Grupa klas odwzorowań powierzchni

Wielkość: px
Rozpocząć pokaz od strony:

Download "Grupa klas odwzorowań powierzchni"

Transkrypt

1 Grupa klas odwzorowań powierzchni Błażej Szepietowski Uniwersytet Gdański Horyzonty matematyki 2014 Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

2 Grupa klas odwzorowań (mapping class group) to pewna grupa stowarzyszona z powierzchnią (lub ogólniej, z dowolną przestrzenią topologiczną). Odgrywa ona ważną rolę w następujących działach matematyki: topologia teoria grup geometria analiza zespolona Badanie grup klas odwzorowań zostało zapoczątkowane w latach 20-tych XX w. przez Maxa Dehna i Jakoba Nielsena. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

3 Rozmaitości topologiczne Definicja n-wymiarową rozmaitością nazywamy przestrzeń topologiczną Hausdorffa, której każdy punkt posiada otwarte otoczenie homeomorficzne z otwartą kulą jednostkową w R n : U n = {x R n : x < 1}. Przykłady: 1 dowolny otwarty podzbiór R n 2 S n = {x R n+1 : x = 1} 3 Jeżeli M jest m-wymiarową rozmaitością, a N jest n-wymiarową rozmaitością, to iloczyn kartezjański M N jest (m + n)-wymiarową rozmaitością. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

4 Powierzchnie Definicja Powierzchnią nazywamy 2-wymiarową rozmaitość. Będą nas interesować wyłącznie powierzchnie spójne i zwarte. Przykłady: 1 sfera S 2 = {x R 3 : x = 1} 2 torus T 2 Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

5 4 różne definicje torusa 1 iloczyn kartezjański dwóch okręgów 2 powierzchnia obrotowa w R 3 powstająca przez obrót okręgu (x 2) 2 + y 2 = 1 na płaszczyźnie xy wokół osi y 3 przestrzeń powstająca przez sklejenie naprzeciwległych boków kwadratu. 4 przestrzeń orbit R 2 /Z 2 Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

6 Torus jako przestrzeń orbit Grupa Z 2 działa na płaszczyźnie R 2 za pomocą przesunięć: dla (x, y) R 2 i (a, b) Z 2. (x, y) + (a, b) = (x + a, y + b) Przestrzenią orbit tego działania nazywamy przestrzeń ilorazową R 2 /Z 2, powstającą przez utożsamienie wszystkich punktów płaszczyzny różniących się o przesunięcie o wektor z Z 2. (x, y) (x, y ) (x x, y y) Z 2 Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

7 Torus jako przestrzeń orbit Grupa Z 2 działa na płaszczyźnie R 2 za pomocą przesunięć: dla (x, y) R 2 i (a, b) Z 2. (x, y) + (a, b) = (x + a, y + b) Przestrzenią orbit tego działania nazywamy przestrzeń ilorazową R 2 /Z 2, powstającą przez utożsamienie wszystkich punktów płaszczyzny różniących się o przesunięcie o wektor z Z 2. (x, y) (x, y ) (x x, y y) Z 2 Uwaga. Powyższe 4 definicje torusa są topologicznie równoważne, tzn. definiują homeomorficzne przestrzenie. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

8 (0, 1) (1, 1) (0, 0) (1, 0) Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

9 Płaszczyzna rzutowa Płaszczyzna rzutowa RP 2 jest to powierzchnia powstająca przez utożsamienie antypodycznych punktów na sferze S 2. RP 2 = S 2 / gdzie x x Rozważmy pierścień otaczający równik sfery: {(x, y, z) S 2 : z 1/4} Po utożsamieniu antypodycznych punktów powstaje z niego wstęga Möbiusa. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

10 Płaszczyzna rzutowa Płaszczyzna rzutowa RP 2 jest to powierzchnia powstająca przez utożsamienie antypodycznych punktów na sferze S 2. RP 2 = S 2 / gdzie x x Rozważmy pierścień otaczający równik sfery: {(x, y, z) S 2 : z 1/4} Po utożsamieniu antypodycznych punktów powstaje z niego wstęga Möbiusa. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

11 Orientacja Definicja Powierzchnię nazywamy nieorientowalną jeżeli zawiera wstęgę Möbiusa, a orientowalną w przeciwnym wypadku. Na powierzchni orientowalnej możemy ustalić, dla każdego podzbioru U homeomorficznego z otwartym dyskiem na płaszczyźnie, którą z dwóch możliwych orientacji okręgu zawartego w U uznajemy za dodatnią, w taki sposób, że jeżeli okrąg (wraz z otoczeniem U) będzie się poruszał w sposób ciągły po powierzchni, to będzie on przez cały czas zorientowany dodatnio. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

12 Suma spójna Mając dane dwie powierzchnie A i B, ich sumą spójną nazywamy powierzchnię A#B powstającą w następujący sposób: Wycinamy z obu powierzchni mały dysk, a następnie sklejamy powierzchnie ze sobą wzdłuż brzegów wyciętych dysków. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

13 Własności sumy spójnej Z dokładnością do homeomorfizmu, A#B nie zależy od wyboru dysków użytych w konstrukcji, ani od wyboru sklejenia. Suma spójna ma następujące własności, gdzie L = P należy rozumieć jako L jest homeomorficzne z P : A#B = B#A (A#B)#C = A#(B#C) A#S 2 = A Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

14 Klasyfikacja zwartych powierzchni Twierdzenie Dowolna spójna i zwarta powierzchnia jest homeomorficzna z jedną z następujących: 1 sfera S 2 2 suma spójna g torusów dla pewnego g 1 3 suma spójna g płaszczyzn rzutowych dla pewnego g 1 Powierzchnie z punktów 1 i 2 są orientowalne, a powierzchnia z punktu 3 jest nieorientowalna. Liczbę naturalną g występującą w punktach 2 i 3 nazywamy rodzajem powierzchni (przyjmujemy, że sfera ma rodzaj 0). Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

15 Orientowalne, zwarte powierzchnie Będziemy oznaczać przez S g dowolną powierzchnię homeomorficzną z sumą spójną g torusów. Na mocy poprzedniego twierdzenia, dowolna spójna, zwarta i orientowalna powierzchnia jest homeomorficzna z S g dla pewnego g 0 (przyjmujemy S 0 = S 2 ). Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

16 Homeomorfizmy zachowujące orientację Definicja Ustalmy dowolną orientację powierzchni S g. Mówimy, że homeomorfizm f : S g S g zachowuje orientację, jeżeli dla każdego podzbioru U S g homeomorficznego z otwartym dyskiem na płaszczyźnie i okręgu c U zorientowanego dodatnio, f (c) również jest zorientowany dodatnio. Wszystkie homeomorfizmy f : S g S g zachowujące orientację tworzą grupę z działaniem składania. Grupę tą oznaczamy Homeo + (S g ). Elementem neutralnym w Homeo + (S g ) jest identyczność id(x) = x. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

17 Homotopia Definicja Dwa ciągłe odwzorowania f 0, f 1 : X Y są homotopijne, jeżeli istnieje takie ciągłe odwzorowanie H : [0, 1] X Y, że H(0, x) = f 0 (x), H(1, x) = f 1 (x) dla każdego x X. Powyższe odwzorowanie H nazywamy homotopią między f 0 i f 1. Przykład. Niech l będzie dowolną prostą w R 3 przechodzącą przez punkt (0, 0, 0). Dla dowolnego ϕ [0, 2π) niech f l,ϕ Homeo + (S 2 ) będzie obrotem S 2 wokół osi l o kąt ϕ. Definiujemy H : [0, 1] S 2 S 2 wzorem H(t, x) = f l,tϕ (x). Takie H jest homotopią między f l,ϕ i identycznością. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

18 Klasy homotopii odwzorowań Homotopijność jest relacją równoważności w zbiorze ciągłych odwzorowań X Y. Jej klasy abstrakcji nazywamy klasami homotopii. Przykład. Rozważmy okrąg S 1 = {z C: z = 1}. Dowolne ciągłe odwzorowanie f : S 1 S 1 jest hometopijne z odwzorowaniem postaci z z n dla pewnego (jedynego) n Z. Liczbę n nazywamy stopniem f i oznaczamy deg(f ). Pojęcie stopnia uogólnia się na odwzorowania S n S n dla n > 1. Mamy wzajemnie jednoznaczną odpowiedniość { } klasy homotopii odwzorowań S n S n {liczby całkowite} f : S n S n jest homeomorfizmem deg(f ) = ±1. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

19 Grupa klas odwzorowań Wszystkie homeomorfizmy S g S g homotopijne z identycznością tworzą podgrupę normalną grupy Homeo + (S g ), którą oznaczamy Homeo 0 (S g ). Grupa klas odwzorowań powierzchni S g to grupa ilorazowa Mod(S g ) = Homeo + (S g )/Homeo 0 (S g ) Jej elementami są klasy homotopii homeomorfizmów zachowujących orientację. Przykład Jeżeli f : S 2 S 2 jest homeomorfizmem zachowującym orientację, to deg(f ) = 1, zatem f jest homotopijne z identycznością. Stąd Homeo + (S 2 ) = Homeo 0 (S 2 ), czyli Mod(S 2 ) jest grupą trywialną. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

20 Przykład nietrywialnego elementu Mod(S g ) Niech g 1. Powierzchnię S g możemy otrzymać przez sklejenie naprzeciwległych boków (4g + 2)-kąta foremnego. Obracając ten (4g + 2)-kąt wokół środka ciężkości o kąt 2nπ/(4g + 2) dla n = 1, 2,..., 4g + 1 otrzymujemy nietrywialne elementy Mod(S g ). Przykład dla g = 2: Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

21 Grupa SL 2 (Z) Definiujemy {( ) a b SL 2 (Z) = c d : a, b, c, d Z; ad bc = 1 } Jest to grupa z działaniem mnożenia macierzy. Każdej macierzy A SL 2 (Z) odpowiada odwzorowanie liniowe L A : R 2 R 2 (takie, że A jest macierzą L A w bazie standardowej) L A (x, y) = (x, y ) A [ ] x = y [ ] x y Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

22 Mod(S 1 ) SL 2 (Z) Rozważmy torus S 1 jako przestrzeń ilorazową R 2 /, gdzie (x, y) (x, y ) (x x, y y) Z 2 Dla dowolnego A SL 2 (Z) i dowolnych (x, y) R 2, (a, b) Z 2 mamy L A (x + a, y + b) = L A (x, y) + L A (a, b) L A (x, y), ponieważ L A (a, b) Z 2. Skoro L A zachowuje klasy abstrakcji relacji, możemy zdefiniować odwzorowanie L A : R 2 / R 2 / wzorem L A [x] = [L A (x)], gdzie [x] oznacza klasę abstrakcji w R 2 / punktu x R 2. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

23 Mod(S 1 ) SL 2 (Z) Własności: L A Homeo + (S 1 ) przyporządkowanie A L A definiuje homomorfizm grup SL 2 (Z) Homeo + (S 1 ) to znaczy L AB = L A L B dla A, B SL 2 (Z). Każdy homeomorfizm f Homeo + (S 1 ) jest homotopijny z L A dla pewnego A SL 2 (Z) L A i L B są homotopijne A = B Wniosek Grupy Mod(S 1 ) i SL 2 (Z) są izomorficzne. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

24 Generatory Definicja Mówimy, że grupa G jest generowana przez zbiór X G, jeżeli każdy jej element daje się zapisać w postaci iloczynu x a 1 1 x a 2 2 x n an, gdzie x i X i a i Z. Jeśli zbiór X jest skończony, to mówimy, że G jest skończenie generowana. Przykład. Dla każdego n 2, grupa SL n (Z) macierzy n n o współczynnikach całkowitych i wyznaczniku 1, jest generowana przez {T ij : 1 i j n}, gdzie T ij jest macierzą, której współczynniki na głównej przekątnej i na pozycji (i, j) są równe 1, a pozostałe współczynniki są równe 0. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

25 Generatory Mod(S 1 ) Grupa SL 2 (Z) jest generowana przez dwie macierze: A = ( ) B = ( ) Stąd wynika, że Mod(S 1 ) jest generowana przez klasy homotopii homeomorfizmów L A i L B. Proste y = 0 i x = 0 są niezmiennicze odpowiednio względem przekształceń L A i L B. Obrazem prostej y = 0 (odp. x = 0) na torusie S 1 = R 2 / jest krzywa zamknięta α (odp. β), homeomorficzna z okręgiem S 1, niezmiennicza względem L A (odp. L B ). Można pokazać, że L A (odp. L B ) jest homotpijne z twistem Dehna względem krzywej α (odp. β). Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

26 Twist Dehna Niech α będzie krzywą zamkniętą (homeomorficznym obrazem okręgu) na zorientowanej powierzchni S g. Twistem Dehna (dodatnim) względem krzywej α nazywamy homeomorfizm T α : S g S g zdefiniowany następująco: 1 rozcinamy powierzchnię wzdłuż krzywej α, 2 skręcamy jeden z końców o 360 (w kierunku dodatnim względem ustalonej orientacji), 3 sklejamy z powrotem. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

27 Własności twistów Dehna Będziemy nazywać dodatnim twistem Dehna względem α i oznaczać T α dowolny homeomorfizm homotopijny z T α, jak również całą klasę homotopii (element Mod(S g )). Analogicznie definiuje się ujemny twist Dehna względem α. Jest to element odwrotny do T α w grupie Mod(S g ). Jeżeli α ogranicza dysk w S g, to twist T α jest homotopijny z identycznością, tzn. T α = 1 w Mod(S g ). W przeciwnym przypadku T α ma nieskończony rząd: n>0 T n α 1 Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

28 Twisty Dehna jako generatory Mod(S g ) Twierdzenie (Dehn) Dla g 1 grupa Mod(S g ) jest generowana przez skończenie wiele twistów Dehna. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

29 Twisty Dehna jako generatory Mod(S g ) Twierdzenie (Dehn) Dla g 1 grupa Mod(S g ) jest generowana przez skończenie wiele twistów Dehna. Twierdzenie (Lickorish 1964) Dla g 1 grupa Mod(S g ) jest generowana przez 3g 1 twistów Dehna. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

30 Generatory Mod(S g ) Twierdzenie (Humphries 1979) Dla g > 1 minimalna liczba twistów Dehna generujących Mod(S g ) jest równa 2g + 1. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

31 Generatory Mod(S g ) Twierdzenie (Humphries 1979) Dla g > 1 minimalna liczba twistów Dehna generujących Mod(S g ) jest równa 2g + 1. Twierdzenie (Wajnryb 1996) Dla g 1 grupa Mod(S g ) jest generowana przez 2 elementy. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

32 Generatory Mod(S g ) Twierdzenie (Humphries 1979) Dla g > 1 minimalna liczba twistów Dehna generujących Mod(S g ) jest równa 2g + 1. Twierdzenie (Wajnryb 1996) Dla g 1 grupa Mod(S g ) jest generowana przez 2 elementy. Twierdzenie (Korkmaz 2003) Dla g 1 grupa Mod(S g ) jest generowana przez 2 elementy skończonego rzędu. Rzędy tych elementów są równe 4 i 6 dla g = 1 6 i 10 dla g = 2 4g + 2 dla g 3 Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

33 Geometria powierzchni Powierzchnie rodzaju 0 i 1 (sfera i torus) są bardzo wyjątkowe, z powodu geometrii. Twierdzenie (Uniformizacja powierzchni) Dla każdego g 0 istnieje zwarta orientowalna powierzchnia rodzaju g, wyposażona w metrykę riemannowską o stałej krzywiźnie K, przy czym K > 0 g = 0 K = 0 g = 1 K < 0 g 2 (metryka sferyczna) (metryka euklidesowa) (metryka hiperboliczna) Powyższa trychotomia znajduje swoje odzwierciedlenie we własnościach grupy klas odwzorowań. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

34 Skończone podgrupy Homeo + (S g ) i Mod(S g ). Dla dowolnego n N istnieje homeomorfizm S 1 S 1 rzędu n (np. obrót o kąt 2π/n). Natomiast jeżeli A SL 2 (Z) Mod(S 1 ) spełnia A n = I, to n {0, 1, 2, 3, 4, 6}. Twierdzenie Niech g 2 i załóżmy, że G < Homeo + (S g ) jest skończoną podgrupą. Wtedy obcięcie kanonicznego rzutowania Homeo + (S g ) Mod(S g ) do G jest różnowartościowe. Innymi słowy, każda skończona podgrupa Homeo + (S g ) jest izomorficzna z podgrupą Mod(S g ). Co z twierdzeniem odwrotnym? Czy każda skończona podgrupa Mod(S g ) jest izomorficzna z podgrupą Homeo + (S g )? Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

35 Realizacja Nielsena Złóżmy, że x Mod(S g ) ma skończony rząd k i niech f Homeo + (S g ) będzie dowolnym reprezentantem x. Wtedy f k jest homotpijne z identycznością. Czy można wybrać takie f, żeby f k było równe identyczności? Twierdzenie (Nielsen) Złóżmy, że g 2 i x Mod(S g ) ma skończony rząd k. Wtedy istnieje taki reprezentant f Homeo + (S g ), że f ma rząd k. Ponadto, można tak wybrać f, żeby było izometrią względem pewnej metryki hiperbolicznej na S g. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

36 Twierdzenie Kerckhoffa Steven Kerckhoff uogólnił w 1983 roku twierdzenie Nielsena dla dowolnej skończonej grupy. Twierdzenie (Kerckhoff) Złóżmy, że g 2 i G < Mod(S g ) jest skończoną podgrupą. Wtedy istnieje taka podgrupa G < Homeo + (S g ), że kanoniczne rzutowanie Homeo + (S g ) Mod(S g ) obcina się do izomorfizmu G G. Ponadto, można tak wybrać G, żeby była podgrupą izometrii względem pewnej metryki hiperbolicznej na S g. Innymi słowy, każda skończona podgrupa Mod(S g ) pochodzi od skończonej podgrupy Homeo + (S g ). Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

37 Ograniczenia Hurwitza i Wimana Twierdzenie Kerckhoffa wraz z klasycznymi twierdzeniami Hurwitza (1893) i Wimana (1895) dotyczącymi izometrii powierzchni hiperbolicznych dają następujące górne ograniczenia na rząd dowolnej skończonej podgrupy Mod(S g ) i rząd skończonej podgrupy cyklicznej. Wniosek Złóżmy, że g 2 i G < Mod(S g ) jest skończoną podgrupą. Wtedy G 84(g 1), a jeżeli G jest cykliczna, to G 4g + 2. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

38 Grupy Hurwitza Twierdzenie Niech G będzie dowolną grupą skończoną. Wtedy G jest izomorficzna z podgrupą Mod(S g ) dla pewnego g 2. Wiadomo, że ograniczenie 84(g 1) jest osiągane dla nieskończenie wielu g oraz nie jest osiągane dla nieskończenie wielu g. Grupę skończoną G, która jest izomorficzna z podgrupą Mod(S g ) dla takiego g 2, że G = 84(g 1), nazywamy grupą Hurwitza Najmniejsza grupa Hurwitza ma rząd 168 (g = 3), a następna 504 (g = 7). Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

39 Problem liniowości GL n (C) grupa macierzy nieosobliwych stopnia n o współczynnikach w C. Otwarty problem Niech g 3. Czy Mod(S g ) jest izomorficzna z podgrupą GL n (C) dla pewnego n? Mod(S 1 ) SL 2 (Z) < GL 2 (C) Mod(S 2 ) jest izomorficzna z podgrupą GL 64 (C) (Bigelow-Budney 2001). Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

40 Problem liniowości GL n (C) grupa macierzy nieosobliwych stopnia n o współczynnikach w C. Otwarty problem Niech g 3. Czy Mod(S g ) jest izomorficzna z podgrupą GL n (C) dla pewnego n? Mod(S 1 ) SL 2 (Z) < GL 2 (C) Mod(S 2 ) jest izomorficzna z podgrupą GL 64 (C) (Bigelow-Budney 2001). Twierdzenie (Korkmaz 2011) Niech g 3 i n 3g 3. Wtedy Mod(S g ) nie jest izomorficzna z żadną podgrupą GL n (C). Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

41 Koniec Dziękuję za uwagę! Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

42 Informacja o obrazkach wykorzystanych w tej prezentacji, które nie są mojego autorstwa i nie są w domenie publicznej: autorem obrazka na slajdzie 10 jest Oleg Alexandrov; autorem obrazka na slajdzie 26 jest Søren Fuglede Jørgensen; Oba obrazki na licencji Creative Commons Attribution-Share Alike 3.0 Unported Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

Algebraiczne własności grup klas odwzorowań

Algebraiczne własności grup klas odwzorowań Algebraiczne własności grup klas odwzorowań Michał Stukow Uniwersytet Gdański Forum Matematyków Polskich 7 września 2006 1 Definicje i przykłady 2 Zastosowania 3 Skręcenia Dehna 1 Definicje i przykłady

Bardziej szczegółowo

Topologia Algebraiczna 2 Zadania egzaminacyjne

Topologia Algebraiczna 2 Zadania egzaminacyjne Topologia Algebraiczna 2 Zadania egzaminacyjne Agnieszka Bojanowska, Stefan Jackowski 9 czerwca 2013 1 Kompleksy łańcuchowe Zad. 1. Niech I będzie odcinkiem w kategorii kompleksów łańcuchowych, czyli kompleksem

Bardziej szczegółowo

Cała prawda o powierzchniach

Cała prawda o powierzchniach Topologia Właściwości geometryczne, niezmiennicze przy ciagłych deformacjach Można: rozciagać giać Nie można: rozcinać złamać Jednak można rozciać wzdłuż linii, a potem skleić wzdłuż tejże linii: rozwiazać

Bardziej szczegółowo

Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika

Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika Instytut Matematyczny PAN Konwersatorium dla doktorantów Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika Joanna Jaszuńska IM PAN Warszawa, 10 listopada 2006 Twierdzenie Banacha-Tarskiego z punktu

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 12: Krzywe eliptyczne Gniewomir Sarbicki Rozważać będziemy przestrzeń K n Definicja: x y λ K x = λy. Relację nazywamy różnieniem się o skalar Przykład: [4, 10, 6, 14] [6, 15,

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Topologia I Wykład 4.

Topologia I Wykład 4. Topologia I Wykład 4. Stefan Jackowski 24 października 2012 Przeciąganie topologii przez rodzinę przekształceń X zbiór. f = {f i : X Y i } i I rodziną przekształceń o wartościach w przestrzeniach topologicznych

Bardziej szczegółowo

Grupa izometrii płaszczyzny hiperbolicznej

Grupa izometrii płaszczyzny hiperbolicznej Grupa izometrii płaszczyzny hiperbolicznej Arkadiusz Męcel O różnych geometriach 21 października 2008r. UWAGA: Notatki te były pisane szybko i niechlujnie(choć starałem się). Czytelników przepraszam. InwersjewC

Bardziej szczegółowo

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. 5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań

Bardziej szczegółowo

Teoria węzłów matematycznych - warkocze. Karolina Krzysztoń 10B2

Teoria węzłów matematycznych - warkocze. Karolina Krzysztoń 10B2 Teoria węzłów matematycznych - warkocze Karolina Krzysztoń 10B2 Pojęcie węzła W matematyce węzły to zamknięte pętle umieszczone w przestrzeni trójwymiarowej, czyli zaplątane sznurki z połączonymi końcami.

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.

Bardziej szczegółowo

1. Elementy (abstrakcyjnej) teorii grup

1. Elementy (abstrakcyjnej) teorii grup 1. Elementy (abstrakcyjnej) teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3 є G - (g 1

Bardziej szczegółowo

Teoria węzłów MAGDA BILUT 10B2

Teoria węzłów MAGDA BILUT 10B2 1 Teoria węzłów MAGDA BILUT 10B2 WSTĘP 2 Teoria węzłów to dziedzina matematyki, która wchodzi w skład topologii. Topologia to część matematyki, która zajmuje się badaniem kształtów. Obiektami zainteresowania

Bardziej szczegółowo

Topologia Algebraiczna - Pomocnik studenta. 1. Język teorii kategorii

Topologia Algebraiczna - Pomocnik studenta. 1. Język teorii kategorii Topologia Algebraiczna - Pomocnik studenta. 1. Język teorii kategorii Agnieszka Bojanowska Stefan Jackowski 24 listopada 2010 1 Podstawowe pojęcia Bedziemy uzywać następujących pojęć i przykładów dotyczących

Bardziej szczegółowo

Wykład 14. Elementy algebry macierzy

Wykład 14. Elementy algebry macierzy Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,

Bardziej szczegółowo

Teoria ciała stałego Cz. I

Teoria ciała stałego Cz. I Teoria ciała stałego Cz. I 1. Elementy teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3

Bardziej szczegółowo

3 Abstrakcyjne kompleksy symplicjalne.

3 Abstrakcyjne kompleksy symplicjalne. 3 Abstrakcyjne kompleksy symplicjalne. Uwaga 3.1. Niech J będzie dowolnym zbiorem indeksów, niech R J = {(x α ) α J J α x α R} będzie produktem kartezjańskim J kopii R, niech E J = {(x α ) α J R J x α

Bardziej szczegółowo

Paradoksalny rozkład kuli

Paradoksalny rozkład kuli Wydział Fizyki UW Katedra Metod Matematycznych Fizyki Paradoksalny rozkład kuli Joanna Jaszuńska Centrum Studiów Zaawansowanych Politechniki Warszawskiej Warszawa, 9 grudnia 2010 Paradoksalny rozkład kuli

Bardziej szczegółowo

Topologia i geometria różniczkowa

Topologia i geometria różniczkowa Topologia i geometria różniczkowa Andrzej Nowicki Uniwersytet Mikołaja Kopernika, Wydział Matematyki i Informatyki, ul. Chopina 12 18, 87 100 Toruń (e-mail: anow@mat.uni.torun.pl) Marzec 1995 Spis treści

Bardziej szczegółowo

Projekt matematyczny

Projekt matematyczny Projekt matematyczny Tomasz Kochanek Uniwersytet Śląski Instytut Matematyki Katowice VI Święto Liczby π 15 marca 2012 r. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 1 / 32 Wielkie twierdzenie

Bardziej szczegółowo

Wykład 5. Ker(f) = {v V ; f(v) = 0}

Wykład 5. Ker(f) = {v V ; f(v) = 0} Wykład 5 Niech f : V W będzie przekształceniem liniowym przestrzeni wektorowych Wtedy jądrem przekształcenia nazywamy zbiór tych elementów z V, których obrazem jest wektor zerowy w przestrzeni W Jądro

Bardziej szczegółowo

Uwaga 1.2. Niech (G, ) będzie grupą, H 1, H 2 < G. Następujące warunki są równoważne:

Uwaga 1.2. Niech (G, ) będzie grupą, H 1, H 2 < G. Następujące warunki są równoważne: 1. Wykład 1: Produkty grup. Produkty i koprodukty grup abelowych. Przypomnijmy konstrukcje słabych iloczynów (sum) prostych i iloczynów (sum) prostych grup znane z kursowego wykładu algebry. Ze względu

Bardziej szczegółowo

Topologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski

Topologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski Topologia - Zadanie do opracowania Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski 5 grudnia 2013 Zadanie 1. (Topologie na płaszczyźnie) Na płaszczyźnie R 2 rozważmy następujące topologie: a) Euklidesową

Bardziej szczegółowo

spis treści 1 Zbiory i zdania... 5

spis treści 1 Zbiory i zdania... 5 wstęp 1 i wiadomości wstępne 5 1 Zbiory i zdania............................ 5 Pojęcia pierwotne i podstawowe zasady 5. Zbiory i zdania 6. Operacje logiczne 7. Definicje i twierdzenia 9. Algebra zbiorów

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5

cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5 Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych

Bardziej szczegółowo

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same 1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,

Bardziej szczegółowo

O centralizatorach skończonych podgrup

O centralizatorach skończonych podgrup O centralizatorach skończonych podgrup GL(n, Z) Rafał Lutowski Instytut Matematyki Uniwersytetu Gdańskiego III Północne Spotkania Geometryczne Olsztyn, 22-23 czerwca 2009 1 Wprowadzenie Grupy podstawowe

Bardziej szczegółowo

Kombinacje liniowe wektorów.

Kombinacje liniowe wektorów. Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =

Bardziej szczegółowo

Algebra liniowa. 1. Macierze.

Algebra liniowa. 1. Macierze. Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy

Bardziej szczegółowo

1 Określenie pierścienia

1 Określenie pierścienia 1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące

Bardziej szczegółowo

Ćwiczenia 1 - Pojęcie grupy i rzędu elementu

Ćwiczenia 1 - Pojęcie grupy i rzędu elementu Algebra 1 Ćwiczenia 1 - Pojęcie grupy i rzędu elementu Definicje i podstawowe własności Definicja 1. Niech X będzie niepustym zbiorem. Działaniem w zbiorze X nazywamy dowolne odwzorowanie (funkcję) działające

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 9: Grupy skończone Gniewomir Sarbicki Grupy cykliczne Definicja: Jeżeli każdy element grupy G jest postaci a n dla pewnego a G, to mówimy, że grupa G jest grupą cykliczną o

Bardziej szczegółowo

1 Zbiory i działania na zbiorach.

1 Zbiory i działania na zbiorach. Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu

Bardziej szczegółowo

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami: 9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym

Bardziej szczegółowo

Topologia Algebraiczna - Pomocnik studenta. 7. Klasyfikacja homotopijna odwzorowań

Topologia Algebraiczna - Pomocnik studenta. 7. Klasyfikacja homotopijna odwzorowań Topologia Algebraiczna - Pomocnik studenta. 7. Klasyfikacja homotopijna odwzorowań Agnieszka Bojanowska Stefan Jackowski 31 stycznia 2011 1 Odwzorowania w sfery Wykażemy, że klasa homotopii odwzorowania

Bardziej szczegółowo

Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy

Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 217/218

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny)

1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny) Rozdział 1 Pierścienie i ideały Definicja 1.1 Pierścieniem nazywamy trójkę (R, +, ), w której R jest zbiorem niepustym, działania + : R R R i : R R R są dwuargumentowe i spełniają następujące warunki dla

Bardziej szczegółowo

Informatyka Stosowana. a b c d a a b c d b b d a c c c a d b d d c b a

Informatyka Stosowana. a b c d a a b c d b b d a c c c a d b d d c b a Działania na zbiorach i ich własności Informatyka Stosowana 1. W dowolnym zbiorze X określamy działanie : a b = b. Pokazać, że jest to działanie łączne. 2. W zbiorze Z określamy działanie : a b = a 2 +

Bardziej szczegółowo

Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań

Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Przekształcenia liniowe, diagonalizacja macierzy 1. Podano współrzędne wektora v w bazie B. Znaleźć współrzędne tego wektora w bazie B, gdy: a) v = (1,

Bardziej szczegółowo

Krzywa uniwersalna Sierpińskiego

Krzywa uniwersalna Sierpińskiego Krzywa uniwersalna Sierpińskiego Małgorzata Blaszke Karol Grzyb Streszczenie W niniejszej pracy omówimy krzywą uniwersalną Sierpińskiego, zwaną również dywanem Sierpińskiego. Pokażemy klasyczną metodę

Bardziej szczegółowo

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych

Bardziej szczegółowo

Wykład 9. Matematyka 3, semestr zimowy 2011/ listopada 2011

Wykład 9. Matematyka 3, semestr zimowy 2011/ listopada 2011 Wykład 9. Matematyka 3, semestr zimowy 2011/2012 4 listopada 2011 W trakcie poprzedniego wykładu zdefiniowaliśmy pojęcie k-kowektora na przestrzeni wektorowej. Wprowadziliśmy także iloczyn zewnętrzny wielokowektorów

Bardziej szczegółowo

Matematyka dyskretna. 1. Relacje

Matematyka dyskretna. 1. Relacje Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli

Bardziej szczegółowo

1 Grupy. 1.1 Grupy. 1.2 Podgrupy. 1.3 Dzielniki normalne. 1.4 Homomorfizmy

1 Grupy. 1.1 Grupy. 1.2 Podgrupy. 1.3 Dzielniki normalne. 1.4 Homomorfizmy 1 Grupy 1.1 Grupy 1.1.1. Niech G będzie taką grupa, że (ab) 2 = a 2 b 2 dla dowolnych a, b G. Udowodnić, że grupa G jest abelowa. 1.1.2. Niech G będzie taką grupa, że (ab) 1 = a 1 b 1 dla dowolnych a,

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Struktury algebraiczne

Zadania z algebry liniowej - sem. I Struktury algebraiczne Zadania z algebry liniowej - sem. I Struktury algebraiczne Definicja 1. Działaniem dwuargumentowym w niepustym zbiorze A nazywamy każdą funkcję : A A A, tzn. taką funkcję, że zachodzi a,b A (a, b) ((a,

Bardziej szczegółowo

Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM.

Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM. DEF. DZIAŁANIE DWUARGUMENTOWE Działaniem dwuargumentowym w niepsutym zbiorze nazywamy każde odwzorowanie iloczynu kartezjańskiego :. Inaczej mówiąc, w zbiorze jest określone działanie dwuargumentowe, jeśli:

Bardziej szczegółowo

1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.

1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór. 20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,

Bardziej szczegółowo

Spektrum pierścienia i topologia Zariskiego

Spektrum pierścienia i topologia Zariskiego Uniwersytet Warmińsko Mazurski w Olsztynie Wydział Matematyki i Informatyki Kierunek: Matematyka Anna Michałek Spektrum pierścienia i topologia Zariskiego Praca magisterska wykonana w zakładzie Algebry

Bardziej szczegółowo

Równania Pitagorasa i Fermata

Równania Pitagorasa i Fermata Równania Pitagorasa i Fermata Oliwia Jarzęcka, Kajetan Grzybacz, Paweł Jarosz 7 lutego 18 1 Wstęp Punktem wyjścia dla naszych rozważań jest klasyczne równanie Pitagorasa związane z trójkątem prostokątnym

Bardziej szczegółowo

Podstawowe pojęcia. Co w matematyce możemy nazwać. węzłem, a co. splotem?

Podstawowe pojęcia. Co w matematyce możemy nazwać. węzłem, a co. splotem? Magdalena Czarna Podstawowe pojęcia Co w matematyce możemy nazwać węzłem, a co splotem? Podstawowe pojęcia Węzeł to krzywa zamknięta (splątany okrąg) w przestrzeni 3-wymiarowej. W związku z tym węzłem

Bardziej szczegółowo

Lokalna odwracalność odwzorowań, odwzorowania uwikłane

Lokalna odwracalność odwzorowań, odwzorowania uwikłane Lokalna odwracalność odwzorowań, odwzorowania uwikłane Katedra Matematyki i Ekonomii Matematycznej Szkoła Główna Handlowa 17 maja 2012 Definicja Mówimy, że odwzorowanie F : X R n, gdzie X R n, jest lokalnie

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j = 11 Algebra macierzy Definicja 11.1 Dla danego ciała F i dla danych m, n N funkcję A : {1,..., m} {1,..., n} F nazywamy macierzą m n (macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem

Bardziej szczegółowo

1 Przestrzeń liniowa. α 1 x α k x k = 0

1 Przestrzeń liniowa. α 1 x α k x k = 0 Z43: Algebra liniowa Zagadnienie: przekształcenie liniowe, macierze, wyznaczniki Zadanie: przekształcenie liniowe, jądro i obraz, interpretacja geometryczna. Przestrzeń liniowa Już w starożytności człowiek

Bardziej szczegółowo

Funkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)

Funkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018) Funkcje analityczne Wykład 4. Odwzorowania wiernokątne Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) 1. Przekształcenia płaszczyzny Płaszczyzna jako przestrzeń liniowa, odwzorowania liniowe

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod

Bardziej szczegółowo

Funkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) dla każdego s = (s.

Funkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) dla każdego s = (s. Funkcje analityczne Wykład 4. Odwzorowania wiernokątne Paweł Mleczko Funkcje analityczne (rok akademicki 2016/2017) 1 Przekształcenia płaszczyzny Płaszczyzna jako przestrzeń liniowa, odwzorowania liniowe

Bardziej szczegółowo

Elementy grafiki komputerowej. Elementy geometrii afinicznej

Elementy grafiki komputerowej. Elementy geometrii afinicznej Elementy grafiki komputerowej. Elementy geometrii j Aleksander Denisiuk Uniwersytet Warmińsko-Mazurski Olsztyn, ul. Słoneczna 54 denisjuk@matman.uwm.edu.pl 1 / 28 Elementy geometrii j Najnowsza wersja

Bardziej szczegółowo

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,

Bardziej szczegółowo

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi

Bardziej szczegółowo

Geometria Różniczkowa I

Geometria Różniczkowa I Geometria Różniczkowa I wykład ósmy Orientacja przestrzeni wektorowej. Mówimy, że dwie bazy e i f w skończenie-wymiarowej przestrzeniwektorowejv mająjednakowąorientacjęjeślimacierzprzejścia[id] f e madodatni

Bardziej szczegółowo

Zestaw 2. Definicje i oznaczenia. inne grupy V 4 grupa czwórkowa Kleina D n grupa dihedralna S n grupa symetryczna A n grupa alternująca.

Zestaw 2. Definicje i oznaczenia. inne grupy V 4 grupa czwórkowa Kleina D n grupa dihedralna S n grupa symetryczna A n grupa alternująca. Zestaw 2 Definicja grupy Definicje i oznaczenia grupa zbiór z działaniem łącznym, posiadającym element neutralny, w którym każdy element posiada element odwrotny grupa abelowa (przemienna) grupa, w której

Bardziej szczegółowo

Zadania z Algebry Studia Doktoranckie Instytutu Matematyki Uniwersytetu Śląskiego 1

Zadania z Algebry Studia Doktoranckie Instytutu Matematyki Uniwersytetu Śląskiego 1 Zadania z Algebry Studia Doktoranckie Instytutu Matematyki Uniwersytetu Śląskiego 1 1. (a) Udowodnić, że jeśli grupa ilorazowa G/Z(G) jest cykliczna, to grupa G jest abelowa (Z(G) oznacza centrum grupy

Bardziej szczegółowo

O ROZMAITOŚCIACH TORYCZNYCH

O ROZMAITOŚCIACH TORYCZNYCH O ROZMAITOŚCIACH TORYCZNYCH NA PODSTAWIE REFERATU NGUYEN QUANG LOCA Przez cały referat K oznaczać będzie ustalone ciało algebraicznie domknięte. 1. Przez cały referat N oznaczać będzie ustaloną kratę izomorficzną

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),

Bardziej szczegółowo

Weronika Siwek, Metryki i topologie 1. (ρ(x, y) = 0 x = y) (ρ(x, y) = ρ(y, x))

Weronika Siwek, Metryki i topologie 1. (ρ(x, y) = 0 x = y) (ρ(x, y) = ρ(y, x)) Weronika Siwek, Metryki i topologie 1 Definicja 1. Załóżmy, że X, ρ: X X [0, ). Funkcja ρ spełnia następujące warunki: 1. x,y X (ρ(x, y) = 0 x = y) 2. 3. (ρ(x, y) = ρ(y, x)) x,y X (ρ(x, y) ρ(x, z) + ρ(z,

Bardziej szczegółowo

Analiza II.2*, lato komentarze do ćwiczeń

Analiza II.2*, lato komentarze do ćwiczeń Analiza.2*, lato 2018 - komentarze do ćwiczeń Marcin Kotowski 5 czerwca 2019 1 11 2019, zadanie 2 z serii domowej 1 Pokażemy, że jeśli f nie jest stała, to całka: f(x f(y B B x y dx dy jest nieskończona.

Bardziej szczegółowo

Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G.

Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G. Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G. Przykłady działań wewnętrznych 1. Dodawanie i mnożenie są działaniami wewnętrznymi

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ MACIERZE ODWZOROWAŃ LINIOWYCH

ALGEBRA Z GEOMETRIĄ MACIERZE ODWZOROWAŃ LINIOWYCH ALGEBRA Z GEOMETRIĄ 1/10 MACIERZE ODWZOROWAŃ LINIOWYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 12, 08.01.2014 Typeset by Jakub Szczepanik. Motywacje 2/10 W celu wykonania obliczeń numerycznych w zagadnieniach

Bardziej szczegółowo

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające

Bardziej szczegółowo

Ciała skończone. 1. Ciała: podstawy

Ciała skończone. 1. Ciała: podstawy Ciała skończone 1. Ciała: podstawy Definicja 1. Każdy zbiór liczb, w którym są wykonalne wszystkie cztery działania z wyjątkiem dzielenia przez 0 i który zawiera więcej niż jedną liczbę, nazywamy ciałem

Bardziej szczegółowo

Topologia kombinatoryczna zadania kwalifikacyjne

Topologia kombinatoryczna zadania kwalifikacyjne Topologia kombinatoryczna zadania kwalifikacyjne Piotr Suwara 9 czerwca 2013 Nie ma wyznaczonego progu na kwalifikację na zajęcia. Gorąco zachęcam do wysyłania rozwiązań dużo przed terminem wtedy będzie

Bardziej szczegółowo

Zapisujemy:. Dla jednoczesnego podania funkcji (sposobu przyporządkowania) oraz zbiorów i piszemy:.

Zapisujemy:. Dla jednoczesnego podania funkcji (sposobu przyporządkowania) oraz zbiorów i piszemy:. Funkcja Funkcją (stosuje się też nazwę odwzorowanie) określoną na zbiorze o wartościach w zbiorze nazywamy przyporządkowanie każdemu elementowi dokładnie jednego elementu. nazywamy argumentem, zaś wartością

Bardziej szczegółowo

Wybrane zagadnienia teorii continuów

Wybrane zagadnienia teorii continuów Wybrane zagadnienia teorii continuów Mirosława Reńska, Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW Prezentacja wykładu Warszawa, maj 2011, (prezentacja dostępna na stronie http://www.mimuw.edu.pl/

Bardziej szczegółowo

Zadania z Algebry liniowej 4 Semestr letni 2009

Zadania z Algebry liniowej 4 Semestr letni 2009 Zadania z Algebry liniowej 4 Semestr letni 2009 Ostatnie zmiany 23.05.2009 r. 1. Niech F będzie podciałem ciała K i niech n N. Pokazać, że niepusty liniowo niezależny podzbiór S przestrzeni F n jest także

Bardziej szczegółowo

Spis treści. Przedmowa do wydania piątego

Spis treści. Przedmowa do wydania piątego Zadania z matematyki wyższej. Cz. 1, [Logika, równania liniowe, wektory, proste i płaszczyzny, ciągi, szeregi, rachunek różniczkowy, funkcje uwikłane, krzywe i powierzchnie] / Roman Leitner, Wojciech Matuszewski,

Bardziej szczegółowo

Zadania o transferze

Zadania o transferze Maria Donten, 5.12.2007 Zadania o transferze 1. Oznaczenia, założenia i przypomnienia Przez M i M będziemy oznaczać rozmaitości gładkie, przy czym M nakrywa M. Przyjmujemy, że gładkie odwzorowanie p :

Bardziej szczegółowo

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3

Bardziej szczegółowo

Minimalne zbiory generatorów grup klas odwzorowań. Michał Stukow

Minimalne zbiory generatorów grup klas odwzorowań. Michał Stukow Wydział Matematyki, Fizyki i Informatyki Uniwersytetu Gdańskiego Minimalne zbiory generatorów grup klas odwzorowań Michał Stukow Rozprawa doktorska napisana w Zakładzie Algebry Instytutu Matematyki pod

Bardziej szczegółowo

Algebra konspekt wykladu 2009/10 1. du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle

Algebra konspekt wykladu 2009/10 1. du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle Algebra konspekt wykladu 2009/10 1 3 Podgrupy Niech S g mówimy, że podzbiór S jest zamknie ty ze wzgle du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni

Bardziej szczegółowo

13 Układy równań liniowych

13 Układy równań liniowych 13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...

Bardziej szczegółowo

V Problem Hilberta Tadeusz Pytlik

V Problem Hilberta Tadeusz Pytlik V Problem Hilberta Tadeusz Pytlik Pod numerem V na liście 23 problemów podanych w 1900 roku na Międzynarodowym Kongresie Matematycznym i opublikowanej w Göttingen Nachrichten tego samego roku Hilbert umieścił

Bardziej szczegółowo

Zasada indukcji matematycznej

Zasada indukcji matematycznej Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

Zbiory, relacje i funkcje

Zbiory, relacje i funkcje Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację

Bardziej szczegółowo

Wprowadzenie do zgrubnej geometrii

Wprowadzenie do zgrubnej geometrii Wprowadzenie do zgrubnej geometrii Michał Skrzypczak 20 lutego 2008 Spis treści 1 Wstęp 2 2 Przestrzenie metryczne 2 3 Abstrakcyjne przestrzenie zgrubne 3 4 Grupy 5 5 Wymiar asymptotyczny 6 6 Dodatki 7

Bardziej szczegółowo

Liczba obrotu i twierdzenie Poincare go o klasyfikacji homeomorfizmów okręgu.

Liczba obrotu i twierdzenie Poincare go o klasyfikacji homeomorfizmów okręgu. II Interdyscyplinarne Warsztaty Matematyczne p. 1/1 Liczba obrotu i twierdzenie Poincare go o klasyfikacji homeomorfizmów okręgu. Justyna Signerska jussig@wp.pl Wydział Fizyki Technicznej i Matematyki

Bardziej szczegółowo

Twierdzenie geometryzacyjne

Twierdzenie geometryzacyjne Jest to tekst związany z odczytem wygłoszonym na XLV Szkole Matematyki Poglądowej, Co mi się podoba, Jachranka, sierpień 2010. Twierdzenie geometryzacyjne Zdzisław POGODA, Kraków Pod koniec lat siedemdziesiątych

Bardziej szczegółowo

Schemat sprawdzianu. 25 maja 2010

Schemat sprawdzianu. 25 maja 2010 Schemat sprawdzianu 25 maja 2010 5 definicji i twierdzeń z listy 12(po 10 punktów) np. 1. Proszę sformułować twierdzenie Brouwera o punkcie stałym. 2. Niech X będzie przestrzenią topologiczną. Proszę określić,

Bardziej szczegółowo

Treść wykładu. Pierścienie wielomianów. Dzielenie wielomianów i algorytm Euklidesa Pierścienie ilorazowe wielomianów

Treść wykładu. Pierścienie wielomianów. Dzielenie wielomianów i algorytm Euklidesa Pierścienie ilorazowe wielomianów Treść wykładu Pierścienie wielomianów. Definicja Niech P będzie pierścieniem. Wielomianem jednej zmiennej o współczynnikach z P nazywamy każdy ciąg f = (f 0, f 1, f 2,...), gdzie wyrazy ciągu f są prawie

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ OD RÓWNAŃ DO ODWZOROWAŃ LINIOWYCH

ALGEBRA Z GEOMETRIĄ OD RÓWNAŃ DO ODWZOROWAŃ LINIOWYCH ALGEBRA Z GEOMETRIĄ 1/10 OD RÓWNAŃ DO ODWZOROWAŃ LINIOWYCH Piotr M Hajac Uniwersytet Warszawski Wykład 8, 27112013 Typeset by Jakub Szczepanik Motywacja 2/10 Przechodzimy od rozwiązywania jednego równania

Bardziej szczegółowo

Informacja o przestrzeniach Sobolewa

Informacja o przestrzeniach Sobolewa Wykład 11 Informacja o przestrzeniach Sobolewa 11.1 Definicja przestrzeni Sobolewa Niech R n będzie zbiorem mierzalnym. Rozważmy przestrzeń Hilberta X = L 2 () z iloczynem skalarnym zdefiniowanym równością

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo