Notatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski

Podobne dokumenty
Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

1 Działania na zbiorach

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik

020 Liczby rzeczywiste

1. Funkcje monotoniczne, wahanie funkcji.

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Zbiory, funkcje i ich własności. XX LO (wrzesień 2016) Matematyka elementarna Temat #1 1 / 16

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny:

Analiza matematyczna. 1. Ciągi

Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów.

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.

W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń

1 Logika Zbiory Pewnik wyboru Funkcje Moce zbiorów Relacje... 14

Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój.

Równoliczność zbiorów

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11

Wykład z Analizy Matematycznej 1 i 2

Uniwersytet Jagielloński Wydział Matematyki i Informatyki Instytut Matematyki. Wykłady z Analizy Matematycznej I, II, III, IV.

G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.

jest ciągiem elementów z przestrzeni B(R, R)

Matematyka ZLic - 2. Granica ciągu, granica funkcji. Ciągłość funkcji, własności funkcji ciągłych.

Matematyka dyskretna. 1. Relacje

Teoria miary. WPPT/Matematyka, rok II. Wykład 5

Czym jest ciąg? a 1, a 2, lub. (a n ), n = 1,2,

Podstawowe struktury algebraiczne

Zbiory, relacje i funkcje

ANALIZA MATEMATYCZNA 2005/06, semestr 1. Tadeusz Rzeżuchowski

7. Miara, zbiory mierzalne oraz funkcje mierzalne.

LOGIKA I TEORIA ZBIORÓW

Wykład 8. Informatyka Stosowana. 26 listopada 2018 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 31

Elementy teorii mnogości. Część II. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.

E-learning - matematyka - poziom rozszerzony. Funkcja wykładnicza. Materiały merytoryczne do kursu

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

III. Funkcje rzeczywiste

RELACJE I ODWZOROWANIA

Funkcje rzeczywiste jednej. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.

Dlaczego nie wystarczają liczby wymierne

Elementy logiki matematycznej

IMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.

domykanie relacji, relacja równoważności, rozkłady zbiorów

Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013

7. CIĄGI. WYKŁAD 5. Przykłady :

Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014)

Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik

O funkcjach : mówimy również, że są określone na zbiorze o wartościach w zbiorze.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :

Funkcje. Oznaczenia i pojęcia wstępne. Elementy Logiki i Teorii Mnogości 2015/2016

Liczby zespolone. x + 2 = 0.

FUNKCJE. (odwzorowania) Funkcje 1

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych

Zasada indukcji matematycznej

Wstęp do Matematyki (4)

WŁASNOŚCI FUNKCJI MONOTONICZNYCH

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.

Ciągi liczbowe wykład 3

1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1.

Grupy, pierścienie i ciała

TEST A. A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty

a 1, a 2, a 3,..., a n,...

1 Określenie pierścienia

Wykład 7. Informatyka Stosowana. 21 listopada Informatyka Stosowana Wykład 7 21 listopada / 27

- Dla danego zbioru S zbiór wszystkich jego podzbiorów oznaczany symbolem 2 S.

A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty

Teoria miary. Matematyka, rok II. Wykład 1

zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy

Ciągłość funkcji jednej zmiennej rzeczywistej. Autorzy: Anna Barbaszewska-Wiśniowska

Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011).

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Definicja odwzorowania ciągłego i niektóre przykłady

Teoria miary i całki

1. Wykład NWD, NWW i algorytm Euklidesa.

Egzamin z logiki i teorii mnogości, rozwiązania zadań

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Ciągłość funkcji f : R R

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Łatwy dowód poniższej własności pozostawiamy czytelnikowi.

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Algebra liniowa z geometrią. wykład I

FUNKCJE. 1. Podstawowe definicje

Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Wstęp do Matematyki (1)

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

Zadania do Rozdziału X

Transkrypt:

Notatki z Analizy Matematycznej 1 Jacek M. Jędrzejewski

Wstęp W naszym konspekcie będziemy stosowali następujące oznaczenia: N zbiór liczb naturalnych dodatnich, N 0 zbiór liczb naturalnych (z zerem), Z zbiór liczb całkowitych, Q zbiór liczb wymiernych, R zbiór liczb rzeczywistych, 2 X rodzina wszystkich podzbiorów zbioru X, Y X zbiór wszystkich funkcji określonych w zbiorze X o wartościach w zbiorze Y.

ROZDZIAŁ 1 Wiadomości wstępne 1. Elementy teorii mnogości W teorii mnogości (teorii zbiorów) pojęcia zbiór, element zbioru i relacja należenia do zbioru są pojęciami pierwotnymi. W naszych rozważaniach przyjmujemy intuicyjne rozumienie tych pojęć. Czasami możemy wymienić wszystkie elementy danego zbioru, częściej nie jest to możliwe. Zbiór złożony z elementów a 1, a 2,..., a n będziemy oznaczali {a 1, a 2,..., a n }. Fakt, że element a należy do zbioru A, oznaczamy symbolem a A. Aby zaznaczyć, że element x nie jest elementem zbioru A, stosujemy oznaczenie: x A. Zatem x A ( x A). Pojęcie inkluzji dwóch zbiorów określamy następująco: zbiór A jest podzbiorem zbioru B (A jest zawarty w B, B zawiera zbiór A, lub jeszcze inaczej B jest nadzbiorem zbioru A), gdy każdy element zbioru A jest też elementem zbioru B. Oznaczamy wówczas A B. Mamy więc A B x [(x A) = (x B)]. O zbiorach A i B mówimy, że są równe, gdy każdy element zbioru A jest elementem zbioru B i odwrotnie; tak więc (A = B) [(A B) (B A)]. Wygodny jest w wielu zastosowaniach pewien specjalny zbiór, mianowicie zbiór pusty (oznaczany symbolem ), tj. taki zbiór, który nie ma żadnego elementu. Zbiór pusty jest więc podzbiorem każdego zbioru. Istotnie, dla dowolnego zbioru A mamy x = x A. Najczęściej zbiory zapisujemy w postaci {x : ϕ(x)}, gdzie ϕ jest pewną funkcją zdaniową; symbol ten oznacza zbiór tych wszystkich elementów x, dla których spełniona jest funkcja zdaniowa ϕ.

6 Jacek M. Jędrzejewski Określimy teraz pewne działania na zbiorach: sumę zbiorów, przekrój, różnicę zbiorów i dopełnienie zbioru następująco: A B = {x : (x A) (x B)}, A B = {x : (x A) (x B)}, A \ B = {x : (x A) (x B)}. Jeśli X jest uniwersalnym zbiorem, czyli zbiorem, w którym są zawarte wszystkie rozważane zbiory, zwanym często przestrzenią zbiorów, to dopełnieniem zbioru A do zbioru X nazywamy zbiór X \ A. Jeśli ustalimy uniwersalny zbiór X, to dopełnienie zbioru A (oczywiście do zbioru X) oznaczamy symbolem A. Zacytujemy teraz kilkanaście podstawowych praw rachunku zbiorów. (1) A B = B A, (2) A B = B A, (3) (A B) C = A (B C), (4) (A B) C = A (B C), (5) (A B) C = (A C) (B C), (6) (A B) C = (A C) (B C), (7) (A A) = A, (8) (A A) = A, (9) (A ) = A, (10) (A ) =, (11) (A B = A) A B, (12) (A B = B) A B, (13) (A B) = A B, (14) (A B) = A B. Od tej chwili postaramy się odstąpić od intuicyjnego pojmowania dalszych pojęć. Będziemy jednak opierali się na tzw. naiwnej teorii zbiorów. Bardzo ważnym pojęciem matematycznym jest pojęcie pary uporządkowanej. Intuicyjnie jest to pojęcie dość znane i proste. Niestety, precyzyjne określenie pary uporządkowanej nie jest łatwe. Parą uporządkowaną (a, b) nazywamy zbiór {{a, b, } {a}}. Zauważamy, że (a, b) = (b, a) a = b.

Notatki z analizy 7 Trudniej udowodnić, że (a, b) = (c, d) (a = c) (b = d). Pojęcie pary uporządkowanej w istotny sposób jest wykorzystywany w definicji iloczynu kartezjańskiego zbiorów A i B. Iloczyn ten oznaczany symbolem A B, określamy następująco: A B = {(a, b) : a A b B}. Zbiór R R możemy interpretować jako płaszczyznę kartezjańską (czyli płaszczyznę z układem współrzędnych). Zauważamy bez trudu, że A B B A; oczywiście poza przypadkiem, gdy A = B. Poznamy teraz jedno z najważniejszych pojęć matematyki. Pojęciem tym jest relacja. Relacją między elementami zbioru A i elementami zbioru B nazywamy każdy podzbiór iloczynu kartezjańskiego zbiorów A i B. W szczególności może to być relacja pusta, jak i relacja pełna tj. A B. Kilka typów innych relacji poznamy już za chwilę. W ciągu dalszym zamiast pisać (x, y) R, gdzie R jest pewną relacją, będziemy pisali xry i mówili: element x jest w relacji R z elementem y. Niech X będzie dowolnym zbiorem. Relację R w zbiorze X (tzn. taką relację R, iż R X X,) nazywamy relacją częściowego porządku w zbiorze X, jeśli spełnia ona następujące warunki: (1) x (xrx), (2) x X y X ((xry yrx) = (x = y)), (3) x X y X z X ((xry yrz) = (xrz)). Relację częściowego porządku najczęściej będziemy oznaczali symbolem lub. Relację R częściowego porządku nazywamy relacją liniowego porządku, jeśli spełnia dodatkowy warunek 4. x X y X(xRy yrx). Zbiór X wraz z częściowym porządkiem nazywamy zbiorem częściowo uporządkowanym. Zbiór X wraz z liniowym porządkiem nazywamy zbiorem liniowo uporządkowanym. Przykładem relacji częściowego porządku jest relacja zawierania się zbiorów w rodzinie (tj. zbiorze) podzbiorów pewnego ustalonego zbioru X. Relacją liniowego porządku jest na przykład zwykła relacja niewiększości w zbiorze liczb rzeczywistych. Jeśli a b, to mówimy, że element a jest niewiększy od elementu b lub, że element b jest niemniejszy od elementu a. Jeśli a b i a b, to mówimy, że element a jest mniejszy od elementu b lub, że element b jest większy od elementu a.

8 Jacek M. Jędrzejewski Element a w zbiorze częściowo uporządkowanym X nazywamy elementem najmniejszym, jeśli każdy element x należący do zbioru X jest niemniejszy od elementu a. Podobnie definiuje się element największy w zbiorze częściowo uporządkowanym. Oczywiście, nie w każdym zbiorze z częściowym porządkiem istnieją elementy najmniejszy i największy. Jeśli jednak istnieje element największy, to jest tylko jeden. Podobnie, jeśli istnieje element najmniejszy, to jest jedynym takim elementem. Niech (X, ) będzie zbiorem częściowo uporządkowanym i A niepustym podzbiorem zbioru X. Element c X nazywamy ograniczeniem dolnym zbioru A, jeśli dla każdego elementu a A spełniona jest nierówność c a. Element c X nazywamy ograniczeniem górnym niepustego zbioru A, jeśli dla każdego elementu a A spełniona jest nierówność a c. Najmniejszy element spośród wszystkich ograniczeń górnych niepustego zbioru A, o ile taki istnieje, nazywamy kresem górnym zbioru A. Symbolicznie: c = sup A, jeśli (1) a A(a c), (2) d X ( a A (a d = c d)), Podobnie definiujemy kres dolny zbioru. Mamy więc: d = inf A, jeśli (1) a A(d a), (2) d X ( a A (b a = b d)), Kres górny zbioru A nazywamy też często supremum zbioru A. Kres dolny zbioru A nazywamy też często infimum zbioru A. Jeśli kres górny zbioru A należy do zbioru A, to jest on jednocześnie elementem największym w zbiorze A. Jeśli kres dolny zbioru A należy do zbioru A, to jest on też elementem najmniejszym w zbiorze A. Relacją dobrego porządku w zbiorze X nazywamy każdą relację liniowego porządku o tej własności, że każdy niepusty podzbiór zbioru X ma element najmniejszy. Jednym z najważniejszych pojęć matematyki jest relacja równoważności. Relację R X X nazywamy relacją równoważności w zbiorze X, jeśli spełnia ona następujące warunki: (1) x X(xRx), (2) x X y X ((xry) = (yrx)), (3) x X y X z X ((xry yrz) = xrz).

Notatki z analizy 9 2. Funkcje Definicja 1.1. Funkcją określoną na zbiorze X o wartościach w zbiorze Y nazywamy każdą relację f X Y, która spełnia następujące warunki: (1) x X y Y ((x, y) f), (2) x X y 1 Y y 2 Y (((x, y 1 ) f (x, y 2 ) f) = y 1 = y 2 ). Funkcję tę oznaczamy symbolem f : X Y, zbiór X nazywamy dziedziną funkcji f (polem lub zbiorem argumentów), zbiór Y nazywamy przeciwdziedziną funkcji f. Z warunku 2 powyższej definicji wynika, że dla danego elementu x zbioru X istnieje dokładnie jeden element y w zbiorze Y taki, że (x, y) f. Ten jedyny element y, który odpowiada danemu elementowi x nazywamy wartością funkcji f w punkcie x i oznaczamy jako f(x). Element x nazywamy argumentem funkcji f. Piszemy wówczas zamiast (x, y) f. y = f(x), Nie zawsze dla każdego elementu y ze zbioru Y istnieje element x X taki, że y = f(x). Jeśli spełniony jest warunek y Y x X (y = f(x)), to mówimy, że funkcja f odwzorowuje zbiór X na zbiór Y i ten ostatni zbiór jest zbiorem wartości funkcji f. Czasem taką funkcję nazywamy też surjekcją. Niech f : X Y będzie dowolną funkcją. Dla zbiorów A X i B Y określamy zbiory f(a) = {y Y : x A(y = f(x))}, f 1 (B) = {x X : f(x) B}. Zbiór f(a) nazywamy obrazem zbioru A wyznaczonym przez funkcję f. Zbiór f 1 (B) nazywamy przeciwobrazem zbioru B wyznaczonym przez funkcję f. Zbiór f(x) nazywamy zbiorem wartości funkcji f : X Y. Oczywiście funkcja f : X Y odwzorowuje X na zbiór Y, wtedy i tylko wtedy, gdy f(x) = Y. Funkcję f : X Y nazywamy różnowartościową lub injekcją, jeśli lub, co na jedno wychodzi x 1 X x 2 X (x 1 x 2 = f(x 1 ) f(x 2 )), x 1 X x 2 X (f(x 1 ) = f(x 2 ) = x 1 = x 2 ). Funkcję f : X Y nazywamy wzajemnie jednoznaczną lub bijekcją, jeśli jest funkcją różnowartościową i odwzorowuje zbiór X na zbiór Y, czyli jest surjekcją i injekcją.

10 Jacek M. Jędrzejewski Niech teraz dane będą dwie funkcje f : X Y, g : Y Z. Zauważamy, że wzór (g f)(x) = g(f(x)) określa pewną funkcję określoną na zbiorze X o wartościach w zbiorze Z. Nazywamy ją superpozycją lub złożeniem funkcji g i f, przy czym funkcję f nazywamy funkcją wewnętrzną, funkcję g funkcją zewnętrzną. Zauważmy, że dla funkcji f : X Y, g : Y Z, h : Z U, możliwe są złożenia h (g f), (h g) f. Jeżeli obliczymy wartości tych funkcji w dowolnym punkcie zbioru X, to okaże się, że są one równe. Zatem można powiedzieć, że składanie funkcji jest działaniem łącznym. Niech R będzie dowolną relacją w iloczynie X Y. Relację R 1 Y X określoną następująco: (y, x) R 1 (x, y) R nazywamy relacją odwrotną do relacji R. Oczywiście dla każdej relacji istnieje relacja do niej odwrotna. Niech teraz f : X Y będzie dowolną funkcją. Istnieje relacja odwrotna f 1 do relacji f; jeśli jest ona funkcją, to nazywamy ją funkcją odwrotną do funkcji f i oznaczamy, zgodnie z przyjętym wyżej sposobem, symbolem f 1. Zauważmy, że funkcja f : X Y ma funkcję odwrotną wtedy i tylko wtedy, gdy f jest funkcją wzajemnie jednoznaczną. Jeśli f : X Y jest dowolną funkcją, zbiór A jest podzbiorem zbioru X, to f A = {(x, y) X Y : (x, y) f x A} jest funkcją określoną na zbiorze A. Funkcję tę nazywamy obcięciem funkcji f do zbioru A, lub funkcją f obciętą do zbioru A. Symbolem id X oznaczamy funkcję tożsamościową tzn. funkcję określoną wzorem id X (x) = x dla x X.

Notatki z analizy 11 Poniżej przedstawimy niektóre własności funkcji, z których w dalszym ciągu będziemy korzystali. Własność 1.1. Dla funkcji f : X Y i podzbiorów A 1 i A 2 zbioru X spełnione są zależności: f (A 1 A 2 ) = f (A 1 ) f (A 2 ), f (A 1 A 2 ) f (A 1 ) f (A 2 ), f (A 1 ) \ f (A 2 ) f (A 1 \ A 2 ), A 1 A 2 = f (A 1 ) f (A 2 ). Własność 1.2. Dla funkcji f : X Y i podzbiorów B 1 i B 2 zbioru Y spełnione są zależności: f 1 (B 1 B 2 ) = f 1 (B 1 ) f 1 (B 2 ), f 1 (B 1 B 2 ) = f 1 (B 1 ) f 1 (B 2 ), f 1 (B 1 \ B 2 ) = f 1 (B 1 ) \ f 1 (B 2 ), B 1 B 2 = f 1 (B 1 ) f 1 (B 2 ). Własność 1.3. Dla dowolnej funkcji f : X Y i rodziny zbiorów {A t : t T }, gdzie A t X dla t T, spełniona jest równość ( ) f A t = f (A t ). t T t T Własność 1.4. Dla dowolnej funkcji f : X Y i rodziny zbiorów {B t : t T }, gdzie B t Y dla t T, spełniona jest równość ( ) f 1 B t = f 1 (B t ). t T t T Własność 1.5. Dla funkcji f : X Y oraz zbioru A X spełniony jest warunek A f 1 (f (A)). Zauważmy, że inkluzji w powyższym wzorze nie można zastąpić równością. Jeśli jednak założymy dodatkowo, że funkcja f jest różnowartościowa, to f 1 (f (A)) = A. Własność 1.6. Dla funkcji f : X Y oraz zbioru B Y spełniony jest warunek f ( f 1 (B) ) = B f(x). Łatwo podać przykład ilustrujący, że w powyższej równości po prawej stronie nie można opuścić przekroju ze zbiorem f(x). Jeśli jednak funkcja f przekształca zbiór X na zbiór Y, to f ( f 1 (B) ) = B.

12 Jacek M. Jędrzejewski Własność 1.7. Niech dane będą funkcje f : X Y i g : Y Z; oznaczmy jeszcze h = g f. Jeśli A X i B Y, to h(a) = g (f (A)) oraz h 1 (B) = f 1 ( g 1 (B) ). Własność 1.8. Złożenie dwu injekcji (funkcji różnowartościowych) jest injekcją (funkcją różnowartościową). Własność 1.9. Złożenie dwóch surjekcji jest surjekcją. Własność 1.10. Złożenie dwu bijekcji (funkcji wzajemnie jednoznacznych) jest bijekcją (funkcją wzajemnie jednoznaczną). Własność 1.11. Dla dowolnej bijekcji f : X Y f f 1 = id Y i f 1 f = id X. 3. Zasada abstrakcji Zajmiemy się teraz jedną z najważniejszych relacji w całej matematyce. Jest nią relacja równoważności. Definicja była podana wcześniej, nie podajemy jej więc powtórnie. W całym rozdziale rozważamy relację równoważności R w zbiorze X. Dla elementu a X zbiór {x X : xra} oznaczamy symbolem [a] i nazywamy klasą abstrakcji elementu a. Twierdzenie 1.1. Dwie klasy abstrakcji są równe lub rozłączne. Twierdzenie 1.2. Dla dowolnej relacji równoważności R w zbiorze X spełniona jest równość: [x] = X. x X Dowód. Zawieranie [x] X. jest oczywiste, bo wszystkie klasy abstrakcji są podzbiorami zbioru X. x X Niech teraz x będzie dowolnym elementem zbioru X. Wówczas, oczywiście, x [x], co dowodzi zawierania odwrotnego. Tak więc każda relacja równoważności dzieli zbiór X na rozłączne klasy abstrakcji. Elementy w danej klasie nie są rozróżnialne pod względem tej relacji. Otrzymujemy w ten sposób zbiór

Notatki z analizy 13 (rodzinę) klas abstrakcji; elementy w tym zbiorze (same są zbiorami) są rozłączne, więc są to elementy różne. Następne twierdzenie uzupełnia powyższe rozważenia. Twierdzenie 1.3. Niech teraz X będzie dowolnym zbiorem niepustym, {A t } t T pewną rodziną pozbiorów zbioru X taką, że A t = X. t T A t1 A t2 = gdy t 1 t 2. Wówczas istnieje relacja równoważności R w zbiorze X taka, że każda klasa abstrakcji jest jednym ze zbiorów A t i odwrotnie każdy zbiór A t jest pewną klasą abstrakcji. 4. Moc zbioru. Zbiory przeliczalne Definicja 1.2. Zbiory A i B nazywamy równolicznymi, jeśli istnieje funkcja wzajemnie jednoznaczna przekształcająca zbiór A na B. Z definicji wynika, że dla zbiorów równolicznych A i B istnieje też funkcja wzajemnie jednoznaczna przekształcająca zbiór B na A. Ponieważ funkcja tożsamościowa na jakimkolwiek zbiorze A jest wzajemnie jednoznaczna, więc każdy zbiór jest równoliczny z nim samym. Załóżmy teraz, że zbiory A i B są równoliczne oraz, że zbiory B i C też są równoliczne. Istnieją więc funkcje wzajemnie jednoznaczne f : A B, h : B C, zatem funkcja h f : A C jest funkcją wzajemnie jednoznaczną ze zbioru A do zbioru C. Oznacza to, że zbiory A i C są równoliczne. Udowodniliśmy w ten sposób następujące twierdzenie: Twierdzenie 1.4. Równoliczność zbiorów jest relacją równoważności w rodzinie podzbiorów pewnego zbioru. Uwaga 1. Równoliczność wszystkich zbiorów nie jest relacją w sensie podanym przez nas, bowiem nie istnieje zbiór wszystkich zbiorów. Uwaga 2. W rodzinie podzbiorów pewnego ustalonego zbioru X równoliczność jest relacją i to relacją równoważności. Dzieli ona tę rodzinę na klasy abstrakcji, nazywamy je mocami odpowiednich zbiorów. Oznaczamy moc zbioru A symbolem card(a) lub A. Definicja 1.3. Zbiór A nazywamy przeliczalnym, jeśli jest równoliczny ze zbiorem liczb naturalnych. Zbiór A nazywamy co najwyżej przeliczalnym, jeśli jest skończony lub przeliczalny.

14 Jacek M. Jędrzejewski Najczęściej jednak będziemy używali terminu przeliczalny zamiast co najwyżej przeliczalny. Twierdzenie 1.5. Zbiór A jest co najwyżej przeliczalny wtedy i tylko wtedy, gdy wszystkie jego elementy można ustawić w ciąg. Twierdzenie 1.6. Podzbiór zbioru co najwyżej przeliczalnego jest zbiorem co najwyżej przeliczalnym. Twierdzenie 1.7. Iloczyn kartezjański dwóch zbiorów co najwyżej przeliczalnych jest zbiorem co najwyżej przeliczalnym. Stosując indukcję matematyczną można dowieść, że iloczyn kartezjański dowolnej skończonej liczby zbiorów co najwyżej przeliczalnych jest zbiorem co najwyżej przeliczalnym. Podobnie jak poprzednie twierdzenie można udowodnić: Twierdzenie 1.8. Suma przeliczalnej ilości zbiorów co najwyżej przeliczalnych jest zbiorem co najwyżej przeliczalnym. Wnioskami z tego twierdzenia są: Wniosek 1.1. Zbiór liczb całkowitych jest zbiorem przeliczalnym. Wniosek 1.2. Zbiór liczb wymiernych jest zbiorem przeliczalnym. Nie wszystkie zbiory są przeliczalne. Istnieją zbiory takie, że nie można ustawić w ciąg wszystkich ich elementów. Zbiory takie nazywamy nieprzeliczalnymi. Twierdzenie 1.9. Zbiór R liczb rzeczywistych nie jest zbiorem przeliczalnym. Definicja 1.4. Mówimy, że zbiór A jest mocy nie większej niż moc zbioru B, co oznaczamy card(a) card(b), jeśli istnieje podzbiór D zbioru B, który jest równoliczny ze zbiorem A. Twierdzenie 1.10. (Cantora-Bernsteina) Jeśli card(a) card(b) i card(b) card(a), to card(a) = card(b). Opowiadając o mocach zbiorów (liczbach kardynalnych) nie można nie wspomnieć o hipotezie continuum. Udowodniliśmy, że zbiór liczb rzeczywistych jest nieprzeliczalny. Umówiono się, że moc tego zbioru oznacza się gotycką literą c i nazywa continuum. Oczywiście nie jest to jednoznaczne z tym, że pomiędzy mocą zbioru liczb naturalnych a mocą zbioru liczb rzeczywistych nie ma innych liczb kardynalnych. Hipoteza continuum mówi, że nie ma zbiorów o mocach większych niż moc zbioru liczb naturalnych i mniejszych niż moc zbioru liczb rzeczywistych. Przez długie lata nie było wiadomo, czy tak jest, jednak w latach 60-tych XX. wieku udowodniono, że istnieją modele teorii mnogości, w których hipoteza continuum jest jednym z aksjomatów, jak również istnieją modele, w których jej zaprzeczenie jest aksjomatem.

Notatki z analizy 15 5. Liczby rzeczywiste Podamy teraz zestaw aksjomatów opisujący (z dokładnością do izomorfizmu) zbiór liczb rzeczywistych. Niech R będzie zbiorem zawierającym co najmniej dwa elementy i + oraz będą dwoma działaniami w zbiorze R, tzn. funkcjami postaci: + : R R R, : R R R. Jak zwykle, wartość funkcji + dla pary (a, b) R R oznaczać będziemy jako a+b i nazywać sumą elementów a i b oraz czytać a plus b. Podobnie, wartość funkcji dla pary (a, b) R R oznaczać będziemy jako a b lub krócej ab; wynik ten nazywać będziemy iloczynem liczb a i b, a czytać będziemy a razy b. Aksjomaty ciała przemiennego C.1 x + y = y + x, C.2 (x + y) + z = x + (y + z), C.3 0 R x R(x + 0 = x), C.4 x R y R(x + y = 0), C.5 x,y R(x y = y x), C.6 (x y) z = x (y z), C.7 1 R x R(x 1 = x), C.8 x R\{0} y R(x y = 1), C.9 (x + y) z = (xz) + (yz). Działania + i nazywamy dodawaniem i mnożeniem w zbiorze R. Element 0 nazywamy zerem; element 1 nazywamy jedynką lub jednością ciała R. Element y z aksjomatu 4 nazywamy elementem przeciwnym do x oraz oznaczamy x; natomiast element y z aksjomatu 8 nazywamy elementem odwrotnym do x i oznaczamy jako x 1 lub 1. x Strukturę algebraiczną określoną za pomocą tych aksjomatów nazywamy ciałem; stąd częsta nazwa ciało liczb rzeczywistych. W zbiorze R określona jest relacja liniowego porządku mająca następujące własności: Aksjomaty porządku P.1 ((x y) (y x)) = x = y, P.2 (x y) = (x + z y + z), P.3 ((0 x) (0 y)) = 0 xy, P.4 ((x y) (y z)) = x z.

16 Jacek M. Jędrzejewski Często będziemy używali oznaczenia x < y zamiast koniunkcji x y i x y. Przypomnimy teraz kilka pojęć związanych ze zbiorami uporządkowanymi. Przedstawimy je w wersji wygodnej dla zbioru R spełniającego powyżej zapisane aksjomaty. Podzbiór A zbioru R nazywamy ograniczonym z góry, jeśli istnieje liczba c R taka, że a c dla każdej liczby a ze zbioru A. Każdą taką liczbę nazywamy ograniczeniem górnym zbioru A. Podobnie określamy zbiór ograniczony z dołu i ograniczenie dolne. Zbiór liczb rzeczywistych z relacją jest zbiorem liniowo uporządkowanym. Dla zbioru A, zawartego w zbiorze R, kresem górnym nazywamy (o ile istnieje) liczbę d R taką, że a A( a d ), ( )) c R a A( (a c) = (d c). Często można znaleźć inaczej sformułowany warunek dla kresu górnego. Jest on następujący: Liczba d R jest kresem górnym zbioru A, jeśli lub jeszcze inaczej: a A(a d), c<d a A(c < a d), Liczba d R jest kresem górnym zbioru A, jeśli a A(a d), ε>0 a A(d ε < a d), Kres górny zbioru A oznaczamy jako sup A. W ten sam sposób definiuje się kres dolny podzbioru A ciała liczb rzeczywistych, który oznaczamy inf A. Aksjomat kresu górnego P.5 Każdy niepusty ograniczony z góry zbiór A R ma kres górny. Często będziemy mówili, że jeśli zbiór A jest nieograniczony z góry, to sup A =. Podobnie, będziemy mówili, że jeśli zbiór A jest nieograniczony z dołu, to inf A =. Każdy zbiór spełniający warunki opisane w powyższych aksjomatach nazywamy zbiorem liczb rzeczywistych. Dowodzi się, że taki zbiór istnieje i z dokładnością do izomorfizmu jest jedyny.

Notatki z analizy 17 Przedziałem otwartym (a, b) nazywamy zbiór tych wszystkich liczb x, dla których spełniona jest nierówność podwójna: a < x < b. Przedziałem domkniętym [a, b] nazywamy zbiór tych wszystkich liczb x, dla których spełniona jest nierówność podwójna: a x b. Przedziałem otwarto-domkniętym (a, b] nazywamy zbiór tych wszystkich liczb x, które spełniają nierówność podwójna: a < x b. Przedziałem domknięto-otwartym [a, b) nazywamy zbiór tych wszystkich liczb x, które spełniają nierówność podwójna: a x < b. Wielokrotnie będziemy używali terminu otoczenie punktu. Pojęcie to jest bardzo ważnym terminem matematycznym, z którym będziemy spotykali się w topologii bardzo często. Otoczeniem punktu x nazywamy każdy przedział otwarty zawierający ten punkt lub ogólniej każdy zbiór zawierający przedział otwarty postaci (x δ, x + δ) dla pewnej liczby dodatniej δ. Podzbiór E zbioru liczb rzeczywistych nazywamy zbiorem otwartym, jeśli każdy element tego zbioru ma otoczenie zawarte w zbiorze E. Łatwo zauważyć, że przekrój dwóch zbiorów otwartych jest też zbiorem otwartym oraz suma dowolnej ilości zbiorów otwartych jest zbiorem otwartym. Na zakończenie tego rozdziału warto podać definicję i pewne własności wartości bezwzględnej (modułu) liczby rzeczywistej. Dla x R określamy: Dla dowolnych liczb x i y mamy wtedy: x gdy x 0, x = x gdy x < 0. x = x, x y = x y, x + y x + y, x < a a < x < a, gdy a > 0, x > a (x < a a < x), gdy a > 0. x a a x a, gdy a 0, x a (x a a x), gdy a 0.

18 Jacek M. Jędrzejewski Wartość x y nazywamy odległością punktów (liczb) x i y. Odległość ta ma następujące własności: x y 0, x y = 0 x = y, x y = y x, x y x z + z y.

ROZDZIAŁ 2 Ciągi liczbowe 1. Ogólne własności ciągów Ciągiem liczbowym nazywamy każdą funkcję rzeczywistą a, której dziedziną jest zbiór liczb naturalnych dodatnich. Stosujemy zapis (a n ) n=1 na oznaczenie ciągu a, w którym wartość funkcji a w punkcie n jest równa a n. Liczbę tę nazywamy n-tym wyrazem ciągu (a n ) n=1, n nazywamy wskaźnikiem lub indeksem wyrazu a n. Ciąg (a n ) n=1 nazywamy ograniczonym, jeśli zbiór jego wyrazów (obraz zbioru N wyznaczony przez funkcję a) jest ograniczony; oznacza to po prostu, że istnieją liczby c i d takie, że dla wszystkich n N spełniona jest nierówność podwójna: c a n d. Ciąg (a n ) n=1 nazywamy rosnącym, jeśli n N (a n < a n+1 ). Ciąg (a n ) n=1 nazywamy malejącym, jeśli n N (a n > a n+1 ). Ciąg (a n ) n=1 nazywamy niemalejącym, jeśli n N (a n a n+1 ). Ciąg (a n ) n=1 nazywamy nierosnącym, jeśli n N (a n a n+1 ). Ciągi tego typu tj. rosnące, malejące, niemalejące i nierosnące obejmujemy wspólną nazwą ciągów monotonicznych. Niech x = (x n ) n=1 będzie dowolnym ciągiem liczbowym i n = (n k) k=1 dowolnym ciągiem rosnącym złożonym z liczb naturalnych. Wtedy można utworzyć złożenie x n. Otrzymujemy w ten sposób ciąg liczbowy, który nazywamy podciągiem ciągu (x n ) n=1. Ciąg ten oznaczamy symbolem (x nk ) k=1, k-ty wyraz tego podciągu zapisujemy jako x n k.

20 Jacek M. Jędrzejewski Inaczej mówiąc, ciąg (y k ) k=1 jest podciągiem ciągu (x n) n=1, jeśli istnieje rosnący ciąg (n k) k=1 liczb naturalnych taki, że y k = x nk. Lemat 2.1. Jeśli (n k ) k=1 jest rosnącym ciągiem liczb naturalnych, to n k k dla każdego k N. 2. Ogólne własności ciągów zbieżnych Definicja 2.1. Ciąg (a n ) n=1 nazywamy zbieżnym do liczby g, jeśli ε>0 n 0 n n 0 ( a n g < ε). Mówimy wtedy również, że g jest granicą ciągu (a n ) n=1, co oznaczamy symbolicznie a n g, lub lim n a n = g. Definicję tę można wyrazić dość prosto posługując się terminami otoczeń i zwrotu prawie wszystkie. Mówiąc, że prawie wszystkie wyrazy ciągu spełniają jakiś warunek, mamy na uwadze, że poza skończoną liczbą wyrazów danego ciągu wszystkie pozostałe spełniają ten warunek. Otóż, ciąg (a n ) n=1 jest zbieżny do liczby g wtedy i tylko wtedy, gdy dla każdego otoczenia liczby g prawie wszystkie wyrazy tego ciągu leżą w tym otoczeniu. Definicja 2.2. Będziemy mówili, że ciąg (a n ) n=1 ε>0 n 0 n n 0 m n 0 ( a n a m < ε). Własność 2.1. Ciąg zbieżny ma dokładnie jedną granicę. Własność 2.2. Każdy ciąg zbieżny jest ograniczony. Własność 2.3. Każdy ciąg stały jest zbieżny. spełnia warunek Cauchy ego, jeśli Własność 2.4. Podciąg ciągu zbieżnego jest zbieżny do tej samej granicy. Własność 2.5. Ciąg zbieżny spełnia warunek Cauchy ego. 3. Własności rachunkowe ciągów zbieżnych Własność 2.6. Jeśli ciągi (a n ) n=1 i (b n) n=1 i a n a, b n b, to a b. n 0 n n 0 (a n b n ) spełniają warunek:

Notatki z analizy 21 Twierdzenie 2.1. (Twierdzenie o trzech ciągach) Jeśli ciągi (a n ) n=1 i (b n) n=1 do wspólnej granicy g oraz ciąg (c n ) n=1 spełnia warunek n 0 N n n 0 (a n c n b n ), są zbieżne to ciąg (c n ) n=1 jest zbieżny do liczby g. Twierdzenie 2.2. Jeśli ciągi (a n ) n=1 i (b n) n=1 są zbieżne, to ciągi (a n + b n ) n=1, (a n b n ) n=1 i (a n b n ) n=1 też są zbieżne i lim (a n + b n ) = lim n n a n + n lim b n, lim (a n b n ) = lim n n a n n lim b n, lim (a n b n ) = lim n n a n n lim b n. Twierdzenie 2.3. Jeśli ciąg (a n ) n=1 jest zbieżny do liczby różnej od zera i wszystkie wyrazy tego ciągu są różne od zera, to ciąg ( ) 1 a n jest zbieżny i n=1 ( ) 1 1 lim = n an lim n (a n ). Z ostatnich dwóch własności wynika teraz: Wniosek 2.1. Jeśli ciągi (a n ) n=1 i (b n) n=1 są zbieżne, przy czym ciąg (b n) n=1 ma granicę różną od zera i wszystkie wyrazy tego ciągu są różne od zera, to ciąg ( ) a n bn jest zbieżny i n=1 a n lim = lim n a n. n b n lim n b n Definicja 2.3. Liczbę g R nazywamy punktem skupienia ciągu (a n ) n=1, jeśli dla każdej liczby ε > 0 i dla każdej liczby naturalnej n istnieje liczba naturalna k n > n taka, że g ε < a kn < g + ε. Łatwo zauważamy, że liczba g jest punktem skupienia ciągu (a n ) n=1 gdy istnieje podciąg ciągu (a n ) n=1 zbieżny do g. wtedy i tylko wtedy, 4. Dalsze własności ciągów zbieżnych Warto tu podać definicję punktu skupienia zbioru. Między pojęciami punktu skupienia ciągu i punktu skupienia zbioru wyrazów danego ciągu istnieje ważna różnica, o której należy tu wspomnieć. Definicja 2.4. Punkt x R nazywamy punktem skupienia zbioru E R, jeśli istnieje ciąg (x n ) n=1 elementów zbioru E zbieżny do x i taki, że x n x dla każdej liczby n N. Zbiór wszystkich punktów skupienia zbioru E oznaczamy symbolem E d.

22 Jacek M. Jędrzejewski Punkt skupienia ciągu nie musi być punktem skupienia zbioru wartości tego samego ciągu. Rozważając ciąg (x n ) n=1, dla którego x n = ( 1) n, dla n N, stwierdzamy, że zbiorem wyrazów tego ciągu jest { 1, 1}, który nie ma żadnego punktu skupienia, natomiast każda z liczb 1, 1 jest punktem skupienia rozważanego ciągu. Jeśli jednak element x jest punktem skupienia zbioru wyrazów ciągu (x n ) n=1, to jest on też punktem skupienia tego ciągu. Własność 2.7. Ciąg monotoniczny i ograniczony jest zbieżny. Definicja 2.5. Ciąg przedziałów ([a n, b n ]) n=1 n N ([a n+1, b n+1 ] [a n, b n ]), nazywamy zstępującym, jeśli Twierdzenie 2.4. (Ascoli) Jeśli ciąg niepustych przedziałów domkniętych ([a n, b n ]) n=1 jest zstępujący, to istnieje liczba d taka, że d [a n, b n ]. n=1 Twierdzenie 2.5. (Bolzano, Weierstrass) Każdy ciąg ograniczony ma punkt skupienia. Z dowodu twierdzenia Bolzano-Weierstrassa wynika, że istnieją najmniejszy i największy punkt skupienia ciągu ograniczonego. Największy punkt skupienia ciągu (a n ) n=1 nazywamy granicą górną ciągu (a n) n=1 i oznaczamy symbolem lub lim sup a n n lim n a n. Najmniejszy punkt skupienia ciągu (a n ) n=1 nazywamy granicą dolną ciągu (a n) n=1 i oznaczamy symbolem lub lim inf n a n lim n a n. Zauważmy, że jeśli g = lim sup n a n, to dla dowolnej liczby dodatniej ε istnieje liczba naturalna n 0 taka, że a n < g + ε gdy n n 0.

Notatki z analizy 23 Podobnie, jeśli g = lim inf n a n, to dla dowolnej liczby dodatniej ε istnieje liczba naturalna n 0 taka, że g ε < a n gdy n n 0. Lemat 2.2. Każdy ciąg Cauchy ego jest ograniczony. Lemat 2.3. Ciąg spełniający warunek Cauchy ego i posiadający podciąg zbieżny jest zbieżny. Twierdzenie 2.6. (Cauchy) Ciąg liczb rzeczywistych jest zbieżny wtedy i tylko wtedy, gdy spełnia warunek Cauchy ego. 5. Ciągi rozbieżne do nieskończoności Ciągi rozbieżne do plus lub minus nieskończoności stanowią uzupełnienie teorii granic ciągów. Poznamy teraz niezbędne w tym celu definicje. Ciąg (a n ) n=1 nazywamy rozbieżnym do nieskończoności, jeśli Piszemy wtedy ε R n 0 N n n 0 (a n > ε). Ciąg (a n ) n=1 lim a n =. n nazywamy rozbieżnym do minus nieskończoności, jeśli ε R n 0 N n n 0 (a n < ε). Piszemy wtedy lim a n =. n Odnotujmy teraz łatwe do udowodnienia własności ciągów rozbieżnych do nieskończoności (minus nieskończoności) w połączeniu z ciągami zbieżnymi. Twierdzenie 2.7. Jeśli ciągi (a n ) n=1 i (b n) n=1 są rozbieżne do, to ciąg (a n + b n ) n=1 jest też rozbieżny do nieskończoności. Jeśli ciągi (a n ) n=1 i (b n) n=1 są rozbieżne do, to również ciąg (a n + b n ) n=1 jest rozbieżny do minus nieskończoności. Twierdzenie 2.8. Jeśli ciągi (a n ) n=1 i (b n) n=1 są rozbieżne do, to ciąg (a n b n ) n=1 jest też rozbieżny do nieskończoności. Jeśli ciągi (a n ) n=1 i (b n) n=1 są rozbieżne do, to iloczyn tych ciągów (a n b n ) n=1 jest rozbieżny do nieskończoności. Jeśli ciąg (a n ) n=1 jest rozbieżny do i (b n) n=1 jest rozbieżny do, to ciąg (a n b n ) n=1 jest też rozbieżny do minus nieskończoności.

24 Jacek M. Jędrzejewski Twierdzenie 2.9. Jeśli ciąg (a n ) n=1 jest zbieżny oraz ciąg (b n) n=1 jest rozbieżny do, to ciąg (a n + b n ) n=1 jest też rozbieżny do nieskończoności. Jeśli ciąg (a n ) n=1 jest zbieżny oraz (b n) n=1 jest rozbieżny do, to ciąg (a n + b n ) n=1 jest rozbieżny do minus nieskończoności. Twierdzenie 2.10. Jeśli ciąg (a n ) n=1 jest zbieżny do liczby dodatniej oraz ciąg (b n) n=1 jest rozbieżny do, to ciąg (a n b n ) n=1 jest też rozbieżny do nieskończoności. Jeśli ciąg (a n ) n=1 jest zbieżny do liczby dodatniej oraz (b n) n=1 jest rozbieżny do, to ciąg (a n b n ) n=1 jest rozbieżny do minus nieskończoności. Twierdzenie 2.11. Jeśli ciąg (a n ) n=1 jest zbieżny do liczby ujemnej oraz ciąg (b n) n=1 jest rozbieżny do, to ciąg (a n b n ) n=1 jest rozbieżny do minus nieskończoności. Jeśli ciąg (a n ) n=1 jest zbieżny do liczby ujemnej oraz (b n) n=1 jest rozbieżny do, to ciąg (a n b n ) n=1 jest rozbieżny do nieskończoności. Powyższe twierdzenia przedstawimy w postaci wzorów rachunkowych na granicach. lim a n = a lim n n b n = = n lim (a n + b n ) =, lim a n = a lim b n = = lim (a n + b n ) =, n n n lim a n = lim b n = = lim (a n b n ) =, n n n lim a n = lim b n = = lim (a n b n ) =, n n n lim a n = lim b n = = lim (a n b n ) =, n n n lim a n = a a < 0 lim b n = = lim (a n b n ) =, n n n lim a n = a a < 0 lim b n = = lim (a n b n ) =. n n n Dla granic o symbolach 0,, 0 0,, 1, 0 0 nie ma ścisłych reguł. Symbole te nazywamy symbolami nieoznaczonymi i obliczanie granic tych typów jest możliwe, ale należy stosować inne metody. liczb różnych od zera jest rozbieżny do nieskończo- Twierdzenie 2.12. Jeśli ciąg (a n ) n=1 ności, to ciąg 1 a n jest zbieżny do zera. Twierdzenie 2.13. Jeśli ciąg (a n ) n=1 liczb różnych od zera jest rozbieżny do minus nieskończoności, to ciąg 1 a n jest zbieżny do zera. Twierdzenie 2.14. Jeśli (a n ) n=1 jest zbieżny do nieskończoności. Twierdzenie 2.15. Jeśli (a n ) n=1 jest zbieżny do nieskończoności. jest ciągiem liczb dodatnich zbieżnym do zera, to ciąg 1 a n jest zbieżnym do zera ciągiem liczb ujemnych, to ciąg 1 a n

Notatki z analizy 25 Do zbioru liczb rzeczywistych dołączmy teraz dwa symbole i. Zbiór R = R {, } nazywamy rozszerzonym zbiorem liczb rzeczywistych. Przyjmujemy dodatkowo następujące reguły dotyczące porządku i działań na liczbach rzeczywistych uzupełnionych tymi symbolami. + =, ( ) =, + ( ) =, ( ) =, =, ( ) ( ) =, ( ) =, ( ) =, a R (a + = + a = ), a R (a + ( ) = ( ) + a = ), a (0, ) (a = a = ), a (0, ) (a ( ) = ( ) a = ), a (,0) (a = a = ), a (,0) (a ( ) = ( ) a = ). 6. Granice niektórych ciągów Odnotujmy kilka granic ciągów zbieżnych, których granice mają istotne znaczenie w obliczaniu granic wielu innych ciągów. lim n lim n = n 1 lim n n = 0 n a = 1 gdy a > 0 lim n n n = 1 ( 1 + n) 1 n = e lim n