Prawa fizyki wyrażają związki między różnymi wielkościami fizycznymi.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Prawa fizyki wyrażają związki między różnymi wielkościami fizycznymi."

Transkrypt

1 Prawa fizyki i wielkości fizyczne Fizyka (z stgr. φύσις physis "natura") nauka o przyrodzie w najszerszym znaczeniu tego słowa. Prawa fizyki wyrażają związki między różnymi wielkościami fizycznymi. Prawa te formułowane są w postaci równań matematycznych wyrażają ścisłe ilościowe relacje między tymi wielkościami, a to wiąże się zawsze z pomiarami określającymi liczbowo stosunek danej wielkości do przyjętej jednostki. Wielkości fizyczne pewne cechy materii, dla których ustalono sposób pomiaru. Wielkości fizyczne Podstawowe (mają wzorce): np.: długość, czas, masa Pochodne (związane z wielkościami podstawowymi): prędkość, gęstość 1

2 Aktualnie obowiązującym w Polsce układem jednostek jest układ SI (Systeme International d'unites). Wielkości podstawowe i ich jednostki są zestawione w tabeli poniżej. 1. Wielkość Długość Jednostka Symbol jednostki metr m 2. Masa kilogram kg 3. Czas sekunda s 4. Ilość materii (substancji) mol mol 5. Natężenie prądu elektrycznego amper A 6. Temperatura termodynamiczna kelwin K 7. Światłość kandela cd Definicje jednostek podstawowych są związane albo ze wzorcami albo z pomiarem. - wzorzec masy- wzorcem kilograma (kg) jest walec platynowo-irydowy przechowywany w Międzynarodowym Biurze Miar i Wag w Sevres (Francja). - wzorzec długość- metr (m) definiujemy jako długość drogi przebytej w próżni przez światło w czasie 1/ s. 2

3 Oprócz jednostek w fizyce posługujemy się pojęciem wymiaru jednostki danej wielkości fizycznej. Wymiarem jednostki podstawowej jest po prostu ona sama. Natomiast dla jednostek pochodnych wymiar jest kombinacją jednostek podstawowych (w odpowiednich potęgach). Jednostki wtórne, które są ich wielokrotnościami. Wyraża się je bardzo prosto poprzez dodanie odpowiedniego przedrostka określającego odpowiednią potęgę dziesięciu, która jest mnożnikiem dla jednostki: Przedrostek Skrót Mnożnik tera T giga mega kilo centy mili mikro nano piko femto G M k c m µ n p f , 3

4 Wektory Do opisu zjawisk fizycznych będziemy się posługiwać dwoma podstawowymi pojęciami matematycznymi: skalarem - wielkością, którą można przedstawić za pomocą liczby oraz wektorem. Wielkości skalarne takie jak np. masa, objętość, czas, ładunek, temperatura, praca, mają jedynie wartość. Natomiast wielkości wektorowe np. prędkość, przyspieszenie, siła, pęd, natężenie pola, posiadają wartość, kierunek, zwrot. WEKTOR - para uporządkowanych punktów, z których jeden jest początkiem, a drugi końcem. Jeżeli długości, kierunki i zwroty dwóch wektorów są takie same, to wektory te są równe Wektory będziemy oznaczać tak jak na rysunku powyżej albo za pomocą pojedynczej litery, np:. Wektory posiadają następujące cechy: długość - odległość pomiędzy końcem a początkiem wektora; kierunek - każda prosta równoległa do prostej, na której leży wektor; zwrot - zwrot prostej, na której leży wektor, w którym początek wektora poprzedza koniec wektora; punkt przyłożenia 4

5 W działaniach na wektorach operuje się składowymi tych wektorów wyznaczonymi w wybranym układzie odniesienia. Składowe wektora wyznaczamy umieszczając początek wektora w początku układu współrzędnych i rzutując koniec wektora na poszczególne osie wybranego układu współrzędnych. Rys Wektor r i jego składowe r x, r y, r z w pewnym układzie współrzędnych Suma wektorów W wybranym układzie współrzędnych wektor jest definiowany przez podanie jego współrzędnych np. Zwróćmy w tym miejscu uwagę na przyjętą konwencję. Wszystkie wektory wyróżnione są w tekście czcionką wytłuszczoną. Sumą dwóch wektorów jest nowy wektor o współrzędnych Geometrycznie jest to przekątna równoległoboku zbudowanego na tych wektorach. Różnicę dwóch wektorów przedstawia druga przekątna (rysunek poniżej). Rys Suma i różnica wektorów 5

6 Iloczyn skalarny Iloczyn skalarny dwóch wektorów a b jest liczbą (skalarem) równą iloczynowi wartości bezwzględnych (długości) tych wektorów pomnożony przez cosinus kąta między nimi Iloczyn skalarny jest często stosowany do opisu wielkości fizycznych. Przykładem wielkości fizycznej, którą można przedstawić jako iloczyn skalarny dwóch wielkości wektorowych jest praca. Praca jest iloczynem skalarnym siły i przesunięcia. Iloczyn wektorowy Iloczyn wektorowy dwóch wektorów a x b jest nowym wektorem c, którego długość (wartość bezwzględna) jest równa iloczynowi długości tych wektorów i sinusa kąta pomiędzy nimi Wektor c jest prostopadły do płaszczyzny wyznaczonej przez wektory a i b. Zwrot jego jest określony regułą śruby prawoskrętnej lub regułą prawej ręki. Jeżeli palce prawej ręki zginają się w kierunku obrotu wektora a do wektora b (po mniejszym łuku) to kciuk wskazuje kierunek wektora c = a x b tak jak na rysunku poniżej Rys Iloczyn wektorowy 6

7 Elementy kinematyki. Kinematyka to dział fizyki zajmujący się opisem ruchu ciał bez wnikania w jego przyczyny. Czym jest ruch??. Ruch- zmiana wzajemnego położenia jednych ciał względem drugich wraz z upływem czasu. Położenie określamy względem układu odniesienia tzn. wybranego ciała lub układu ciał. Zwróćmy uwagę na to, że ruch tego samego ciała widziany z różnych układów odniesienia może być różny. W szczególności można wybrać taki układ odniesienia, w którym ciało nie porusza się. Oznacza to, że ruch jest pojęciem względnym. w naszych rozważaniach będziemy posługiwać się pojęciem punktu materialnego Punkt materialny to ciało obdarzone masą, lecz nie posiadające objętości (których rozmiary możemy zaniedbać). Rodzaje ruchu.. 7

8 Rodzaje ruchu: - ze względu na tor: (ruch prostoliniowy, ruch krzywoliniowy w tym ruch po okręgu) Torem ruchu (trajektorią) nazywamy krzywą lub prostą zakreśloną w przestrzeni, przez poruszający się punkt. Długość toru nazywamy drogą (s). - ze względu na prędkość Prędkość definiujemy jako zmianę położenia ciała w jednostce czasu. 8

9 Prędkość stała Jeżeli wskazania prędkościomierza samochodu nie zmieniają się to oznacza, że samochód porusza się ze stałą prędkością v, i jeżeli w pewnej chwili t 0 znajdował się w położeniu x 0 to po czasie t znajdzie się w położeniu x skąd Zależność między położeniem x i czasem t pokazana jest na rysunku poniżej dla dwóch ciał (np. pojazdów). Nachylenie wykresu x(t) przedstawia prędkość danego ciała. Różne nachylenia wykresów x(t) odpowiadają więc różnym prędkościom. Prędkość v (wektor) może być dodatnia albo ujemna; jej znak wskazuje kierunek ruchu. Wektor v dodatni - ruch w kierunku rosnących x, ujemny to ruch w kierunku malejących x. 9

10 Prędkość chwilowa prędkość chwilowa jest pochodną położenia względem czasu Gdy samochód przyspiesza lub hamuje to wskazania prędkościomierza zmieniają się i nie możemy mówić o "jednej" stałej prędkości. Prędkość zmienia się i w każdej chwili jest inna. Wówczas ograniczymy się do bardzo małych wartości x - x 0 ( x) czyli również bardzo małego przedziału czasu t = t - t 0 (chwili). Prędkość chwilową w punkcie x otrzymamy gdy t dąży do zera Nachylenie krzywej x(t) ponownie przedstawia prędkość v, a znajdujemy je (zgodnie z definicją pochodnej) jako nachylenie stycznej do wykresu x(t), w danym punkcie tj. dla danej chwili t (rysunek poniżej). Nachylenie krzywej x(t) jest prędkością chwilową 10

11 Prędkość średnia Prędkość średnia ciała w przedziale czasu t jest zdefiniowana jako gdzie x - x 0 jest odległością przebytą w czasie t. Często określenie zależności x(t) nie jest możliwe, np. przy oszacowaniu czasu dojazdu do wybranej miejscowości nie jesteśmy w stanie przewidzieć wszystkich parametrów podróży wpływających na prędkość takich jak natężenie ruchu, konieczność ograniczenia prędkości w terenie zabudowanym itp. Posługujemy się wtedy pojęciem prędkości średniej. Przyspieszenie Przyspieszeniem nazywamy tempo zmian prędkości, analogicznie do prędkości definiujemy dwa przyspieszenia: średnie i chwilowe. Jeżeli ciało przyspiesza lub hamuje i jego prędkość zmienia się jednostajnie z czasem to przyspieszenie a tego ciała jest stałe Gdy prędkość rośnie (a > 0) to ruch nazywamy jednostajnie przyspieszonym, a gdy prędkość maleje (a < 0) to ruch określamy jako jednostajnie opóźniony. Przyspieszenie chwilowe Jeżeli przyspieszenie nie jest stałe, zmienia się z czasem, musimy wtedy ograniczyć się do pomiaru zmian prędkości v w bardzo krótkim czasie t (podobnie jak dla prędkości chwilowej). Wówczas przyspieszenie chwilowe definiujemy jako pierwszą pochodną v względem t. Ograniczamy się do pomiaru zmian prędkości v w bardzo krótkim czasie t (podobnie jak dla prędkości chwilowej). 11

12 Ruch jednostajnie zmienny Z ruchem jednostajnie zmiennym spotykamy się na co dzień, np. gdy obserwujemy swobodny spadek ciał w pobliżu powierzchni Ziemi. Jeżeli możemy zaniedbać opór powietrza (w porównaniu z ciężarem ciała) to każde ciało upuszczone swobodnie porusza się ruchem jednostajnie przyspieszonym z przyspieszeniem równym 9.81 m/s 2. Wyrażenie na prędkość i położenie ciała poruszającego się ze stałym przyspieszeniem: Ponieważ w ruchu jednostajnie przyspieszonym prędkość rośnie jednostajnie od v 0 do v więc prędkość średnia wynosi Łącząc powyższe trzy równania otrzymujemy Jako podsumowanie, pokazane jest graficzne przedstawienie ruchu prostoliniowego jednostajnego i jednostajnie zmiennego w postaci wykresów x(t), v(t) oraz a(t). Graficzna prezentacja ruchu prostoliniowego jednostajnego i jednostajnie zmiennego 12

13 Ruch na płaszczyźnie Ruch w dwóch wymiarach będziemy opisywać w układzie współrzędnych x i y. Np. y - wysokość, x - odległość w kierunku poziomym. Pokażemy, że taki ruch można traktować jak dwa niezależne ruchy jednowymiarowe. 3.1 Przemieszczenie, prędkość i przyspieszenie Położenie punktu w chwili t przedstawia wektor r(t); prędkość wektor v(t), przyspieszenie wektor a(t). Wektory r(t), v(t), a(t) są wzajemnie zależne od siebie i dadzą się przedstawić za pomocą wersorów i, j czyli wektorów jednostkowej długości zorientowanych odpowiednio wzdłuż osi x i y Położenie punktu określić można podając wektor r lub, dla wybranego układu odniesienia, poprzez podanie współrzędnych tego wektora np. x, y. Oczywiście wektor r i jego współrzędne zmieniają się z czasem więc trzeba podać zależności czasowe r(t), x(t), y(t) tak jak na rysunku Warto w tym miejscu również zapamiętać, że wektor prędkości jest zawsze styczny do toru poruszającego się punktu. Punkty, przez które przechodzi poruszający się punkt tworzą krzywą, którą nazywamy torem ruchu. 13

14 Ruch jednostajny po okręgu Rozważać będziemy ciało poruszające się ze stałą prędkością po okręgu o promieniu R pokazane na rysunku poniżej. Punkt materialny poruszający się jednostajnie po okręgu znajduje się w punkcie P w chwili t, a w punkcie P' w chwili t + t. Wektory prędkości v, v' mają jednakowe długości ale różnią się kierunkiem; pamiętajmy, że wektor prędkości jest zawsze styczny do toru. Chcąc znaleźć przyspieszenie musimy wyznaczyć różnicę prędkości v i v'. W tym celu przerysowujemy wektor v' w punkcie P i wyznaczamy różnicę v. Zauważmy, że kąt pomiędzy wektorami v i v' jest równy kątowi θ więc korzystając z podobieństwa trójkątów możemy zapisać równość gdzie l jest długością odcinka PP', a dla małych wartości l długością łuku PP'. Ponieważ l = v t więc Znając już v możemy obliczyć przyspieszenie 14

15 a n =ω 2 R, ω=2π/t (częstotliwość ruchu) Wektor v jest prostopadły do toru to znaczy pokrywa się z kierunkiem promienia i jest zwrócony do środka okręgu. Oznacza to, że i wektor przyspieszenia ma taki sam kierunek i zwrot. W ruchu po okręgu przyspieszenie to nazywamy przyspieszeniem dośrodkowym (jest zwrócone do środka okręgu), a dla ruchu po dowolnej krzywej przyspieszeniem normalnym a n (jest prostopadłe do toru) lub radialnym a r (jest skierowane wzdłuż promienia). Przyspieszenie dośrodkowe często wyraża się poprzez okres T czyli czas, w którym punkt materialny wykonuje pełen obieg okręgu. Ponieważ więc Przyspieszenie normalne jest związane ze zmianą kierunku prędkości, a przyspieszenie styczne za zmianę jej wartości. 15

16 16

Ruch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Ruch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Ruch jednowymiarowy Autorzy: Zbigniew Kąkol Kamil Kutorasiński 017 Ruch jednowymiarowy Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Dział Fizyki zajmujący się opisem ruchu ciał nazywamy kinematyką. Definicja

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

Wektory, układ współrzędnych

Wektory, układ współrzędnych Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.

Bardziej szczegółowo

Ruch. Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował.

Ruch. Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował. Kinematyka Ruch Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował. Ruch rozumiany jest jako zmiana położenia jednych ciał względem innych, które nazywamy

Bardziej szczegółowo

MECHANIKA 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

Powtórzenie wiadomości z klasy I. Temat: Ruchy prostoliniowe. Obliczenia

Powtórzenie wiadomości z klasy I. Temat: Ruchy prostoliniowe. Obliczenia Powtórzenie wiadomości z klasy I Temat: Ruchy prostoliniowe. Obliczenia Ruch jest względny 1.Ruch i spoczynek są pojęciami względnymi. Można jednocześnie być w ruchu względem jednego ciała i w spoczynku

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis

Bardziej szczegółowo

Dr Kazimierz Sierański www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach

Dr Kazimierz Sierański www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach Dr Kazimierz Sierański kazimierz.sieranski@pwr.edu.pl www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach Forma zaliczenia kursu: egzamin końcowy Grupa kursów -warunkiem

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Wstęp do Fizyki I (B+C) Wykład III: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny Pojęcia podstawowe

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

Fizyka. w. 03. Paweł Misiak. IŚ+IB+IiGW UPWr 2014/2015

Fizyka. w. 03. Paweł Misiak. IŚ+IB+IiGW UPWr 2014/2015 Fizyka w. 03 Paweł Misiak IŚ+IB+IiGW UPWr 2014/2015 Jednostki miar SI Jednostki pochodne wielkość nazwa oznaczenie definicja czestotliwość herc Hz 1 Hz = 1 s 1 siła niuton N 1 N = 1 kgm 2 s 2 ciśnienie

Bardziej szczegółowo

R o z d z i a ł 2 KINEMATYKA PUNKTU MATERIALNEGO

R o z d z i a ł 2 KINEMATYKA PUNKTU MATERIALNEGO R o z d z i a ł KINEMATYKA PUNKTU MATERIALNEGO Kinematyka zajmuje się opisem ruchu ciał bez uwzględniania ich masy i bez rozpatrywania przyczyn, które ten ruch spowodowały. Przez punkt materialny rozumiemy

Bardziej szczegółowo

Fizyka. w. 02. Paweł Misiak. IŚ+IB+IiGW UPWr 2014/2015

Fizyka. w. 02. Paweł Misiak. IŚ+IB+IiGW UPWr 2014/2015 Fizyka w. 02 Paweł Misiak IŚ+IB+IiGW UPWr 2014/2015 Wektory ujęcie analityczne Definicja Wektor = uporządkowana trójka liczb (współrzędnych kartezjańskich) a = a x a y a z długość wektora: a = a 2 x +

Bardziej szczegółowo

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni.

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni. Część I. MECHANIKA Wykład.. KINEMATYKA PUNKTU MATERIALNEGO Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni 1 KINEMATYKA PUNKTU MATERIALNEGO KINEMATYKA zajmuje się opisem ruchu ciał bez rozpatrywania

Bardziej szczegółowo

Ruch jednostajnie zmienny prostoliniowy

Ruch jednostajnie zmienny prostoliniowy Ruch jednostajnie zmienny prostoliniowy Przyspieszenie w ruchu jednostajnie zmiennym prostoliniowym Jest to taki ruch, w którym wektor przyspieszenia jest stały, co do wartości (niezerowej), kierunku i

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Nauka - technika 2 Metodologia Problem Hipoteza EKSPERYMENT JAKO NARZĘDZIE WERYFIKACJI 3 Fizyka wielkości fizyczne opisują właściwości obiektów i pozwalają również ilościowo porównać

Bardziej szczegółowo

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz Kartezjański układ współrzędnych: Wersory osi: e x x i e y y j e z z k r - wektor o współrzędnych [ x 0, y 0, z 0 ] Wektor położenia: r t =[ x t, y t,z t ] każda współrzędna zmienia się w czasie. r t =

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Przedmiot Mechanika teoretyczna Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Mechanika: ogólna, techniczna, teoretyczna. Dział fizyki zajmujący się badaniem

Bardziej szczegółowo

Wykład 2. Kinematyka. Podstawowe wielkości opisujące ruch. W tekście tym przedstawię podstawowe pojecia niezbędne do opiosu ruchu:

Wykład 2. Kinematyka. Podstawowe wielkości opisujące ruch. W tekście tym przedstawię podstawowe pojecia niezbędne do opiosu ruchu: Wykład 2. Kinematyka. Aby prześledzić tok tego wykładu MUSISZ rozumieć pojęcie wektora, jego składowych w układzie kartezjańskim oraz w trakcie wykładu zrozumieć intuicyjnie pojęcie pochodnej funkcji jednej

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Opis ruchu Opis ruchu Tor, równanie toru Zależność od czasu wielkości wektorowych: położenie przemieszczenie prędkość przyśpieszenie UWAGA! Ważne żeby zaznaczać w jakim układzie

Bardziej szczegółowo

3. Podstawowe wiadomości z fizyki. Dr inż. Janusz Dębiński. Mechanika ogólna. Wykład 3. Podstawowe wiadomości z fizyki. Kalisz

3. Podstawowe wiadomości z fizyki. Dr inż. Janusz Dębiński. Mechanika ogólna. Wykład 3. Podstawowe wiadomości z fizyki. Kalisz Dr inż. Janusz Dębiński Mechanika ogólna Wykład 3 Podstawowe wiadomości z fizyki Kalisz Dr inż. Janusz Dębiński 1 Jednostki i układy jednostek Jednostką miary wielkości fizycznej nazywamy wybraną w sposób

Bardziej szczegółowo

SZCZEGÓŁOWE CELE EDUKACYJNE

SZCZEGÓŁOWE CELE EDUKACYJNE Program nauczania: Fizyka z plusem, numer dopuszczenia: DKW 4014-58/01 Plan realizacji materiału nauczania fizyki w klasie I wraz z określeniem wymagań edukacyjnych DZIAŁ PRO- GRA- MOWY Pomiary i Siły

Bardziej szczegółowo

Plan wynikowy z wymaganiami edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla I klasy liceum ogólnokształcącego i technikum

Plan wynikowy z wymaganiami edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla I klasy liceum ogólnokształcącego i technikum Plan wynikowy z mi edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla I klasy liceum ogólnokształcącego i technikum Temat (rozumiany jako lekcja) Wymagania konieczne (ocena dopuszczająca) Dział

Bardziej szczegółowo

Fizyka i wielkości fizyczne

Fizyka i wielkości fizyczne Fizyka i wielkości fizyczne Fizyka: - Stosuje opis matematyczny zjawisk - Formułuje prawa fizyczne na podstawie doświadczeń - Opiera się na prawach podstawowych (aksjomatach) Wielkością fizyczną jest każda

Bardziej szczegółowo

Treści dopełniające Uczeń potrafi:

Treści dopełniające Uczeń potrafi: P Lp. Temat lekcji Treści podstawowe 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać wektory, odjąć wektor od wektora, pomnożyć

Bardziej szczegółowo

Wstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych

Wstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych Wstęp Ruch po okręgu jest najprostszym przypadkiem płaskich ruchów krzywoliniowych. W ogólnym przypadku ruch po okręgu opisujemy równaniami: gdzie: dowolna funkcja czasu. Ruch odbywa się po okręgu o środku

Bardziej szczegółowo

Rozdział 2. Kinematyka

Rozdział 2. Kinematyka Rozdział. Kinematyka 018 Spis treści Ruch jednowymiarowy Ruch na płaszczyźnie Rzut ukośny Ruch jednostajny po okręgu Ruch przyspieszony po okręgu Ruch krzywoliniowy Ruch jednowymiarowy Dział Fizyki zajmujący

Bardziej szczegółowo

Z przedstawionych poniżej stwierdzeń dotyczących wartości pędów wybierz poprawne. Otocz kółkiem jedną z odpowiedzi (A, B, C, D lub E).

Z przedstawionych poniżej stwierdzeń dotyczących wartości pędów wybierz poprawne. Otocz kółkiem jedną z odpowiedzi (A, B, C, D lub E). Zadanie 1. (0 3) Podczas gry w badmintona zawodniczka uderzyła lotkę na wysokości 2 m, nadając jej poziomą prędkość o wartości 5. Lotka upadła w pewnej odległości od zawodniczki. Jest to odległość o jedną

Bardziej szczegółowo

Czym jest Fizyka? Podstawowa nauka przyrodnicza badanie fundamentalnych i uniwersalnych właściwości materii oraz zjawisk w przyrodzie gr. physis - prz

Czym jest Fizyka? Podstawowa nauka przyrodnicza badanie fundamentalnych i uniwersalnych właściwości materii oraz zjawisk w przyrodzie gr. physis - prz FIZYKA 1 Czym jest fizyka jako nauka? Fizyka i technika Wielkości fizyczne skalarne, wektorowe, tensorowe operacje na wektorach Pomiar i jednostki fizyczne Prawa i zasady fizyki Czym jest Fizyka? Podstawowa

Bardziej szczegółowo

PODSTAWY RACHUNKU WEKTOROWEGO

PODSTAWY RACHUNKU WEKTOROWEGO Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE PRZEDMIOT : FIZYKA ROZSZERZONA

WYMAGANIA EDUKACYJNE PRZEDMIOT : FIZYKA ROZSZERZONA WYMAGANIA EDUKACYJNE PRZEDMIOT : FIZYKA ROZSZERZONA ROK SZKOLNY: 2018/2019 KLASY: 2mT OPRACOWAŁ: JOANNA NALEPA OCENA CELUJĄCY OCENA BARDZO DOBRY - w pełnym zakresie - w pełnym opanował zakresie opanował

Bardziej szczegółowo

Analiza wymiarowa i równania różnicowe

Analiza wymiarowa i równania różnicowe Część 1: i równania różnicowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 5 Plan Część 1: 1 Część 1: 2 Część 1: Układ SI (Système International d Unités) Siedem jednostek

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Pojęcia podstawowe Punkt materialny Ciało, którego rozmiary można w danym zagadnieniu zaniedbać. Zazwyczaj przyjmujemy, że punkt materialny powinien być dostatecznie mały. Nie jest

Bardziej szczegółowo

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przypuśćmy, że wszyscy ludzie na świecie zgromadzili się w jednym miejscu na Ziemi i na daną komendę jednocześnie

Bardziej szczegółowo

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski Elementy dynamiki klasycznej - wprowadzenie dr inż. Romuald Kędzierski Po czym można rozpoznać, że na ciało działają siły? Możliwe skutki działania sił: Po skutkach działania sił. - zmiana kierunku ruchu

Bardziej szczegółowo

Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni

Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Wydział Inżynierii Środowiska; kierunek Inż. Środowiska Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Tabele wzorów matematycznych i fizycznych oraz obszerniejsze listy zadań do kursu są dostępne

Bardziej szczegółowo

Dr inż. Michał Marzantowicz,Wydział Fizyki P.W. p. 329, Mechatronika.

Dr inż. Michał Marzantowicz,Wydział Fizyki P.W. p. 329, Mechatronika. Sprawy organizacyjne Dr inż. Michał Marzantowicz,Wydział Fizyki P.W. marzan@mech.pw.edu.pl p. 329, Mechatronika http://adam.mech.pw.edu.pl/~marzan/ http://www.if.pw.edu.pl/~wrobel Suma punktów: 38 2 sprawdziany

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 1. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo

Bardziej szczegółowo

Rachunek wektorowy - wprowadzenie. dr inż. Romuald Kędzierski

Rachunek wektorowy - wprowadzenie. dr inż. Romuald Kędzierski Rachunek wektorowy - wprowadzenie dr inż. Romuald Kędzierski Graficzne przedstawianie wielkości wektorowych Długość wektora jest miarą jego wartości Linia prosta wyznaczająca kierunek działania wektora

Bardziej szczegółowo

Mechanika. Wykład 2. Paweł Staszel

Mechanika. Wykład 2. Paweł Staszel Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu

Bardziej szczegółowo

1. Kinematyka 8 godzin

1. Kinematyka 8 godzin Plan wynikowy (propozycja) część 1 1. Kinematyka 8 godzin Wymagania Treści nauczania (tematy lekcji) Cele operacyjne podstawowe ponadpodstawowe Uczeń: konieczne podstawowe rozszerzające dopełniające Jak

Bardziej szczegółowo

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące

Bardziej szczegółowo

Tadeusz Lesiak. Podstawy mechaniki Newtona Kinematyka punktu materialnego

Tadeusz Lesiak. Podstawy mechaniki Newtona Kinematyka punktu materialnego Mechanika klasyczna Tadeusz Lesiak Wykład nr 2 Podstawy mechaniki Newtona Kinematyka punktu materialnego Kinematyka punktu materialnego Kinematyka: zajmuje się matematycznym opisem ruchów układów mechanicznych

Bardziej szczegółowo

MiBM sem. III Zakres materiału wykładu z fizyki

MiBM sem. III Zakres materiału wykładu z fizyki MiBM sem. III Zakres materiału wykładu z fizyki 1. Dynamika układów punktów materialnych 2. Elementy mechaniki relatywistycznej 3. Podstawowe prawa elektrodynamiki i magnetyzmu 4. Zasady optyki geometrycznej

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/ ) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych

WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/ ) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/2018 I. Wymagania przekrojowe. Uczeń: 1) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych lub blokowych informacje kluczowe dla

Bardziej szczegółowo

Podstawowe umiejętności matematyczne - przypomnienie

Podstawowe umiejętności matematyczne - przypomnienie Podstawowe umiejętności matematyczne - przypomnienie. Podstawy działań na potęgach założenie:. założenie: założenie: a>0, n jest liczbą naturalną założenie: Uwaga:. Zapis dużych i małych wartości w postaci

Bardziej szczegółowo

Konspekt lekcji z fizyki w klasie I LO

Konspekt lekcji z fizyki w klasie I LO mgr Sylwia Rybarczyk esryba@poczta.onet.pl nauczyciel fizyki i matematyki XLIV LO w Łodzi Konspekt lekcji z fizyki w klasie I LO TEMAT: Zjawisko fizyczne, wielkość fizyczna, jednostki - utrwalenie zdobytych

Bardziej szczegółowo

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne

Bardziej szczegółowo

Przemieszczeniem ciała nazywamy zmianę jego położenia

Przemieszczeniem ciała nazywamy zmianę jego położenia 1 Przemieszczeniem ciała nazywamy zmianę jego położenia + 0 k k 0 Przemieszczenie jes wekorem. W przypadku jednowymiarowym możliwy jes ylko jeden kierunek, a zwro określamy poprzez znak. Przyjmujemy, że

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Praca, moc, energia Energia Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia jest miarą różnych

Bardziej szczegółowo

Mechanika i Wytrzymałość Materiałów. Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Równowaga.

Mechanika i Wytrzymałość Materiałów. Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Równowaga. Mechanika i Wytrzymałość Materiałów Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Równowaga. Przedmiot Mechanika (ogólna, techniczna, teoretyczna): Dział fizyki

Bardziej szczegółowo

Ruch prostoliniowy. zmienny. dr inż. Romuald Kędzierski

Ruch prostoliniowy. zmienny. dr inż. Romuald Kędzierski Ruch prostoliniowy zmienny dr inż. Romuald Kędzierski Przypomnienie Szybkość średnia Wielkość skalarna definiowana, jako iloraz przebytej drogi i czasu, w którym ta droga została przebyta. Uwaga: Szybkość

Bardziej szczegółowo

Plan wynikowy z wymaganiami edukacyjnymi przedmiotu fizyka w zakresie podstawowym dla I klasy liceum ogólnokształcącego i technikum

Plan wynikowy z wymaganiami edukacyjnymi przedmiotu fizyka w zakresie podstawowym dla I klasy liceum ogólnokształcącego i technikum Plan wynikowy z mi edukacyjnymi przedmiotu fizyka w zakresie podstawowym dla I klasy liceum ogólnokształcącego i technikum Temat (rozumiany jako lekcja) Wymagania konieczne (ocena dopuszczająca) Dział

Bardziej szczegółowo

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu

Bardziej szczegółowo

Elementy rachunku różniczkowego i całkowego

Elementy rachunku różniczkowego i całkowego Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami

Bardziej szczegółowo

Szczegółowy rozkład materiału z fizyki dla klasy I gimnazjum zgodny z nową podstawą programową.

Szczegółowy rozkład materiału z fizyki dla klasy I gimnazjum zgodny z nową podstawą programową. Szczegółowy rozkład materiału z fizyki dla klasy I gimnazjum zgodny z nową podstawą programową. Klasa I Lekcja wstępna omówienie programu nauczania i Przedmiotowego Systemu Oceniania Tytuł rozdziału w

Bardziej szczegółowo

KINEMATYKA czyli opis ruchu. Marian Talar

KINEMATYKA czyli opis ruchu. Marian Talar KINEMATYKA czyli opis ruchu 1 października 2006 2 Kinematyka czyli opis ruchu 1 Podstawowe pojęcia Kinematyka jest działem fizyki, który zajmuje się tylko opisem ruchu ciał. W ruchu postępowym ciało zastępuje

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 1. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo Oświatowe

Bardziej szczegółowo

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon

Bardziej szczegółowo

KONCEPCJA TESTU. Test sprawdza bieżące wiadomości i umiejętności z zakresu kinematyki i dynamiki w klasie I LO.

KONCEPCJA TESTU. Test sprawdza bieżące wiadomości i umiejętności z zakresu kinematyki i dynamiki w klasie I LO. JOLANTA SUCHAŃSKA. CEL POMIARU: KONCEPCJA TESTU Test sprawdza bieżące wiadomości i umiejętności z zakresu kinematyki i dynamiki w klasie I LO. 2. RODZAJ TESTU: Jest to test sprawdzający, wielostopniowy,

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),

Bardziej szczegółowo

Zasada zachowania pędu

Zasada zachowania pędu Zasada zachowania pędu Zasada zachowania pędu Układ izolowany Układem izolowanym nazwiemy układ, w którym każde ciało może w dowolny sposób oddziaływać z innymi elementami układu, ale brak jest oddziaływań

Bardziej szczegółowo

Przykładowe zdania testowe I semestr,

Przykładowe zdania testowe I semestr, Przykładowe zdania testowe I semestr, 2015-2016 Rozstrzygnij, które z podanych poniżej zdań są prawdziwe, a które nie. Podstawy matematyczno-fizyczne. Działania na wektorach. Zagadnienia kluczowe: Układ

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,

Bardziej szczegółowo

Zbiór wielkości fizycznych obejmujący wszystkie lub tylko niektóre dziedziny fizyki.

Zbiór wielkości fizycznych obejmujący wszystkie lub tylko niektóre dziedziny fizyki. Opracował: mgr inż. Marcin Wieczorek www.marwie.net.pl 1.. Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp. 2. Układ wielkości.

Bardziej szczegółowo

Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp.

Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp. Opracował: mgr inż. Marcin Wieczorek www.marwie.net.pl 1.. Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp. 2. Układ wielkości.

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących

Bardziej szczegółowo

Fizyka Podręcznik: Świat fizyki, cz.1 pod red. Barbary Sagnowskiej. 4. Jak opisujemy ruch? Lp Temat lekcji Wymagania konieczne i podstawowe Uczeń:

Fizyka Podręcznik: Świat fizyki, cz.1 pod red. Barbary Sagnowskiej. 4. Jak opisujemy ruch? Lp Temat lekcji Wymagania konieczne i podstawowe Uczeń: Fizyka Podręcznik: Świat fizyki, cz.1 pod red. Barbary Sagnowskiej 4. Jak opisujemy ruch? Lp Temat lekcji Wymagania konieczne i podstawowe Wymagania rozszerzone i dopełniające 1 Układ odniesienia opisuje

Bardziej szczegółowo

W efekcie złożenia tych dwóch ruchów ciało porusza się ruchem złożonym po torze, który w tym przypadku jest łukiem paraboli.

W efekcie złożenia tych dwóch ruchów ciało porusza się ruchem złożonym po torze, który w tym przypadku jest łukiem paraboli. 1. Pocisk wystrzelony poziomo leciał t k = 10 *s+, spadł w odległości S = 600 *m+. Oblicz prędkośd początkową pocisku V0 =?, i z jakiej wysokości został wystrzelony, jak daleko zaleciałby ten pocisk, gdyby

Bardziej szczegółowo

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski Zasady dynamiki Newtona dr inż. Romuald Kędzierski Czy do utrzymania ciała w ruchu jednostajnym prostoliniowym potrzebna jest siła? Arystoteles 384-322 p.n.e. Do utrzymania ciała w ruchu jednostajnym prostoliniowym

Bardziej szczegółowo

KONSPEKT LEKCJI FIZYKI DLA KLASY I GIMNAZJUM

KONSPEKT LEKCJI FIZYKI DLA KLASY I GIMNAZJUM Anna Kierzkowska nauczyciel fizyki i chemii w Gimnazjum Nr 2 w Starachowicach KONSPEKT LEKCJI FIZYKI DLA KLASY I GIMNAZJUM Temat lekcji: Pomiary wielkości fizycznych. Międzynarodowy Układ Jednostek Miar

Bardziej szczegółowo

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI DEFINICJA (funkcji elementarnych) Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe wykładnicze logarytmiczne trygonometryczne Funkcje, które można

Bardziej szczegółowo

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn

Bardziej szczegółowo

FIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania)

FIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania) FIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania) Temat Proponowana liczba godzin POMIARY I RUCH 12 Wymagania szczegółowe, przekrojowe i doświadczalne z podstawy

Bardziej szczegółowo

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa Praca, moc, energia 1. Klasyfikacja energii. Jeżeli ciało posiada energię, to ma również zdolnoć do wykonania pracy kosztem częci swojej energii. W = Epoczątkowa Ekońcowa Wewnętrzna Energia Mechaniczna

Bardziej szczegółowo

Zadanie. Oczywiście masa sklejonych ciał jest sumą poszczególnych mas. Zasada zachowania pędu: pozwala obliczyć prędkość po zderzeniu

Zadanie. Oczywiście masa sklejonych ciał jest sumą poszczególnych mas. Zasada zachowania pędu: pozwala obliczyć prędkość po zderzeniu Zderzenie centralne idealnie niesprężyste (ciała zlepiają się i po zderzeniu poruszają się razem). Jedno z ciał przed zderzeniem jest w spoczynku. Oczywiście masa sklejonych ciał jest sumą poszczególnych

Bardziej szczegółowo

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:

Bardziej szczegółowo

Opis ruchu obrotowego

Opis ruchu obrotowego Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają

Bardziej szczegółowo

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH

Bardziej szczegółowo

WYDZIAŁ LABORATORIUM FIZYCZNE

WYDZIAŁ LABORATORIUM FIZYCZNE 1 W S E i Z W WARSZAWIE WYDZIAŁ LABORATORIUM FIZYCZNE Ćwiczenie Nr 3 Temat: WYZNACZNIE WSPÓŁCZYNNIKA LEPKOŚCI METODĄ STOKESA Warszawa 2009 2 1. Podstawy fizyczne Zarówno przy przepływach płynów (ciecze

Bardziej szczegółowo

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego)

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) 2019-09-01 FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) Treści z podstawy programowej przedmiotu POZIOM ROZSZERZONY (PR) SZKOŁY BENEDYKTA Podstawa programowa FIZYKA KLASA 1 LO (4-letnie po szkole

Bardziej szczegółowo

Fizyka (Biotechnologia)

Fizyka (Biotechnologia) Fizyka (Biotechnologia) Wykład I Marek Kasprowicz dr Marek Jan Kasprowicz pokój 309 marek.kasprowicz@ur.krakow.pl www.ar.krakow.pl/~mkasprowicz Marek Jan Kasprowicz Fizyka 013 r. Literatura D. Halliday,

Bardziej szczegółowo

Iloczyn wektorowy. Autorzy: Michał Góra

Iloczyn wektorowy. Autorzy: Michał Góra Iloczyn wektorowy Autorzy: Michał Góra 019 Iloczyn wektorowy Autor: Michał Góra DEFINICJA Definicja 1: Iloczyn wektorowy Iloczynem wektorowym wektorów v = ( v x, v y, v z ) R 3 oraz w = ( w x, w y, w z

Bardziej szczegółowo

Podstawy fizyki. [T.] 1 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2. Warszawa, Spis treści

Podstawy fizyki. [T.] 1 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2. Warszawa, Spis treści Podstawy fizyki. [T.] 1 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2. Warszawa, 2015 Spis treści Od Wydawcy do drugiego wydania polskiego Przedmowa Podziękowania xi xiii xxi 1. Pomiar 1 1.1.

Bardziej szczegółowo

DYNAMIKA SIŁA I JEJ CECHY

DYNAMIKA SIŁA I JEJ CECHY DYNAMIKA SIŁA I JEJ CECHY Wielkość wektorowa to wielkość fizyczna mająca cztery cechy: wartość liczbowa punkt przyłożenia (jest początkiem wektora, zaznaczamy na rysunku np. kropką) kierunek (to linia

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej

WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej OSIĄGNIĘCIA UCZNIÓW Z ZAKRESIE KSZTAŁCENIA W kolumnie "wymagania na poziom podstawowy" opisano wymagania

Bardziej szczegółowo

Potencjalne pole elektrostatyczne. Przypomnienie

Potencjalne pole elektrostatyczne. Przypomnienie Potencjalne pole elektrostatyczne Wszystkie rysunki i animacje zaczerpnięto ze strony http://webmitedu/802t/www/802teal3d/visualizations/electrostatics/indexhtm Tekst jest wolnym tłumaczeniem pliku guide03pdf

Bardziej szczegółowo

I. Przedmiot i metodologia fizyki

I. Przedmiot i metodologia fizyki I. Przedmiot i metodologia fizyki Rodowód fizyki współczesnej Świat zjawisk fizycznych: wielkości fizyczne, rzędy wielkości, uniwersalność praw Oddziaływania fundamentalne i poszukiwanie Teorii Ostatecznej

Bardziej szczegółowo

lub też (uwzględniając fakt, że poruszają się w kierunkach prostopadłych) w układzie współrzędnych kartezjańskich: x 1 (t) = v 1 t y 2 (t) = v 2 t

lub też (uwzględniając fakt, że poruszają się w kierunkach prostopadłych) w układzie współrzędnych kartezjańskich: x 1 (t) = v 1 t y 2 (t) = v 2 t Zad. 1 Dwa okręty wyruszyły jednocześnie z tego samego miejsca w drogę w kierunkach do siebie prostopadłych, jeden z prędkością υ 1 = 30 km/h, drugi z prędkością υ 2 = 40 km/h. Obliczyć prędkość wzajemnego

Bardziej szczegółowo

VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1)

VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1) 1 VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1) 1. Opis ruchu postępowego 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać

Bardziej szczegółowo

Równania dla potencjałów zależnych od czasu

Równania dla potencjałów zależnych od czasu Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności

Bardziej szczegółowo

Wymagania edukacyjne do nowej podstawy programowej z fizyki realizowanej w zakresie rozszerzonym Kinematyka

Wymagania edukacyjne do nowej podstawy programowej z fizyki realizowanej w zakresie rozszerzonym Kinematyka 1 edukacyjne do nowej podstawy programowej z fizyki realizowanej w zakresie rozszerzonym Kinematyka *W nawiasie podano alternatywny temat lekcji (jeśli nazwa zagadnienia jest długa) bądź tematy lekcji

Bardziej szczegółowo

lim Np. lim jest wyrażeniem typu /, a

lim Np. lim jest wyrażeniem typu /, a Wykład 3 Pochodna funkcji złożonej, pochodne wyższych rzędów, reguła de l Hospitala, różniczka funkcji i jej zastosowanie, pochodna jako prędkość zmian 3. Pochodna funkcji złożonej. Jeżeli funkcja złożona

Bardziej szczegółowo

Ruch drgający i falowy

Ruch drgający i falowy Ruch drgający i falowy 1. Ruch harmoniczny 1.1. Pojęcie ruchu harmonicznego Jednym z najbardziej rozpowszechnionych ruchów w mechanice jest ruch ciała drgającego. Przykładem takiego ruchu może być ruch

Bardziej szczegółowo

LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA

LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich

Bardziej szczegółowo