Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika

Podobne dokumenty
Paradoksalny rozkład kuli

Grupa klas odwzorowań powierzchni

Rozkład figury symetrycznej na dwie przystające

Topologia I Wykład 4.

Zadania z algebry liniowej - sem. I Struktury algebraiczne

Zadania do Rozdziału X

Topologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.

Zbiory liczbowe widziane oczami topologa

Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X.

Działanie grupy na zbiorze

V Konkurs Matematyczny Politechniki Białostockiej

Projekt matematyczny

Informacja o przestrzeniach Sobolewa

Zad.3. Jakub Trojgo i Jakub Wieczorek. 14 grudnia 2013

GEOMETRIA PRZESTRZENNA (STEREOMETRIA)

Działanie grupy na zbiorze

Ćwiczenia 1 - Pojęcie grupy i rzędu elementu

TwierdzeniePoincaré 1 Bendixsona 2

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.

1. Elementy (abstrakcyjnej) teorii grup

Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.

Izoperymetria gaussowska

Robert Kowalczyk. Zbiór zadań z teorii miary i całki

Teoria ciała stałego Cz. I

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

Teoria miary i całki

Metody probabilistyczne

A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty

TEST A. A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty

1 Określenie pierścienia

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

Planimetria 1 12 godz.

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:

ϕ(t k ; p) dla pewnego cigu t k }.

Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM.

G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28

XXV Rozkosze Łamania Głowy konkurs matematyczny dla klas I i III szkół ponadgimnazjalnych. zestaw A klasa I

1 Grupy. 1.1 Grupy. 1.2 Podgrupy. 1.3 Dzielniki normalne. 1.4 Homomorfizmy

Uwaga 1.2. Niech (G, ) będzie grupą, H 1, H 2 < G. Następujące warunki są równoważne:

Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój.

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Algebra abstrakcyjna

1. Określenie pierścienia

Algebra konspekt wykladu 2009/10 1. du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle

Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011).

Krzywa uniwersalna Sierpińskiego

Ilustracja S1 S2. S3 ściana zewnętrzna

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi

Dekompozycje prostej rzeczywistej

Paradoksy log o i g czne czn i inne 4 marca 2010

Analiza Funkcjonalna - Zadania

Wyk lad 2 Podgrupa grupy

Statystyka Astronomiczna

Twierdzenie spektralne

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?

GEOMETRIA ELEMENTARNA

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2

Biostatystyka, # 3 /Weterynaria I/

Ośrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski,

BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH

1. Struktury zbiorów 2. Miara 3. Miara zewnętrzna 4. Miara Lebesgue a 5. Funkcje mierzalne 6. Całka Lebesgue a. Analiza Rzeczywista.

Geometria. Rodzaje i własności figur geometrycznych:

Teoria węzłów matematycznych - warkocze. Karolina Krzysztoń 10B2

Topologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk).

Matematyka dyskretna

(b) Suma skończonej ilości oraz przekrój przeliczalnej ilości zbiorów typu G α

1. ODPOWIEDZI DO ZADAŃ TESTOWYCH

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11

KARTA KURSU DLA STUDIÓW PODYPLOMOWYCH

Sumy kwadratów. Twierdzenie Fermata-Eulera. Lemat Minkowskiego

Analiza II.2*, lato komentarze do ćwiczeń

Zmienne losowe i ich rozkłady

Relacje binarne. Def. Relację ϱ w zbiorze X nazywamy. antysymetryczną, gdy x, y X (xϱy yϱx x = y) spójną, gdy x, y X (xϱy yϱx x = y)

Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Zestaw 2. Definicje i oznaczenia. inne grupy V 4 grupa czwórkowa Kleina D n grupa dihedralna S n grupa symetryczna A n grupa alternująca.

Wykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo geometryczne.

Matematyka II - Organizacja zajęć. Egzamin w sesji letniej

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

Dlaczego nie wystarczają liczby wymierne

Symetria w fizyce materii

Grupa izometrii płaszczyzny hiperbolicznej

Algebraiczne własności grup klas odwzorowań

Wyk lad 4 Warstwy, dzielniki normalne

Podstawowe pojęcia geometryczne

Metoda kategorii Baire a w przestrzeniach metrycznych zupełnych

Liczba obrotu i twierdzenie Poincare go o klasyfikacji homeomorfizmów okręgu.

Ćwiczenia z Geometrii I, czerwiec 2006 r.

11. Pochodna funkcji

Dydaktyka matematyki III-IV etap edukacyjny (wykłady)

Rekurencyjna przeliczalność

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018

1 Grupy. 1.1 Grupy. (2) dla działania istnieje element neutralny, tzn. istnieje e G taki, że ae = a = ea dla dowolnego a G;

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1

Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i

METODY PROBABILISTYCZNE I STATYSTYKA

Transkrypt:

Instytut Matematyczny PAN Konwersatorium dla doktorantów Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika Joanna Jaszuńska IM PAN Warszawa, 10 listopada 2006 Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 1 Joanna Jaszuńska

Rozkłady I cięcie nożyczkami brzeg nieistotny, części przyzwoite, ograniczone krzywymi Jordana R 2 : zachowane pole równoważność wielokątów przez rozkład skończony (Wallace-Bolyai-Gerwien) R 3 : III problem Hilberta Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 2 Joanna Jaszuńska

Rozkłady I cięcie nożyczkami brzeg nieistotny, części przyzwoite, ograniczone krzywymi Jordana R 2 : zachowane pole równoważność wielokątów przez rozkład skończony (Wallace-Bolyai-Gerwien) R 3 : III problem Hilberta paradoksy-oszustwa Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 2 Joanna Jaszuńska

Rozkłady II równoważność przez rozkład A G B części dowolne, mogą być dziwne (jednopunktowe, niemierzalne etc) nie musi się być zachowana miara paradoksy relacja równoważności (w szczególności przechodnia), rozkłady skończone Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 3 Joanna Jaszuńska

Rozkłady II równoważność przez rozkład A G B części dowolne, mogą być dziwne (jednopunktowe, niemierzalne etc) nie musi się być zachowana miara paradoksy relacja równoważności (w szczególności przechodnia), rozkłady skończone Kwadratura koła Tarskiego Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 3 Joanna Jaszuńska

Rozkłady II równoważność przez rozkład A G B części dowolne, mogą być dziwne (jednopunktowe, niemierzalne etc) nie musi się być zachowana miara paradoksy relacja równoważności (w szczególności przechodnia), rozkłady skończone Kwadratura koła Tarskiego nożyczkami niemożliwa przez rozkład możliwa Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 3 Joanna Jaszuńska

Paradoksy nieintuicyjne rozkłady Zbiór E nazwiemy G-paradoksalnym, jeśli zawiera rozłączne podzbiory A, B takie, że A G E oraz B G E. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 4 Joanna Jaszuńska

Paradoksy nieintuicyjne rozkłady Zbiór E nazwiemy G-paradoksalnym, jeśli zawiera rozłączne podzbiory A, B takie, że A G E oraz B G E. N N N, N N N N, N N N... Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 4 Joanna Jaszuńska

Paradoksy nieintuicyjne rozkłady Zbiór E nazwiemy G-paradoksalnym, jeśli zawiera rozłączne podzbiory A, B takie, że A G E oraz B G E. N N N, N N N N, N N N... Paradoksalny rozkład okręgu Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 4 Joanna Jaszuńska

Paradoksy nieintuicyjne rozkłady Zbiór E nazwiemy G-paradoksalnym, jeśli zawiera rozłączne podzbiory A, B takie, że A G E oraz B G E. N N N, N N N N, N N N... Paradoksalny rozkład okręgu zbiór niemierzalny Vitaliego na S 1 każda klasa równoważności przeliczalna Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 4 Joanna Jaszuńska

Paradoksy nieintuicyjne rozkłady Zbiór E nazwiemy G-paradoksalnym, jeśli zawiera rozłączne podzbiory A, B takie, że A G E oraz B G E. N N N, N N N N, N N N... Paradoksalny rozkład okręgu zbiór niemierzalny Vitaliego na S 1 każda klasa równoważności przeliczalna z aksjomatu wyboru zbiór reprezentantów M przeliczalnie wiele jego obrotów daje cały S 1 Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 4 Joanna Jaszuńska

Paradoksy nieintuicyjne rozkłady Zbiór E nazwiemy G-paradoksalnym, jeśli zawiera rozłączne podzbiory A, B takie, że A G E oraz B G E. N N N, N N N N, N N N... Paradoksalny rozkład okręgu zbiór niemierzalny Vitaliego na S 1 każda klasa równoważności przeliczalna z aksjomatu wyboru zbiór reprezentantów M przeliczalnie wiele jego obrotów daje cały S 1 S 1 S 1 S 1, S 1 S 1 S 1 S 1, S 1 S 1 S 1... Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 4 Joanna Jaszuńska

Paradoksy nieintuicyjne rozkłady Zbiór E nazwiemy G-paradoksalnym, jeśli zawiera rozłączne podzbiory A, B takie, że A G E oraz B G E. N N N, N N N N, N N N... Paradoksalny rozkład okręgu zbiór niemierzalny Vitaliego na S 1 każda klasa równoważności przeliczalna z aksjomatu wyboru zbiór reprezentantów M przeliczalnie wiele jego obrotów daje cały S 1 S 1 S 1 S 1, S 1 S 1 S 1 S 1, S 1 S 1 S 1... Wkręcanie S 1 2 S 1 \ {punkt} Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 4 Joanna Jaszuńska

Grupa wolna F 2 dwa generatory: a i b bez relacji element neutralny e alfabet a, b, a 1, b 1 elementami grupy są słowa zredukowane działanie konkatenacja, czyli dopisanie Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 5 Joanna Jaszuńska

Paradoksalny rozkład F 2 F 2 = {e} S(a) S(b) S(a 1 ) S(b 1 ) F 2 = S(a) as(a 1 ) F 2 = S(b) bs(b 1 ) Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 6 Joanna Jaszuńska

Grupa F 2 jako podgrupa grupy izometrii R 3 Niech ϕ = arccos ( ) 1 3. a, b antyzegarowe obroty o kąt ϕ odpowiednio wokół osi x oraz z a ±1 = 1 0 0 1 0 3 2 2 3 0 ± 2 2 3 1 3, b±1 = 1 3 2 2 3 0 ± 2 2 1 3 3 0 0 0 1. Można sprawdzić, że a i b generują grupę wolną F 2. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 7 Joanna Jaszuńska

Wąż Sierpińskiego Czy istnieje w R 3 zamknięty pierścień przystających czworościanów? Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 8 Joanna Jaszuńska

Wąż Sierpińskiego Czy istnieje w R 3 zamknięty pierścień przystających czworościanów? Nie istnieje = nie istnieje parkietaż przestrzeni R 3 takimi czworościanami. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 8 Joanna Jaszuńska

Działanie grupy G na zbiorze X dla dowolnych g G, x X mamy zdefiniowane g(x) X g 2 (g 1 (x)) = (g 2 g 1 )(x) id(x) = x Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 9 Joanna Jaszuńska

Działanie grupy G na zbiorze X dla dowolnych g G, x X mamy zdefiniowane g(x) X g 2 (g 1 (x)) = (g 2 g 1 )(x) id(x) = x Na przykład grupa G 3 izometrii przestrzeni R 3 działa na zbiorze X = R 3 Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 9 Joanna Jaszuńska

Działanie grupy G na zbiorze X dla dowolnych g G, x X mamy zdefiniowane g(x) X g 2 (g 1 (x)) = (g 2 g 1 )(x) id(x) = x Na przykład grupa G 3 izometrii przestrzeni R 3 działa na zbiorze X = R 3 dla dowolnej izometrii g G 3 oraz punktu x R 3 możemy zdefiniować g(x) jako obraz punktu x przy izometrii g Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 9 Joanna Jaszuńska

Działanie grupy G na zbiorze X dla dowolnych g G, x X mamy zdefiniowane g(x) X g 2 (g 1 (x)) = (g 2 g 1 )(x) id(x) = x Na przykład grupa G 3 izometrii przestrzeni R 3 działa na zbiorze X = R 3 dla dowolnej izometrii g G 3 oraz punktu x R 3 możemy zdefiniować g(x) jako obraz punktu x przy izometrii g składanie izometrii Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 9 Joanna Jaszuńska

Działanie grupy G na zbiorze X dla dowolnych g G, x X mamy zdefiniowane g(x) X g 2 (g 1 (x)) = (g 2 g 1 )(x) id(x) = x Na przykład grupa G 3 izometrii przestrzeni R 3 działa na zbiorze X = R 3 dla dowolnej izometrii g G 3 oraz punktu x R 3 możemy zdefiniować g(x) jako obraz punktu x przy izometrii g składanie izometrii id(x) = x Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 9 Joanna Jaszuńska

Działanie grupy G na zbiorze X dla dowolnych g G, x X mamy zdefiniowane g(x) X g 2 (g 1 (x)) = (g 2 g 1 )(x) id(x) = x Na przykład grupa G 3 izometrii przestrzeni R 3 działa na zbiorze X = R 3 dla dowolnej izometrii g G 3 oraz punktu x R 3 możemy zdefiniować g(x) jako obraz punktu x przy izometrii g składanie izometrii id(x) = x Orbita elementu x to zbiór {g(x): g G}. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 9 Joanna Jaszuńska

Grupa paradoksalna zbiór paradoksalny Stwierdzenie: Jeśli grupa paradoksalna G działa, bez nietrywialnych punktów stałych, na pewnym zbiorze, to ten zbiór jest G-paradoksalny. zbiór X rozpada się na orbity przy działaniu elementów grupy aksjomat wyboru M to zbiór reprezentantów orbit {g(m): g G} podział zbioru X paradoksalny rozkład G przenosi się na paradoksalny rozkład X Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 10 Joanna Jaszuńska

Grupa paradoksalna zbiór paradoksalny Stwierdzenie: Jeśli grupa paradoksalna G działa, bez nietrywialnych punktów stałych, na pewnym zbiorze, to ten zbiór jest G-paradoksalny. zbiór X rozpada się na orbity przy działaniu elementów grupy aksjomat wyboru M to zbiór reprezentantów orbit {g(m): g G} podział zbioru X paradoksalny rozkład G przenosi się na paradoksalny rozkład X Wniosek 1: To samo dla F 2 (wiemy, że jest paradoksalna). Wniosek 2: To samo dla naszej F 2 G 3. Problem (mały): Ma nie być punktów stałych. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 10 Joanna Jaszuńska

Paradoks Hausdorffa Niech D S 2 oznacza zbiór końców osi obrotów z F 2. Można sprawdzić, że F 2 działa na S 2 \ D bez punktów stałych. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 11 Joanna Jaszuńska

Paradoks Hausdorffa Niech D S 2 oznacza zbiór końców osi obrotów z F 2. Można sprawdzić, że F 2 działa na S 2 \ D bez punktów stałych. Stąd Paradoks Hausdorffa: Istnieje taki przeliczalny podzbiór D sfery S 2, że zbiór S 2 \ D jest paradoksalny. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 11 Joanna Jaszuńska

Paradoks Hausdorffa Niech D S 2 oznacza zbiór końców osi obrotów z F 2. Można sprawdzić, że F 2 działa na S 2 \ D bez punktów stałych. Stąd Paradoks Hausdorffa: Istnieje taki przeliczalny podzbiór D sfery S 2, że zbiór S 2 \ D jest paradoksalny. Zbiór D przeliczalny można się go pozbyć ( wkręcając ): S 2 \ D S 2 Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 11 Joanna Jaszuńska

Paradoks Banacha-Tarskiego (1924 r.) Wiemy już, że dla odpowiedniego D zbiór S 2 \ D jest paradoksalny oraz S 2 \ D S 2. Zbiór równoważny ze zbiorem paradoksalnym też jest paradoksalny. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 12 Joanna Jaszuńska

Paradoks Banacha-Tarskiego (1924 r.) Wiemy już, że dla odpowiedniego D zbiór S 2 \ D jest paradoksalny oraz S 2 \ D S 2. Zbiór równoważny ze zbiorem paradoksalnym też jest paradoksalny. Stąd paradoks B-T dla sfer: Sfera S 2 jest paradoksalna. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 12 Joanna Jaszuńska

Paradoks Banacha-Tarskiego (1924 r.) Wiemy już, że dla odpowiedniego D zbiór S 2 \ D jest paradoksalny oraz S 2 \ D S 2. Zbiór równoważny ze zbiorem paradoksalnym też jest paradoksalny. Stąd paradoks B-T dla sfer: Sfera S 2 jest paradoksalna. Kula bez środka jest paradoksalna. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 12 Joanna Jaszuńska

Paradoks Banacha-Tarskiego (1924 r.) Wiemy już, że dla odpowiedniego D zbiór S 2 \ D jest paradoksalny oraz S 2 \ D S 2. Zbiór równoważny ze zbiorem paradoksalnym też jest paradoksalny. Stąd paradoks B-T dla sfer: Sfera S 2 jest paradoksalna. Kula bez środka jest paradoksalna. Wiemy, że S 1 S 1 \ {punkt}, zatem B \ {0} B. Stąd paradoks B-T: Kula jest paradoksalna. Przestrzeń R 3 jest paradoksalna. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 12 Joanna Jaszuńska

Uwagi i komentarze G 3, nie tylko SO 3. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 13 Joanna Jaszuńska

Uwagi i komentarze G 3, nie tylko SO 3. Tu były podzbiory, można zrobić rzeczywisty rozkład. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 13 Joanna Jaszuńska

Uwagi i komentarze G 3, nie tylko SO 3. Tu były podzbiory, można zrobić rzeczywisty rozkład. Można ograniczyć liczbę części do 5. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 13 Joanna Jaszuńska

Uwagi i komentarze G 3, nie tylko SO 3. Tu były podzbiory, można zrobić rzeczywisty rozkład. Można ograniczyć liczbę części do 5. Części można przenosić bezkolizyjnie. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 13 Joanna Jaszuńska

Uwagi i komentarze G 3, nie tylko SO 3. Tu były podzbiory, można zrobić rzeczywisty rozkład. Można ograniczyć liczbę części do 5. Części można przenosić bezkolizyjnie. Aksjomat wyboru nie jest konieczny do konstrukcji paradoksów. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 13 Joanna Jaszuńska

Uwagi i komentarze G 3, nie tylko SO 3. Tu były podzbiory, można zrobić rzeczywisty rozkład. Można ograniczyć liczbę części do 5. Części można przenosić bezkolizyjnie. Aksjomat wyboru nie jest konieczny do konstrukcji paradoksów. Tak samo dla R n, n > 3. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 13 Joanna Jaszuńska

Uwagi i komentarze G 3, nie tylko SO 3. Tu były podzbiory, można zrobić rzeczywisty rozkład. Można ograniczyć liczbę części do 5. Części można przenosić bezkolizyjnie. Aksjomat wyboru nie jest konieczny do konstrukcji paradoksów. Tak samo dla R n, n > 3. Uogólnienie P.B-T: Dla dowolnych ograniczonych podzbiorów A, B R 3 o niepustym wnętrzu zachodzi A B. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 13 Joanna Jaszuńska

Uwagi i komentarze G 3, nie tylko SO 3. Tu były podzbiory, można zrobić rzeczywisty rozkład. Można ograniczyć liczbę części do 5. Części można przenosić bezkolizyjnie. Aksjomat wyboru nie jest konieczny do konstrukcji paradoksów. Tak samo dla R n, n > 3. Uogólnienie P.B-T: Dla dowolnych ograniczonych podzbiorów A, B R 3 o niepustym wnętrzu zachodzi A B. Inna wersja P.B-T: Ziarnko grochu można rozłożyć na kawałki i na nowo złożyć tak, aby otrzymać kulę wielkości Słońca. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 13 Joanna Jaszuńska

Miara Nie istnieje miara skończenie addytywna, określona na wszystkich podzbiorach R 3, G 3 -niezmiennicza, przyjmująca wartość 1 na kostce jednostkowej. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 14 Joanna Jaszuńska

Miara Nie istnieje miara skończenie addytywna, określona na wszystkich podzbiorach R 3, G 3 -niezmiennicza, przyjmująca wartość 1 na kostce jednostkowej. Tw. Banacha Na R 2 istnieje analogiczna miara (rozszerzająca miarę Jordana). Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 14 Joanna Jaszuńska

Prosta i płaszczyzna Analogiczne paradoksalne rozkłady nie istnieją, bo w G 1 i G 2 nie ma podgrup F 2. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 15 Joanna Jaszuńska

Prosta i płaszczyzna Analogiczne paradoksalne rozkłady nie istnieją, bo w G 1 i G 2 nie ma podgrup F 2. Dla dowolnych dwóch izometrii x, y na prostej zachodzi relacja x 2 y 2 x 2 y 2 = 1, Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 15 Joanna Jaszuńska

Prosta i płaszczyzna Analogiczne paradoksalne rozkłady nie istnieją, bo w G 1 i G 2 nie ma podgrup F 2. Dla dowolnych dwóch izometrii x, y na prostej zachodzi relacja x 2 y 2 x 2 y 2 = 1, na płaszczyźnie zachodzi relacja x 2 y 2 x 2 y 2 x 2 y 2 x 2 y 4 x 2 y 2 x 2 y 2 x 2 y 2 x 2 = 1. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 15 Joanna Jaszuńska

Prosta i płaszczyzna Analogiczne paradoksalne rozkłady nie istnieją, bo w G 1 i G 2 nie ma podgrup F 2. Dla dowolnych dwóch izometrii x, y na prostej zachodzi relacja x 2 y 2 x 2 y 2 = 1, na płaszczyźnie zachodzi relacja x 2 y 2 x 2 y 2 x 2 y 2 x 2 y 4 x 2 y 2 x 2 y 2 x 2 y 2 x 2 = 1. Komutatory, rozwiązalność grup izometrii G 1 i G 2. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 15 Joanna Jaszuńska

Prosta R 1 Izometrie prostej R 1 to przesunięcia i symetrie względem punktu. Kwadrat każdej izometrii jest przesunięciem. Przesunięcia są przemienne. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 16 Joanna Jaszuńska

Prosta R 1 Izometrie prostej R 1 to przesunięcia i symetrie względem punktu. Kwadrat każdej izometrii jest przesunięciem. Przesunięcia są przemienne. Stąd dla dowolnych dwóch izometrii x, y zachodzi relacja x 2 y 2 x 2 y 2 = 1, czyli nie ma podgrupy wolnej rzędu 2. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 16 Joanna Jaszuńska

Płaszczyzna R 2 Izometrie R 2 to przesunięcia, obroty i symetrie z poślizgiem. Kwadrat każdej izometrii jest przesunięciem lub obrotem. Dla dowolnych dwóch izometrii x, y wyrażenia x 2 y 2 x 2 y 2 oraz x 2 y 2 x 2 y 2 są przesunięciami. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 17 Joanna Jaszuńska

Płaszczyzna R 2 Izometrie R 2 to przesunięcia, obroty i symetrie z poślizgiem. Kwadrat każdej izometrii jest przesunięciem lub obrotem. Dla dowolnych dwóch izometrii x, y wyrażenia x 2 y 2 x 2 y 2 oraz x 2 y 2 x 2 y 2 są przesunięciami. Przesunięcia są przemienne, zatem x 2 y 2 x 2 y 2 x 2 y 2 x 2 y 2 (x 2 y 2 x 2 y 2 ) 1 (x 2 y 2 x 2 y 2 ) 1 = 1. To po uproszczeniu daje relację x 2 y 2 x 2 y 2 x 2 y 2 x 2 y 4 x 2 y 2 x 2 y 2 x 2 y 2 x 2 = 1, czyli też nie ma podgrupy wolnej rzędu 2. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 17 Joanna Jaszuńska

Płaszczyzna hiperboliczna Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 18 Joanna Jaszuńska

Płaszczyzna hiperboliczna Stan Wagon, The Banach-Tarski Paradox Leonard M. Wapner, The Pea and the Sun Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 18 Joanna Jaszuńska