDUKACYJNE PRZEDMIOT : FIZYKA ROZSZERZONA

Ruch jednostajnie zmienny prostoliniowy

Prawa ruchu: dynamika

Dr Kazimierz Sierański www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach

Zasada zachowania pędu

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

Plan wynikowy z wymaganiami edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla I klasy liceum ogólnokształcącego i technikum

Prawa ruchu: dynamika

Podstawy fizyki wykład 7

Plan wynikowy z wymaganiami edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla szkoły ponadgimnazjalnej, tom 1

Prawa ruchu: dynamika

lub też (uwzględniając fakt, że poruszają się w kierunkach prostopadłych) w układzie współrzędnych kartezjańskich: x 1 (t) = v 1 t y 2 (t) = v 2 t

Treści dopełniające Uczeń potrafi:

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski

Wymagania edukacyjne z przedmiotu fizyka w zakresie rozszerzonym RF-II

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Prawa fizyki wyrażają związki między różnymi wielkościami fizycznymi.

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu

1. Kinematyka 8 godzin

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

Zakres materiału do testu przyrostu kompetencji z fizyki w kl. II

W efekcie złożenia tych dwóch ruchów ciało porusza się ruchem złożonym po torze, który w tym przypadku jest łukiem paraboli.

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Fizyka. Program Wykładu. Program Wykładu c.d. Literatura. Rok akademicki 2013/2014

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.

Ruch drgający i falowy

Ruch prostoliniowy. zmienny. dr inż. Romuald Kędzierski

Opis ruchu obrotowego

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

Podstawy fizyki sezon 1 VII. Ruch drgający

TEORIA DRGAŃ Program wykładu 2016

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki.

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

MECHANIKA II. Praca i energia punktu materialnego

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1)

Rachunek całkowy - całka oznaczona

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Wstęp do równań różniczkowych

Plan wynikowy fizyka rozszerzona klasa 2

MiBM sem. III Zakres materiału wykładu z fizyki

PODSTAWY FIZYKI - WYKŁAD 1 WSTEP KINEMATYKA - OPIS RUCHU DYNAMIKA - OPIS ODDZIAŁYWAŃ. Piotr Nieżurawski.

I. KARTA PRZEDMIOTU FIZYKA

lim Np. lim jest wyrażeniem typu /, a

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.

Definicje i przykłady

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.

Zadanie. Oczywiście masa sklejonych ciał jest sumą poszczególnych mas. Zasada zachowania pędu: pozwala obliczyć prędkość po zderzeniu

PRZEDMIOTOWY SYSTEM OCENIANIA

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka

Prawa ruchu: dynamika

2.6.3 Interferencja fal.

Wstęp do równań różniczkowych

ROZKŁAD MATERIAŁU Z FIZYKI - ZAKRES ROZSZERZONY

Wykład FIZYKA I. 5. Energia, praca, moc. Dr hab. inż. Władysław Artur Woźniak

SZCZEGÓŁOWE CELE EDUKACYJNE

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

VII.1 Pojęcia podstawowe.

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

Transkrypt:

Kinematyka: opis ruchu Pojęcia podstawowe Punkt materialny Ciało, którego rozmiary można w danym zagadnieniu zaniedbać. Zazwyczaj przyjmujemy, że punkt materialny powinien być dostatecznie mały. Nie jest to jednak konieczne! Przykłady: wagon kolejowy na torach albo "wózek" na torze powietrznym. Ważne jest, żeby ciało nie miało dodatkowych "stopni swobody" (np. obroty, drgania własne, stany wzbudzone). Położenie punktu materialnego całkowicie określa jego "stan". pojęcie punktu materialnego umożliwia prosty opis wielu sytuacji fizycznych. Naogół przyjmujemy, że punkt materialny obdarzony jest masą. Ruch Zmiana położenia ciała względem wybranego układu odniesienia. Z punktu widzenia fizyki nie możemy nic powiedzieć o ruchu obserwowanego ciała póki nie odniesiemy go do jakiegoś innego obiektu. Oczywiście sami możemy uznać się za właściwy układ odniesienia, ale jest to wybór, który może istotnie wpłynąć na opisywany ruch Układ odniesienia Musimy wybrać ciało, które potraktujemy jako "punkt odniesienia". Najczęściej jest nim Ziemia Układ odniesienia można też zdefiniować określając jego położenie (lub ruch) względem wybranego ciała lub grupy ciał. Przykład: układ środka masy zderzających się cząstek układ związany ze środkiem Galaktyki

Układ współrzędnych Układ współrzędnych Służy do określenia położenia ciała w danym układzie odniesienia. Położenie możemy zapisać na wiele różnych sposobów: układ współrzędnych kartezjańskich: układ współrzędnych biegunowych: układ współrzędnych walcowych: Tor ruchu Tor ruchu Opisuje zmianę położenia ciała w czasie. W ogólnym przypadku tor zapisujemy w tzw. postaci parametrycznej:

Wektor położenia ciała (wszystkie jego współrzędne) wyrażamy jako funkcje czasu. W szczególnych przypadkach możliwe jest odwrócenie jednej z zależności, na przykład: Gdy czas wyrazimy jako funkcję współrzędnej możemy uzyskać postać uwikłaną toru: Funkcje W fizyce bardzo często staramy się opisać zależności pomiędzy różnymi wielkościami w postaci funkcyjnej. Na ogół do oznaczania funkcji używamy symbolu odpowiadającego danej wielkości fizycznej, np.: droga s, wysokość h, prędkość v Postać funkcyjna zależy jednak od wyboru argumentu funkcji! W przypadku opisu toru należy zauważyć, że i to dwie różne funkcje(!) choć opisują tą samą wielkość fizyczną. Prędkość średnia Prędkość średnia W odstępie czasu: punkt materialny przemieścił się o:

Prędkość średnią definiujemy jako Prędkość chwilowa Praktycznie każdy pomiar prędkości musi trwać skończony okres czasu. Prawie zawsze mierzymy więc prędkość średnią. Prędkość chwilowa Pojęcie prędkości chwilowej wprowadzamy jako graniczną wartość prędkości średniej dla nieskończenie krótkiego czasu pomiaru, : Matematycznie odpowiada to definicji pochodnej: Pochodna wektora wektor pochodnych składowych tego wektora Wartość prędkości: Wektor prędkości chwilowej jest zawsze styczny do toru! Przyspieszenie średnie Przyspieszenie średnie W odstępie czasu prędkość zmienia się o:

Przyspieszenie średnie definiujemy (podobnie jak prędkość średnią) jako stosunek przyrostu prędkości do odstępu czasu: Przyspieszenie chwilowe Przyspieszenie chwilowe Podobnie jak w przypadku prędkości, przyspieszenie chwilowe definiujemy jako graniczną wartość przyspieszenia średniego dla nieskończenie krótkiego przedziału czasu: Przyspieszenie chwilowe jest pochodną po czasie prędkości chwilowej: Przyspieszenie opisuje "tempo" zmian prędkości Klasyfikacja ruchów Ze względu na tor Tor ruchu ciała może zakreślać dowolną krzywą w przestrzeni. W wielu zagadnieniach mamy jednak do czynienia z torem, który jest dodatkowo ograniczony przez symetrię zagadnienia lub warunki początkowe. Najchętniej zajmujemy się właśnie takimi przypadkami. W szczególności tor może być: prostoliniowy, odbywający się wzdłuż lini prostej Zawsze możemy tak wybrać układ

współrzędnych aby płaski, odbywający się w ustalonej płaszczyźnie Możemy tak wybrać układ współrzędnych aby po okręgu Ze względu na przyspieszenie jednostajny wartość prędkości pozostaje stała: = const jednostajnie przyspieszony przyspieszenie jest stałe: = const Ruch jednostajny prostoliniowy Najprostszy możliwy przypadek ruchu: * Jednostajny: = const * Prostoliniowy: = const Prędkość w ruchu jednostajnym prostoliniowym Wektor prędkości jest stały (nie zmienia wartości ani kierunku) czyli nie ma przyspieszenia. Przyjmując, że ruch odbywa się wzdłuż osi X:

Położenie (przebyta droga) jest liniową funkcją czasu. Drogi przebyte w równych odcinkach czasu są sobie równe. Ruch prostoliniowy Zależność drogi od prędkości Wyznaczanie drogi z zależności prędkości od czasu Przypadek ogólny ruchu prostoliniowego: znamy prędkość czy możemy wyznaczyć zależność położenia od czasu? Możemy sumować przesunięcia po krótkich przedziałach czasu. Przesunięcie ciała w czasie : Przechodząc do granicy : Zależność położenia od czasu wyraża się przez całkę oznaczoną. Pojęcie całki oznaczonej ma bardzo prostą interpretację graficzną: jest to pole pod krzywą zależności prędkości od czasu. Ruch jednostajnie przyspieszony Jednostajnie przyspieszony zdefiniowany jest poprzez warunek: = const Przyspieszenie opisuje zależność prędkości od czasu. Jeśli przyspieszenie jest stałe to prędkość musi rosnąć liniowo z czasem:

Ruch jednostajnie przyspieszony prostoliniowy Jaki warunek musi być spełniony, żeby ruch jednostajnie przyspieszony był prostoliniowy? Ruch jest prostoliniowy wtedy gdy kierunek prędkości jest stały: = const = const Aby ruch był prostoliniowy przyspieszenie musi mieć kierunek zgodny z kierunkiem prędkości. Ruch prostoliniowy można opisać jako ruch jednowymiarowy wybierając oś układu odniesienia wzdłuż kierunku ruchu Przyspieszenie w ruchu jednostajnie przyspieszonym Prędkość jest liniową funkcją czasu: Prędkość w ruchu jednostajnie

przyspieszonym Położenie jest kwadratową funkcją czasu: Przyjmijmy, że w chwili ciało spoczywa:. Mierzymy drogę jaką ciało przebywa w równych przedziałach czasu: Przebyta droga: Uzyskujemy uniwersalną relację opisującą ruch jednostajnie przyspieszony prostoliniowy: Drogi w kolejnych odcinkach czasu mają się do siebie jak kolejne liczby nieparzyste: Przypadek ogólny W ogólnym przypadku ruch jednostajnie przyspieszony nie jest prostoliniowy. Ruch będzie się odbywał w płaszczyźnie przechodzącej przez wektorów i. i wyznaczonej przez kierunki

Możemy wybrać układ współrzędnych tak aby: Ruch w przestrzeni można wtedy opisać jako złożenie: ruch jednostajnego (w kierunku osi X) ruchu jednostajnie przyspieszonego (Y) spoczynku (Z): Formalnie możemy zapisać zależności współrzędnych przyspieszenia, prędkości i położenia od czasu jako: Ruch w polu grawitacyjnym Rzut w polu grawitacyjnym Ruch ciała poruszającego się swobodnie w jednorodnym polu grawitacyjnym odbywa się ze stałym przyspieszeniem: gdzie dokonaliśmy wyboru układu współrzędnych jak na rysunku (oś X poziomo, oś Y pionowo). Pole grawitacyjne Ziemi możemy przyjąć za jednorodne, jeśli badamy ruch na odległościach W zależności od warunków początkowych wyróżniamy następujące rodzaje ruchu: spadek swobodny: rzut pionowy: rzut poziomy: rzut ukośny: (ruch prostoliniowy) (ruch prostoliniowy)

Spadek swobodny Zdjęcie złożone z kolejnych klatek filmu, pokazujące spadek swobodny małej piłki na tle miarki: Wyniki "domowych" pomiarów (odczytane ze zdjęcia):

Położenie zależy kwadratowo od czasu: zakładając: Rzut ukośny Rzut ukośny Zakładamy, ze w chwili ciało wyrzucono z punktu, z prędkością skierowaną pod kątem do poziomu. Niezależność ruchów: ruch w poziomie jest ruchem jednostajnym, zależy tylko od ruch w pionie jest ruchem jednostajnie przyspieszonym, zależy tylko od Konsekwencje niezależności ruchów w X i Y: rzut poziomy czas spadania nie zależy od :

dwa ciała o tym samym taki sam ruch w poziomie: Tor ruchu strugi wody Tor w rzucie ukośnym: torem ruchu jest parabola Zasięg dla h=0: największy zasięg dla (czyli ) Ruch harmoniczny

Zależność położenia od czasu w ruchu harmonicznym Szczególny przykład ruchu drgającego. W ruchu harmonicznym zależność położenia od czasu jest postaci: Parametry amplituda A częstość kołowa okres drgań Prędkość: faza początkowa Przyspieszenie: W ruchu harmonicznym spełniona jest zależność, którą nazywamy równaniem oscylatora harmonicznego ruch w jednym wymiarze

postać ogólna Równanie oscylatora dobrze opisuje zachowanie bardzo wielu układów fizycznych: ciężarek na sprężynie wahadło matematyczne (dla małych wychyleń) kamerton, struna, itp Równanie oscylatora harmonicznego jest przykładem równania różniczkowego. Nasza wiedza nt. ruchu ciała przedstawiana jest często w postaci równan różniczkowych (równań ruchu). Aby znaleźć opis ruchu ciała trzeba te równania rozwiązać. Najczęsciej są to równania typu: Ruch po okręgu Położenie ciała może być opisane jedną zmienną: kąt w płaszczyźnie XY długość łuku okręgu s = Wartość prędkości: gdzie prędkość kątowa jest zdefiniowana jako pochodna kąta po czasie:

Przyspieszenie kątowe definiujemy jako: Ruch jednostajny po okręgu to ruch w którym przyspieszenie kątowe znika: = const V = const ale const 0 (!!!) Prędkość w ruchu po okręgu w zapisie wektorowym: Przyspieszenie liczymy jako pochodną (iloczynu): Oprócz przyspieszenia stycznego, opisującego zmianę, jest też przyspieszenie normalne, odpowiedzialne za zmianę kierunku w czasie.

przyspieszenie dośrodkowe skorzystaliśmy z tożsamości: gdzie Ruch jednostajny po okręgu Ruch jednostajny po okręgu to ruch w którym przyspieszenie styczne znika: Ruch jednostajny po okręgu jest złożeniem dwóch niezależnych ruchów harmionicznych: Ruch po okręgu różnica faz Ciekawostka: Ruch harmoniczny można przedstawić jako złożenie dwóch ruchów po okręgu Efekt Dopplera W przypadku fal dźwiękowych znamy z codziennego doświadczenia

Jeśli źródło dźwięku jest nieruchome względem obserwatora, obserwator słyszy dźwięk o niezmienionej częstości. Jeśli źródło dźwięku porusza się względem obserwatora, obserwator słyszy dźwięk o wyższej lub niższej częstości Ruchome źródło Przyjmijmy, że źródło dżwięku o częstości poruszające się z prędkością względem ośrodka w którym prędkość dźwięku wynosi.

Dla uproszczenia: krótkie impulsy wysyłane co : wysłanie pierwszego impulsu wysłanie drugiego impulsu odległość między impulsami mierzona przez obserwatora jest sumą wkładów wynikających z propagacji impulsu (z prędkością c) i ruchu źródła (z prędkością v): Częstość dźwięku i długość fali mierzona przez obserwatora nieruchomego względem ośrodka: Ruchomy obserwator Rozważmy teraz sytuacje, w której obserwator porusza się z prędkością względem ośrodka i źródła dżwięku

aby dogonić obserwatora kolejny impuls musi pokonać odległość równą sumie początkowej odległości między impulsami i drogi jaką w tym czasie pokona obserwator Mierzona częstość: W klasycznym efekcie Dopplera zmiana częstości zależy nie tylko od względnej prędkości źródła i obserwatora ale i ruchu względem ośrodka. Ruch ośrodka Przyjmijmy, że źródło dźwięku i obserwator są względem siebie w spoczynku. Niech ich prędkość względem ośrodka wynosi Częstość mierzona przez obserwatora jest wynikiem złożenia dwóch efektów Dopplera: Częstość się nie zmienia, ale zmienia się czas miedzy wysłaniem a rejestrają impulsu:

Ruch ośrodka powoduje przesunięcie w fazie rejestrowanego dźwięku. Przypadek ogólny Zarówno źródło jak i obserwator poruszają się względem ośrodka. Przypadek ogólny efektu Dopplera Jeśli znamy ruch źródła i obserwatora w układzie związanym z ośrodkiem: To możemy wyznaczyć czas w jakim sygnał wyemitowany w chwili dotrze do obserwatora. Zadany jest on przez warunek: Jeśli równanie to można jednoznacznie rozwiązać to efekt Dopplera daje się wyrazić bardzo prostą zależnością: Przykład Głośnik wirujący po okręgu, w płaszczyźnie obserwatora

Wirujący głośnik Droga sygnału wyemitowanego w czasie : Dla : Oczekiwana zależność od czasu amplitudy dźwięku rejestrowanego przez źródło i obserwatora Głośnik nieruchomy

Głośnik wirujący

Choć średnia częstość mierzona przez obserwatora jest równa częstości źródła widoczna jest wyraźna modulacja częstości