Prawa ruchu: dynamika

Podobne dokumenty
Prawa ruchu: dynamika

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 4 27.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Prawa ruchu: dynamika

Prawa ruchu: dynamika

Prawa ruchu: dynamika

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Fizyka 4. Janusz Andrzejewski

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności

Zasady dynamiki przypomnienie wiadomości z klasy I

Dynamika: układy nieinercjalne

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

DYNAMIKA dr Mikolaj Szopa

Fizyka 1- Mechanika. Wykład 3 19.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

DYNAMIKA SIŁA I JEJ CECHY

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.

Zasada zachowania energii

Oddziaływania te mogą być różne i dlatego można podzieli je np. na:

Kinematyka: opis ruchu

Zasada zachowania pędu

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Prawa ruchu: dynamika

Prawa ruchu: dynamika

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Fizyka 1(mechanika) AF14. Wykład 3

2.3. Pierwsza zasada dynamiki Newtona

Wykład FIZYKA I. 3. Dynamika punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

MECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych

Kinematyka: opis ruchu

MECHANIKA 2 Wykład 3 Podstawy i zasady dynamiki

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Zasady dynamiki Isaak Newton (1686 r.)

SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY

Mechanika klasyczna opiera się na trzech podstawowych prawach noszących nazwę zasad dynamiki Newtona. Przykładowe sformułowania tych zasad:

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

I zasada dynamiki Newtona

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Fizyka 1(mechanika) AF14. Wykład 3

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

Wykład 10. Ruch w układach nieinercjalnych

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II

Podstawy fizyki sezon 1 II. DYNAMIKA

Oddziaływania Grawitacja

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Wykład 2 Mechanika Newtona

Mechanika teoretyczna

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

Doświadczalne badanie drugiej zasady dynamiki Newtona

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Elementy dynamiki mechanizmów

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

I ZASADA DYNAMIKI. m a

Mechanika teoretyczna

Wykład FIZYKA I. 5. Energia, praca, moc. Dr hab. inż. Władysław Artur Woźniak

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu

D Y N A M I K A Na początek kilka powodów dla których warto uczyć się dynamiki:

Elementy rachunku różniczkowego i całkowego

MECHANIKA 2. Teoria uderzenia

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

Podstawy fizyki sezon 1 II. DYNAMIKA

Zasady dynamiki Newtona

05 DYNAMIKA 1. F>0. a=const i a>0 ruch jednostajnie przyspieszony prostoliniowy 2. F<0. a=const i a<0 ruch jednostajnie opóźniony prostoliniowy 3.

Zderzenia. Fizyka I (B+C) Wykład XVI: Układ środka masy Oddziaływanie dwóch ciał Zderzenia Doświadczenie Rutherforda

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego)

MiBM sem. III Zakres materiału wykładu z fizyki

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

Przykładowe zdania testowe I semestr,

Fizyka. Program Wykładu. Program Wykładu c.d. Literatura. Rok akademicki 2013/2014

Elementy dynamiki mechanizmów

Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia. Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu:

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m.

CZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie II ( marzec/kwiecień, 2013)

STAN NAPRĘŻENIA. dr hab. inż. Tadeusz Chyży

Wektory, układ współrzędnych

IV.3 Ruch swobodny i nieswobodny. Więzy. Reakcje więzów

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

SZCZEGÓŁOWE CELE EDUKACYJNE

Przykłady: zderzenia ciał

Fizyka. Program Wykładu. Program Wykładu c.d. Kontakt z prowadzącym zajęcia. Rok akademicki 2013/2014. Wydział Zarządzania i Ekonomii

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa

Plan wynikowy z wymaganiami edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla I klasy liceum ogólnokształcącego i technikum

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki.

Zakład Dydaktyki Fizyki UMK

Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2

ZASADY DYNAMIKI NEWTONA

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA

Treści dopełniające Uczeń potrafi:

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Tadeusz Lesiak. Podstawy mechaniki Newtona Kinematyka punktu materialnego

Drgania. O. Harmoniczny

Transkrypt:

Prawa ruchu: dynamika Spis treści 1 Bezwładność 2 I zasada dynamiki 2.1 Zasada bezwładności 2.2 Układ odniesienia 2.3 Ciało izolowane 2.4 Układ inercjalny 3 II zasada dynamiki 3.1 II prawo Newtona 3.2 Ruch pod wpływem stałej siły 3.3 Masa bezwładna 3.4 Ruch harmoniczny 3.5 Siła 3.6 Zasada niezależności działania sił 3.7 Zasada addytywności masy 3.8 Uogólnienie 4 III zasada dynamiki 4.1 Zasada akcji i reakcji 4.2 Siła wyporu 4.3 Statyka 4.4 Ruch 5 Równania ruchu 5.1 Postać ogólna 5.2 Warunki początkowe 5.3 Przykład 5.4 Więzy 5.5 Wahadło Bezwładność Bezwładność (inercja) właściwość układu fizycznego (ciała) charakteryzująca jego podatność na zmiany stanu (ruchu) (Encyklopedia PWN 1998) Bezwładność przejawia się na dwa sposoby:

dążenie układu do zachowania stanu, w którym się znajduje dążenie ciał do pozostawania w spoczynku lub w ruchu "opór" stawiany przez układ, gdy próbujemy zmienić jego stan np. gdy próbujemy wprawić w ruch lub zatrzymać ciało I zasada dynamiki Zasada bezwładności Isaac Newton I zasada dynamiki, inaczej zwana Zasadą bezwładności została sformułowana przez Isaaca Newtona w dziele: "Zasady matematyczne filozofii naturalnej" (1687) ( Philosophiae Naturalis Principia Mathematica) "Każde ciało trwa w swym stanie spoczynku lub ruchu prostoliniowego i jednostajnego, jeśli siły przyłożone nie zmuszają ciała do zmiany tego stanu." Zasada bezwładności w ujęciu Newtona ma dwie "wady": przyjmuje, że można zdefiniować bezwzględny spoczynek i ruch zakłada, że na ciało mogą nie działać żadne siły

Układ odniesienia Newton zakładał istnienie "przestrzeń absolutna", która "pozostaje zawsza taka sama i nieruchoma" "absolutnego" układu odniesienia Dziś wiemy, że taki układ nie istnieje. Powstaje więc pytanie: względem jakiego układu spełniona jest I zasada dynamiki? Jeśli dwa układy poruszają się względem siebie z przyspieszeniem, I zasada dynamiki nie może być spełniona w obu z nich... Ciało izolowane Aby na ciało nie działały żadne siły musi być całkowicie odizolowane od wpływu innych ciał. Ale w realnym świecie bardzo trudno o taką "doskonałą" izolację. Wszystkie znane nam siły makroskopowe maleją z odległością ciało uznamy za izolowane jeśli będzie dostatecznie daleko od innych ciał. Jednak aby zweryfikować zasadę bezwładności musimy mieć dwa ciała izolowane: ciało obserwowane i układ odniesienia (obserwatora). Z jednej strony ciała te muszą być od siebie dostatecznie daleko, żeby wyeliminować wszelki wpływ, a z drugiej strony dostatecznie blisko, żeby możliwa była obserwacja. Zauważmy też, że każda obserwacja jest związana z jakimś oddziaływaniem! W rzeczywistym doświadczeniu nigdy nie spełnimy idealnych warunków izolacji ciała. Ale możemy stworzyć warunki, w których oczekiwane odstępstwa będą bardzo bardzo małe... Układ inercjalny Układ w którym obowiązuje I zasada dynamiki nazywamy układem inercjalnym. Jeśli istnieje jeden układ inercjalny to istnieje nieskończenie wiele układów inercjalnych! Inercjalny będzie także każdy inny układ poruszający się względem niego z prędkością

Zasada bezwładności jest równoważna z postulatem: Istnieje układ inercjalny Jaki układ możemy uznać za inercjalny? Wszystko zależy od rozważanego zagadnienia i dokładności pomiaru. Na ogół wystarcza układ laboratoryjny, czyli układ zwiazany z Ziemią. Niemniej, w przypadku precyzyjnych pomiarów możemy zaobserwować efekty związane z ruchem obrotowym Ziemi. Powodują one, że układ związany z powierzchnią Ziemi nie jest ściśle inercjalny. W takiej sytuacji, a także w przypadku rozpatrywania ruch Księżyca lub satelitów Ziemi, lepszym wyborem jest układ odniesienia związany ze środkiem Ziemi. Ale i on nie jest ściśle inercjalny, bo Ziemia porusza się z przyspieszeniem dookoła Słońca. Także układ związany ze Słońcem nie jest ściśle inercjalny na skutek rotacji Galaktyki... Układ odniesienia Inercjalność ograniczona przez Przyspieszenie Powierzchnia Ziemi Rotację Ziemi Środek Ziemi Obieg wokół Słońca Słońce Rotację Galaktyki II zasada dynamiki II prawo Newtona "Zmiana ruchu jest proporcjonalna do przyłożonej siły poruszającej i odbywa się w kierunku prostej, wzdłuż której siła jest przyłożona" Zmiana ruchu ciała (w układzie inercjalnym) jest zawsze wynikiem oddziaływania otoczenia (innych ciał)! Oddziaływanie to opisujemy ilościowo wprowadzając pojęcie siły Siła jest wielkością wektorową (istotna jest nie tylko wartość, ale i kierunek zmiany ruchu).

Siły możemy porównywać ilościowo bez konieczności wprawiania ciał w ruch. Naogół wykorzystujemy przy tym I zasadę dynamiki (równowaga sił). Przykładem jest porównywanie ciężaru poprzez ważenie ciał, pomiar siły dynamometrem... Ruch pod wpływem stałej siły Rozważmy ciało P, na które działają kolejno różne siły nadając mu różne przyspieszenia Dla uproszczenia wybierzmy układ odniesienia tak, że się poruszać ruchem prostoliniowym, jednostajnie przyspieszonym. W takiej sytuacji ciało będzie Zgodnie z II zasadą Newtona przyspieszenie jest proporcjonalne do działającej siły Czas na pokonanie zadanej odległości L: Prędkość uzyskana przez ciało na końcu odcinka L: Porównując uzyskane przez ciało prędkości możemy porównywać przyspieszenia, a stąd wnioskować o wartości siły. Możemy wybrać jakąś siłę, jako jednostkową i w ten sposób ilościowo określić wartości pozostałych sił.

Doświadczenie potwierdza (pokaz na wykładzie), że prędkość uzyskiwana przez ciało rośnie jak pierwiastek przyłożonej siły (cztery razy większa siła nadaje dwa razy większą prędkość). Masa bezwładna Rozważmy sytuację, w której ustalona siła przyspieszenia. diałając na różne ciała P nadaje im różne Możemy wprowadzić współczynniki m, które określają stosunki przyspieszeń różnych ciał Lub też: Doświadczenie potwierdza (pokaz na wykładzie), że stosunki przyspieszeń zależą od badanych ciał ale nie zależą od przyłożonej siły. Możemy wybrać jakieś ciało i uznać je za "jednostkowe". Tak wybrane współczynkiki nazywamy masą bezwładną ciała. m - masa bezwładna Ruch harmoniczny Pokaz Wózek na torze powietrznym przyczepiony do sprężyny Siła z jaką działa sprężyna zależy wyłącznie od położenia wózka

Przyjmijmy, że położeniem równowagi jest Jeśli w chwili początkowej ciało znajduje się w położeniu i, wtedy jego ruch (run harmoniczny) opisany jest zależnością: Mierząc okres drgań możemy więc wnioskować o przyspieszeniu ciała: Zgodnie z drugą zasada dynamiki oczekujemy, że: Wyniki pomiarów (pokaz na wykładzie; masa wózka zwiększana poprzez doczepianie odważników) potwierdzają, że kwadrat okresu drgań rośnie liniowo z masą. Siła Jednostką masy bezwładnej jest kilogram, 1 kg Druga zasada dynamiki Newtona definiuje pojęcie siły (klasyczna definicja siły): Jednostka siły: 1 niuton Druga zasada dynamiki jest: wnioskiem z doświadczeń definicją nowych wielkości: masy i siły Zasada niezależności działania sił Jeśli na ciało o masie działają dwie niezależne siły i :

przyspieszenie wywołane przez siłę wypadkową jest równe sumie przyspieszeń Zasada addytywności masy Jeśli dwie siły działając na dwie masy wywołują równe przyspieszenie: siła wypadkowa w działani na całkowitą masę daje takie samo przyspieszenie Masa jest wielkością addytywną: wypadkowa masa układu ciał równa jest sumie mas. Uogólnienie Druga zasada dynamiki Newtona w postaci "klasycznej" ważna jest tylko dla ciał których masa jest stała Możemy jednak uogólnić: gdzie - pęd cząstki Uogólniona zasada dynamiki: jest słuszna także dla ciał o zmieniającej się masie (np. rakieta) oraz w przypadku relatywistycznym (choć zmieni się definicja pędu ciała!).

Z powyższej zależności wynika, że zmiana pędu ciała pod wpływem działającej siły równa jest tzw. popędowi siły: III zasada dynamiki Zasada akcji i reakcji Akcja i reakcja "Każdemu działaniu towarzyszy równe i przeciwnie skierowane przeciwdziałanie. Wzajemne oddziaływania dwóch ciał są zawsze równe sobie i skierowane przeciwnie." Pokaz Dwa wózki na torze połączone sprężyną Siły akcji i reakcji są równe co do wartości.

Przyspieszenia są odwrotnie proporcjonalne do mas: Siły akcji i reakcji są przejawem oddziaływanie między dwoma ciałami pary sił działające na różne ciała (!). Przykład Kula leżąca na stole stojącym na ziemi Pary sił akcji-reakcji: ale także nacisk kuli na stół - siła reakcji stołu nacisk stołu na podłogę - siła reakcji podłogi ciężar kuli - siła przyciągania Ziemi przez kulę ciężar stołu - siła przyciągania Ziemi przez stół Poruszamy się także dzięki siłom reakcji...

Idąc, jadąc na rowerze czy wiosłując działamy siłą na ziemię (wodę) starając się ją odepchnąć. To siła reakcji powoduje nasz ruch! Siła wyporu Pokaz Ciało zanurzone w cieczy traci na wadze... Ciecz działa na ciało siłą wyporu

Ale ciecz w której ciało zanurzamy "przybiera" na wadze... ciało działa na ciecz... III zasada dynamiki mówi nam, że łączny ciężar cieczy i ciała musi pozostać niezmieniony... Statyka Ciało spoczywa, jeśli działające na niego siły równoważą się (I zasada dynamiki). W przypadku ciała na równi, siła ciężkości równoważona jest przez siłę reakcji równi i napięcie sznurka: Pomijamy tu siły tarcia, zakładamy też, że sznurek jest równoległy do równi.

Ciało spoczywa, jeśli działające na niego siły równoważą się. Równowaga w pionie: Równowaga w poziomie: Otrzymujemy: Dla : Nie jest możliwe naciągnięcie liny tak, by była dokładnie poziomo

Ruch Jeśli ciało porusza się ruchem przyspieszonym to oznacza, że działające na niego siły NIE równoważą się! W przypadku ciała na równi: Równowaga sił zachowana jedynie na kierunku prostopadłym do równi! Równania ruchu Podstawowym zagadnieniem dynamiki jest rozwiązywanie równań ruchu, czyli określanie ruchu ciała ze znajomości działających na nie sił. Postać ogólna Siła działająca na ciało może zależeć od położenia i prędkości ciała oraz czasu Podstawiając tą zależność do II zasady dynamiki otrzymujemy ogólną postać równania ruchu:

Jest to w istocie układ trzech równań różniczkowych drugiego rzędu Ogólne rozwiązanie ma sześć stałych całkowania: Warunki początkowe Aby ściśle określić ruch ciała musimy poza rozwiązaniem równań ruchu wyznaczyć wartości wolnych parametrów (w ogólnym przypadku sześciu) Najczęściej dokonujemy tego określając warunki początkowe: gdzie - wybrana "chwila początkowa" W mechanice klasycznej obowiązuje "zasada przyczynowości": jeśli znamy równania ruchu oraz dokładnie poznamy warunki początkowe możemy jednoznacznie określić stan układu w przeszłości i w przyszłości. Zachowanie obiektów mikroświata (np. cząstek elementarnych) nie jest jednak deterministyczne. Granice stosowalności mechaniki klasycznej określa wartość stałej Plancka Przykład W ogólnym przypadku siła sprężysta może być przedstawiona w postaci:

Jest to więc siła centralna - działająca zawsze w kierunku środka układu (zawsze możemy tak wybrać), stara się przywrócić ciało do położenia równowagi. Równanie ruchu sprowadza się do postaci: oscylator harmoniczny. Ogólne rozwiązanie równania ruchu: Wartości i możemy wyznaczyć z warunków początkowych: Ruch jest płaski, odbywa się w płaszczyźnie wyznaczonej przez i. Torem ruchu w ogólnym przypadku jest elipsa. W szczególnym przypadku torem ruchu może być: Więzy odcinek, jeśli (albo albo ) okrąg, jeśli i Do tej pory rozważaliśmy ruch ciała, które może się przemieszczać bez ograniczeń w całej trójwymiarowej przestrzeni - trzy stopnie swobody: =3. W każdej chwili stan ciała opisuje sześć parametrów (dwa wektory: i ) Powierzchnia więzów

Powierzchnia więzów W wielu przypadkach ruch ciała jest jednak ograniczony cząstka nieswobodna Ruch ciała może być na przykład ograniczony do zadanej powierzchni (np. powierzchnia stoku w przypadku narciarza, czy powierzchnia jeziora w przypadku łódki). Ogólny warunek opisujący powierzchnie: Dodatkowy warunek powoduje, że zamiast trzech mamy dwa stopnie swobody =2 rozwiązanie równań ruchu ma cztery parametry początkowe Krzywa więzów

Krzywa więzów Czasami ruch ciała jest ograniczony do zadanej krzywej w przestrzeni (np. wagon na torach, winda). Krzywą w przestrzeni możemy zawsze opisać porzez dwa warunki: W zagadnieniu pozostaje więc jeden stopień swobody =1, a rozwiązanie równań ruchu ma dwa parametry początkowe. Do równania ruchu musimy wprowadzić dodatkową siłę reakcji więzów gdzie: - siły zewnętrzne, - reakcja więzów Przy braku oporów ruchu (więzy idealne) siła reakcji więzów jest zawsze prostopadła do powierzchni

lub krzywej więzów! Więzy mogą być stacjonarne ( skleronomiczne), niezależne od czasu: lub zależne od czasu ( reonomiczne): Przykład krzywej więzów: wahadło jednowymiarowe o długości l Równania więzów: - płaszczyzna - sfera Wahadło

Wahadło matematyczne Warunki narzucone przez więzy najłatwiej uwzględnić opisując położenie kulki przez kąt : O sile reakcji wiemy jedynie tyle, że działa wzdłuż nitki. Wynika z tego, że przyspieszenie styczne nie zależy od : W przybliżeniu małych kątów ( ) otrzymujemy więc: Jest to równanie oscylatora harmonicznego częstość wahań:, okres Rozwiązanie równania oscylatora harmonicznego: Znając zależność wychylenia od czasu możemy wyznaczyć współrzędne: Z kolei siłę reakcji możemy wyznaczyć z równania ruchu w :

Otrzymujemy: W przybliżeniu małych kątów: i Podstawiając zależność wychylenia od czasu otrzymujemy ostatecznie: Uzyskana zależność przedstawiona jest poniżej dla kilku wybranych wartości wychylenia początkowego. Jak widać, naprężenie jest największe dla, w chwili przechodzenia wahadła przez położenie równowagi.