Teoria sprężystości F Z - F Z

Podobne dokumenty
GEOFIZYKA STOSOWANA wykład 2. Podstawy sejsmiki

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski

Wykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak

Defi f nicja n aprę r żeń

5.1. Powstawanie i rozchodzenie się fal mechanicznych.

Podstawy fizyki wykład 7

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski

SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY.

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa)

Fizyka 12. Janusz Andrzejewski

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

6.4. Dyfrakcja fal mechanicznych.

Drania i fale. Przykład drgań. Drgająca linijka, ciało zawieszone na sprężynie, wahadło matematyczne.

11. WŁASNOŚCI SPRĘŻYSTE CIAŁ

Fizyka 11. Janusz Andrzejewski

Prawa optyki geometrycznej

Ćw. 20. Pomiary współczynnika załamania światła z pomiarów kąta załamania oraz kąta granicznego

Materiały Reaktorowe. Właściwości mechaniczne

Fale dźwiękowe. Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski

Fala EM w izotropowym ośrodku absorbującym

Wprowadzenie do WK1 Stan naprężenia

Podstawy fizyki wykład 4

Ψ(x, t) punkt zamocowania liny zmienna t, rozkład zaburzeń w czasie. x (lub t)

Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony

Ruch falowy. Parametry: Długość Częstotliwość Prędkość. Częstotliwość i częstość kołowa MICHAŁ MARZANTOWICZ

LASERY I ICH ZASTOSOWANIE

Podstawy fizyki wykład 8

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ

Fale akustyczne. Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość. ciśnienie atmosferyczne

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

1. PODSTAWY TEORETYCZNE

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)

2. Rodzaje fal. Fale te mogą rozchodzić się tylko w jakimś ośrodku materialnym i podlegają prawom Newtona.

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

Prawo odbicia światła. dr inż. Romuald Kędzierski

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Podstawy fizyki sezon 1 VII. Ruch drgający

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Fale mechaniczne i akustyka

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera

Drgania i fale II rok Fizyk BC

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa

Modele materiałów

Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s.

Falowa natura światła

Fal podłużna. Polaryzacja fali podłużnej

4. Elementy liniowej Teorii Sprężystości

obszary o większej wartości zaburzenia mają ciemny odcień, a

Widmo fal elektromagnetycznych

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

Wykład 17: Optyka falowa cz.1.

2.6.3 Interferencja fal.

Ruch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku.

ψ przedstawia zależność

Integralność konstrukcji w eksploatacji

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

WYDZIAŁ EKOLOGII LABORATORIUM FIZYCZNE

I. PROMIENIOWANIE CIEPLNE

W tym module rozpoczniemy poznawanie właściwości fal powstających w ośrodkach sprężystych (takich jak fale dźwiękowe),

Wyznaczanie modułu sztywności metodą Gaussa

Fale elektromagnetyczne w dielektrykach

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15

Wyboczenie ściskanego pręta

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA

Wstęp teoretyczny. Więcej na: dział laboratoria

Natura światła. W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton

RUCH HARMONICZNY. sin. (r.j.o) sin

Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron)

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis

WSTĘP DO TEORII PLASTYCZNOŚCI

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

STAN NAPRĘŻENIA. dr hab. inż. Tadeusz Chyży

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16

Spis treści. Wstęp Część I STATYKA

STATYCZNA PRÓBA ROZCIĄGANIA

Wykład FIZYKA II. 7. Optyka geometryczna. Dr hab. inż. Władysław Artur Woźniak

Wytrzymałość Materiałów

Podstawy fizyki sezon 1 VIII. Ruch falowy

Wykład I Krzysztof Golec-Biernat Optyka 1 / 16

PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły.

Prawa ruchu: dynamika

6. ZWIĄZKI FIZYCZNE Wstęp

Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste:

WŁASNOŚCI FAL (c.d.)

Zjawisko interferencji fal

Prędkośd rozchodzenia się sprężystych fal podłużnych w ciałach stałych, cieczach i

Optyka. Wykład VII Krzysztof Golec-Biernat. Prawa odbicia i załamania. Uniwersytet Rzeszowski, 22 listopada 2017

Ruch drgający i falowy

PODSTAWY RACHUNKU WEKTOROWEGO

Transkrypt:

Teoria sprężystości Ciało sprężyste bryła, która pod wpływem działających sił zewnętrznych ulega deformacji zmienia swój kształt i/lub objętość i wraca do pierwotnej postaci po ustaniu działania tych sił. F Z - F Z F Z - F Z F Z - F Z

Siły sprężystości Stan równowagi sił sprężystości - F Z F Z Naruszenie stanu równowagi - F Z F S - F S F Z Nowy stan równowagi F S - F S Naruszenie stanu równowagi Stan równowagi sił sprężystości

Naprężenia Naprężenie stosunek działającej siły do pola powierzchni na którą działa. F n Naprężenie normalne S F n S Naprężenie styczne S F s F s S

Przy braku oddziaływań zewnetrznych wewnętrzne siły spójności równoważą się co powoduje nadaniu ciała określonego kształtu i rozmiarów. Ciało znajduje się w równowadze. Zmiana naprężeń zewnętrznych powoduje reakcję sił wewnętrznych i ustalenie się nowego stanu równowagi. Związane jest to ze zmianą wymiarów geometrycznych ciała które nazywamy odkształceniem. Jeżeli odkształcenia znikają całkowicie po ustąpieniu naprężeń to ciało nazywamy idealnie sprężystym, jeśli nie to lepko-sprężystym. Ciało w którym następują odkształcenia trwałe nazywamy plastycznym.

Prawo Hooke a Jeśli wartości naprężeń nie przekraczają pewnych wartości granicznych wówczas odkształcenia są wprost proporcjonalne do działających naprężeń Związek pomiędzy przyłożonym naprężeniem zewnętrznym a deformacją określony jest przez własności sprężyste ośrodka, charakteryzowane modułami sprężystości.

Odkształcenie liniowe: przyłożone naprężenie jednoosiowe normalne boczne powierzchnie deformowanego elementu - swobodne wydłużenie elementu w skrócenie wymiarów w kierunku n kierunkach prostopadłych Wydłużenie dla danego n zależy od wielkości nazywanej modułem sprężystości podłużnej (Younga): l l 1 E E - moduł Younga Dl wydłużenie l długość elementu n Skrócenie boczne jest proporcjonalne do wydłużenia: h l h l - współczynnik Poissona 1 2

przyłożone naprężenie jednoosiowe normalne boczne powierzchnie deformowanego elementu sztywno zamocowane wydłużenie elementu w kierunku n Wydłużenie dla danego n zależy od wielkości nazywanej modułem sprężystości jednoosiowej l l 1 - moduł sprężystości jednoosiowej; Dl wydłużenie l długość elementu n

Odkształcenie objętościowe: przyłożone naprężenia normalne działające jednakowo ze wszystkich kierunków (naprężenia litostatyczne p ) izotropowa zmiana objętości ośrodka Zmiana objętości dla danego p zależy od wielkości nazywanej modułem ściśliwości V V 1 K p K moduł ściśliwości DV zmiana objętości V objętość elementu

Odkształcenie postaciowe: przyłożone naprężenia styczne t działające na parę przeciwległych ścianek elementu odchylenie ścianki wybranego elementu Zmiana kąta dla danego t zależy od wielkości nazywanej modułem sztywności 1 G t G moduł sztywności kąt odchylenia ścianki od jej początkowego położenia

W ciele sprężystym izotropowym i jednorodnym do scharakteryzowania jego sprężystości wystarczą dwa moduły sprężystości. Możemy wybrać dowolne dwa a pozostałe wyrazić jako ich funkcje np.: dla E i : G E 2 1 K E 31 2 E1 1 2 1 dla K i G: 4 K G 3

F n S Wytrzymałość materiałów l l F usztywnienie R S SL Sprężystość nieliniowa płynięcie zniszczenie - F Sprężystość liniowa

i F ni S Wytrzymałość materiałów V V 1 kompresja dylatancja F 1 F 2 R S SL - F 3 F 3 zniszczenie - F 2 - F 1 Sprężystość liniowa

Płynięcie materiałów F kr zniszczenie = const. t

Ciągły ośrodek sprężysty Naprężenie całkowite działające na nieskończenie mały element ośrodka ciągłego o objętości dv i powierzchni ds można opisać jeśli znamy rozkład naprężeń działających na ścianki tego elementu. Rozkład ten nazywamy lokalnym tensorem naprężeń. Znajomość tensora pozwala określić naprężenie w dowolnym kierunku opisanym wektorem jednostkowym n n n

Tensor naprężeń jest symetrycznym tensorem drugiego rzędu i zawiera dziewięć składowych, z których trzy opisują naprężenia działające prostopadle do trzech wzajemnie prostopadłych płaszczyzn rozpiętych pomiędzy osiami układu współrzędnych, a pozostałe sześć trzy pary naprężeń stycznych do tych płaszczyzn. x 3 11 21 31 12 22 32 13 23 33 x 1 x 2 23 21 22 11 33 13 12 32 31 12 21 23 32 31 13

Stan naprężeń i deformacji w ośrodku ciągłym Naprężenia lokalne działające na wybrany element z zewnątrz równoważone przez działające, wewnętrzne siły spójności powodują, że znajduje się on w równowadze. Zmiana naprężeń lokalnych powoduje reakcję sił wewnętrznych i ustalenie się nowego stanu równowagi oraz deformację danego elementu. Zmiana stanu naprężeń działających na dany element ośrodka ciągłego będzie w wyniku działania sił sprężystości przenosić się na sąsiednie elementy zaburzając ich stan równowagi. W ośrodku powstaje układ naprężeń i deformacji lokalnych.

Naprężenia ściskające i rozciągające W geomechanice przyjęto konwencję, że naprężenia ściskające mają znak dodatni a rozciągające ujemny. W materiałoznawstwie przyjęto konwencję, że naprężenia rozciągające mają znak dodatni a ściskające ujemny.

Tensor naprężeń, jak każdy tensor symetryczny drugiego rzędu wyznacza trzy wzajemnie prostopadłe kierunki zwane kierunkami własnymi tensora. Wybierając układ współrzędnych zgodny z tymi kierunkami redukujemy liczbę składowych tensora do trzech. 1 2 3 W układzie współrzędnych zgodnym z kierunkami własnymi tensora do opisu stanu naprężeń wystarczą trzy naprężenia normalne zwane naprężeniami głównym. Osie układu współrzędnych numerujemy tak aby 1 było największym naprężeniem głównym a 3 najmniejszym naprężeniem głównym.

Równoważne układy naprężeń

Naprężenia różnicowe Zgodnie z regułą dodawania tensorów każdy tensor można przedstawić jako sumę dwóch tensorów. W geomechanice najczęstszym sposobem dekompozycji tensora naprężeń jest rozkład na tensor naprężenia okólnego (izotropowego) i tensor naprężeń różnicowych. śr śr śr I śr śr śr r 3 2 1 3 3 2 1 śr

Naprężenia różnicowe 1 2 3 1 1 śr 3 3 śr naprężenie ściskające naprężenie rozciągające 2 2 śr 2 2 śr naprężenie ściskające lub rozciągające

Powstawanie uskoków D 1 D 3 Uskok normalny

Powstawanie uskoków D 3 D 1 Uskok odwrócony

Powstawanie uskoków D 1 D 3 D 3 D 1 Uskok przesuwczy lewoskrętny Uskok przesuwczy prawoskrętny

Fałdowania D 3 D 1

u Drgania sprężyste A Wychylenie maksymalne t = ¼ T => u = A Położenie równowagi t = => u = t = T => u = -A Wychylenie maksymalne t = ¾ T => u = - A Parametry drgań A amplituda drgań T okres drgań

Parametry drgań f 1 T częstotliwość drgań 2 2 T f częstość kątowa drgań 2 t T t faza drgań przesunięcie fazowe

Drgania sprężyste u Asin ( t ) v du dt A cos( t ) a d 2 dt u 2 A 2 sin( t ) 15 1 5 u -5-1 -15 2 4 6 8 1 12 t

Drgania tłumione x Ae t sin ( t ) x 1 8 6 4 2-2 -4-6 -8 2 4 6 8 1 12 t

Fale sprężyste Przyłożenie naprężeń zewnętrznych w danym fragmencie ośrodka powoduje jego odkształcenie, które z kolei powoduje zmianę stanu naprężenia w sąsiedztwie. Zmiana naprężenia w jednym punkcie ośrodka sprężystego powoduje zmianę stanu naprężenia w całym ośrodku. Jeśli naprężenia zewnętrzne będą zmienne w czasie wówczas zmiany naprężeń wewnątrz ośrodka będą przemieszczały się w ośrodku z określoną prędkością v. Rozchodzenie się naprężeń w ośrodku nazywamy falą sprężystą

Gdy fala rozchodzi się ze źródła wzbudzenia cząsteczki ośrodka wykonujące drgania w tej samej fazie tworzą powierzchnię fazową. Promieniem fali nazywamy linię wychodzącą z punktu wzbudzenia w każdym swym punkcie prostopadłą do określonej w tym punkcie powierzchni fazowej. Fala płaska Fala kulista powierzchnia fazowa promień fali

Prawa rządzące ruchem fal w ośrodku sprężystym Zasada Huygensa Każdy punkt ośrodka do którego dotrze fala staje się źródłem fali kulistej. W chwili t front fali tworzy obwiednia wszystkich fal generowanych przez punkty ośrodka. Zasada Fermata Pomiędzy dwoma punktami ośrodka fala rozchodzi się po takiej drodze by czas propagacji był ekstremalny (najkrótszy lub najdłuższy).

Ilustracja zasady Huygensa punkty do których dotarła fala punkty które tworzą nowy front fali Fala kulista Fala płaska

Konsekwencja zasady Fermata: w ośrodku w którym prędkość fali jest stała promień fali jest linią prostą, jeśli prędkość fali zmienia się od punktu do punktu to promień fali jest linią krzywą. V= const V= f(x,y) Y Y X X

Fale sprężyste u 15 1 A 5 U -5 2 4 6 8 1 12-1 -15 x Parametry fali A amplituda drgań długość fali x

Parametry fali f v T v v f k 2 2 Długość fali Liczba falowa T t x A t x k A u 2 sin sin f T 2 2 Częstość kątowa drgań Równanie fali płaskiej

Fale podłużne P Gdy przyłożone naprężenia zewnętrzne będą naprężeniami normalnymi wówczas w ośrodku rozchodzić się będą fale, powodujące deformacje o kierunku zgodnym z kierunkiem rozchodzenia się fali. Ich prędkość zależy od modułu i gęstości ośrodka : 4 K V 3 p G Rozchodząc się powodują one lokalne zwiększenie lub zmniejszenie gęstości ośrodka, nazywamy je zagęszczeniowo-rozrzedzeniowymi lub kompresyjno-dylatacyjnymi.

Fale poprzeczne S Gdy przyłożone naprężenia zewnętrzne będą naprężeniami stycznymi wówczas w ośrodku rozchodzić się będą fale powodujące deformacje o kierunku prostopadłym do kierunku rozchodzenia się fali. Ich prędkość zależy od modułu sztywności G i gęstości ośrodka : V s G Rozchodząc się powodują one lokalne zmiany kształtu fragmentów ośrodka stąd nazywamy je falami odkształceniowymi.

Ośrodek jest nieograniczony - rozchodzi się fala poprzeczna niespolaryzowana (w płaszczyźnie prostopadłej do kierunku rozchodzenia się fali możliwe jest nieskończenie wiele kierunków drgań) Ośrodek jest półprzestrzenią ograniczoną płaszczyzną - rozchodzą się dwie spolaryzowane fale poprzeczne: o drganiach równoległych do płaszczyzny granicznej (SH) o drganiach prostopadłych do płaszczyzny granicznej (SV) Prędkość fali SV jest większa od fali SH SV SH

Fale powierzchniowe W półprzestrzeni rozchodzą się fale charakteryzujące się złożonym ruchem drgającym elementów ośrodka, których amplituda maleje eksponencjalnie z odległością od płaszczyzny granicznej fale powierzchniowe. Fala Reyleigh a (R) cząsteczki ośrodka poruszają się po elipsach prostopadłych do powierzchni granicznej a równoległych do kierunku propagacji fali Prędkość fali R jest o ok. 1% mniejsza od prędkości fali S

Fala Love a (L) Pojawia się przy granicy dwóch ośrodków, różniących się wartościami prędkości fali S. Rozchodzi się w ośrodku o mniejszej prędkości. Jej prędkość jest pośrednia pomiędzy prędkościami fal S w obu ośrodkach. W czasie propagacji fali drgania cząsteczek ośrodka są złożeniem dwóch prostopadłych ruchów drgających - równoległego do powierzchni granicznej, - prostopadłego do powierzchni granicznej. Oba drgania zachodzą w kierunku poprzecznym do kierunku fali.

Prędkości fal sejsmicznych w ośrodkach skalnych Prędkości fal podłużnych są zawsze większe od prędkości fal poprzecznych. Stosunek V P / V S zależy od współczynnika Poissona: V V p s 1 2 1 2 Średnia wartość dla skonsolidowanych skał wynosi ¼ stąd średnio: V V p s 3 Stosunek V P /V S maleje ze stopniem konsolidacji skały, przykładowo: dla gleb i nieskonsolidowanych skał V S =,4 V P dla skał osadowych zdiagenezowanych V S =,5 V P dla skał krystalicznych V S =,6 V P

Prawa odbicia i załamania fali Prawa te ogólnie określa się mianem praw Snelliusa Na granicy dwóch ośrodków różniących się własnościami sprężystymi fala dochodząca do granicy może ulec częściowo odbiciu a częściowo przejść przez granicę i propagować w drugim ośrodku. Jeśli do granicy dotrze fala P lub S, na granicy tej zawsze generowane są oba typy fal tzn. zarówno fale podłużne jak i poprzeczne. Sinus kąta pod jakim fala wychodzi z granicy zależy od sinusa kąta pod jakim fala pada na granicę i stosunku prędkości fali padającej i wychodzącej z granicy - kąt padania - kąt wyjścia sin sin ' V p V p V prędkość fali padającej ' V prędkość fali wychodzącej (kąty mierzone od normalnej do granicy)

Fala padająca na granicę pod kątem a o P S P V 1P, V 1S V 1 < V 2 P V 2P, V 2S S

Fala odbita od granicy 1. fala padająca i fala odbita są tego samego typu (V = V ) sin V P V P sin ' sin V S V S sin ' = tzn. kąt padania równa się kątowi odbicia

Fala odbita od granicy 2. fala padająca i fala odbita są różnego typu (V V ) sin sin V P V S V S < V P < ' sin sin V S VP V P > V S > ' P S S P

Fala załamana na granicy Fala przechodzi przez granicę pomiędzy ośrodkami różniącymi się prędkościami fal sprężystych sin 1 sin V V 1 2 2 V 1 < V 2 1 < 2 fala odchyla się w stronę granicy ośrodka V 1 > V 2 1 > 2 fala odchyla się od granicy ośrodka 1 1 V 1 2 V 2 2

Fala załamana na granicy ugięcie krytyczne W przypadku przechodzenia fali z ośrodka o mniejszej prędkości do ośrodka o większej prędkości istnieje taki kąt 1 zwany kątem krytycznym ( i ) przy którym kąt = 9 (tzn. fala propaguje wzdłuż granicy ośrodków) sin V 1 i sin9 V 2 sin i V V 1 2 i V 1 V 2

Całkowite wewnętrzne odbicie fali Jeśli kąt padania jest większy od i wówczas następuje tzw. całkowite wewnętrzne odbicie i fala nie przechodzi przez granicę dwóch ośrodków. Kąt padania równy jestkątowi odbicia. V 1 > i V 2